Some classes of p-valent analytic functions involving certain integral operators
 Mamta Pathak and Poonam Sharma
 Department of Mathematics \& Astronomy, University of Lucknow, Lucknow 226007, India.

ARTICLE INFO

Article history:

Received: 12 April 2013;
Received in revised form:
24 May 2013;
Accepted: 31 May 2013;

Abstract

In this paper we introduce some classes of p-valent analytic functions involving repeated Erdélyi-Kober fractional integral operators and investigate some of their properties specially inclusion relations for these classes. Some class preserving properties of an integral operator are also discussed.

© 2013 Elixir All rights reserved.

Keywords

Analytic functions,
Erdélyi-Kober integral operator,
Hohlov operator,
Carlson and Shaffer operator,
Convolution,
Subordination.

1. Introduction

Let $\mathrm{A}(\mathrm{p})$ denote a class of p -valent functions of the form:

$$
\begin{equation*}
\mathrm{f}(\mathrm{z})=\mathrm{z}^{\mathrm{p}}+\sum_{\mathrm{k}=\mathrm{p}+1}^{\infty} \mathrm{a}_{\mathrm{k}} \mathrm{z}^{\mathrm{k}} \tag{1.1}
\end{equation*}
$$

($p \in \mathrm{~N}=\{1,2, \ldots\}$) which are analytic in the unit
disc $U:=\{\mathrm{z} \in \mathrm{C}:|\mathrm{z}|<1\}$.
For a function $\mathrm{f} \in \mathrm{A}(\mathrm{p})$ given by (1.1) and $\mathrm{g} \in \mathrm{A}(\mathrm{p})$ given by:

$$
\begin{equation*}
\mathrm{g}(\mathrm{z})=\mathrm{z}^{\mathrm{p}}+\sum_{\mathrm{k}=\mathrm{p}+1}^{\infty} \mathrm{b}_{\mathrm{k}} \mathrm{z}^{\mathrm{k}} \tag{1.2}
\end{equation*}
$$

a convolution (Hadmard product) of $f(z)$ and $g(z)$ is defined as:

$$
\begin{equation*}
S_{p}^{*}(\alpha, \phi)=\left\{f: f \in A_{p} \text { and } \frac{1}{p-\alpha}\left(\frac{z f^{\prime}(z)}{f(z)}-\alpha\right) \pi \phi(z), z \in U\right\} \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
(\mathrm{f} * \mathrm{~g})(\mathrm{z})=\mathrm{z}^{\mathrm{p}}+\sum_{\mathrm{k}=\mathrm{p}+1}^{\infty} \mathrm{a}_{\mathrm{k}} \mathrm{~b}_{\mathrm{k}} \mathrm{z}^{\mathrm{k}} \tag{1.3}
\end{equation*}
$$

(1.5) $K_{p}(\alpha, \phi)=\left\{f: f \in A_{p}\right.$ and

$$
\left.\frac{1}{\mathrm{p}-\alpha}\left(1+\frac{\mathrm{zf}^{\prime \prime}(\mathrm{z})}{\mathrm{f}^{\prime}(\mathrm{z})}-\alpha\right) \pi \phi(\mathrm{z})\right\}, \mathrm{z} \in \mathrm{U}
$$

If $\phi(\mathrm{z})=\frac{1+\mathrm{z}}{1-\mathrm{z}}, \mathrm{z} \in \mathrm{U}, \operatorname{classes} \mathrm{S}_{\mathrm{p}}^{*}(\alpha, \phi)$ and $\mathrm{K}_{\mathrm{p}}(\alpha, \phi)$ are, respectively, called p -valently starlike and convex of order α. Further, if $\phi(z)=\frac{1+\beta z}{1-\beta z}, z \in U$, classes $\mathrm{S}_{\mathrm{p}}^{*}(\alpha, \phi)$ and $\mathrm{K}_{\mathrm{p}}(\alpha, \phi)$ are called p -valently starlike and convex of order α and type β.

Recently, fractional integral operators have found their applications in defining several classes of analytic functions in geometric function theory. In our investigation we consider certain subclasses of $\mathrm{A}(\mathrm{p})$ involving repeated Erdélyi-Kober integral operator [6] which is studied by Saigo et al. in [9] and is defined for integer $m \geq 1, \delta_{i} \geq 0$, $\gamma_{i} \in R, \beta_{i}>0, i=1, \ldots \ldots, m$ as follows:

$$
\begin{align*}
& I_{\left(\beta_{i}\right), m}^{\left(\gamma_{i}\right)\left(\delta_{i}\right)} f(z)=\left[\prod_{i=1}^{m} I_{\beta_{i}}^{\gamma_{i}, \delta_{i}}\right] f(z), \quad \sum_{i=1}^{m} \delta_{i}>0 \tag{1.6}\\
& =\mathrm{f}(\mathrm{z}), \quad \delta_{1}=\delta_{2}=\ldots=\delta_{\mathrm{m}}=0
\end{align*}
$$

where $I_{\beta}^{\gamma, \delta}$ is the Erdélyi-Kober integral operator [5] defined by
(1.7) $I_{\beta}^{\gamma, \delta} f(z)=\frac{1}{\Gamma(\delta)} \int_{0}^{1}(1-t)^{\delta-1} t^{\gamma} f\left(z t^{\frac{1}{\beta}}\right) d t, \delta \in R_{+}$

$$
=\mathrm{f}(\mathrm{z}), \delta=0
$$

The image of power function z^{k} [6] under this operator is given as:

$$
\begin{equation*}
I_{\left(\beta_{i}\right), m}^{\left(y_{1}\right)\left(\delta_{i}\right)}\left(z^{k}\right)=\lambda_{k} z^{k} \text {, with } \tag{1.8}
\end{equation*}
$$

$$
\lambda_{k}=\prod_{i=1}^{m} \frac{\Gamma\left(\gamma_{i}+1+\frac{\mathrm{k}}{\beta_{\mathrm{i}}}\right)}{\Gamma\left(\gamma_{\mathrm{i}}+\delta_{i}+1+\frac{\mathrm{k}}{\beta_{\mathrm{i}}}\right)}>0
$$

for each $\mathrm{k}>\max _{1 \leq \mathrm{i} \leq \mathrm{m}}\left[-\beta_{\mathrm{i}}\left(\gamma_{\mathrm{i}}+1\right)\right]$.
Thus a normalized repeated Erdélyi-Kober fractional integral operator $\mathrm{E}_{\left(\mathrm{p}_{\mathrm{i}}\right), \mathrm{m}}^{\left(\gamma_{\mathrm{i}}\right),\left(\delta_{\mathrm{i}}\right)}$ on $\mathrm{f} \in \mathrm{A}(\mathrm{p})$ is defined for \quad integer $\mathrm{m} \geq 1, \delta_{\mathrm{i}} \geq 0$, $\gamma_{\mathrm{i}} \geq-1, \beta_{\mathrm{i}}>0, \mathrm{i}=1, \ldots, \mathrm{~m}$ as:
(1.10) $\quad \mathrm{E}_{\left(\beta_{\mathrm{i}}\right), \mathrm{m}}^{\left(\gamma_{\mathrm{i}}\right),\left(\delta_{\mathrm{i}}\right)} \mathrm{f}(\mathrm{z})=\left(\lambda_{\mathrm{p}}\right)^{-1} \quad \mathrm{I}_{\left(\mathrm{p}_{\mathrm{i}}\right), \mathrm{m}}^{\left(\gamma_{\gamma_{2}}\right),\left(\delta_{\mathrm{i}}\right)} \mathrm{f}(\mathrm{z})$.

The series expansion of (1.9) using (1.8) for $f \in A(p)$ of the form (1.1) is given by

$$
\begin{equation*}
\mathrm{Ef}(\mathrm{z}) \equiv \mathrm{E}_{\left(\beta_{\mathrm{i}}\right), \mathrm{m}}^{\left(\gamma_{\mathrm{i}}\right),\left(\delta_{\mathrm{i}}\right)} \mathrm{f}(\mathrm{z})=\mathrm{z}^{\mathrm{p}}+\sum_{\mathrm{k}=\mathrm{p}+1}^{\infty} \mathrm{a}_{\mathrm{k}} \theta_{\mathrm{k}} \mathrm{z}^{\mathrm{k}} \tag{1.10}
\end{equation*}
$$

$$
=\left\{z^{\mathrm{p}}+\sum_{\mathrm{k}=\mathrm{p}+1}^{\infty} \theta_{\mathrm{k}} \mathrm{z}^{\mathrm{k}}\right\} * \mathrm{f}(\mathrm{z})
$$

where,
$\theta_{\mathrm{k}}=\prod_{\mathrm{i}=1}^{\mathrm{m}} \frac{\Gamma\left(\gamma_{\mathrm{i}}+1+\frac{\mathrm{k}}{\beta_{\mathrm{i}}}\right)}{\Gamma\left(\gamma_{\mathrm{i}}+\delta_{\mathrm{i}}+1+\frac{\mathrm{k}}{\beta_{\mathrm{i}}}\right)} \frac{\Gamma\left(\gamma_{\mathrm{i}}+\delta_{\mathrm{i}}+1+\frac{\mathrm{p}}{\beta_{\mathrm{i}}}\right)}{\Gamma\left(\gamma_{\mathrm{i}}+1+\frac{\mathrm{p}}{\beta_{\mathrm{i}}}\right)}$.

Further we consider an operator $E^{j} f(z)$ for $\mathrm{f} \in \mathrm{A}(\mathrm{p})$ of the form (1.1) which is defined as:

$$
\begin{equation*}
E^{j} f(z)=\left\{z^{p}+\sum_{k=p+1}^{\infty} \theta_{k}^{j} z^{k}\right\} * f(z) \tag{1.11}
\end{equation*}
$$

where
$\theta_{\mathrm{k}}^{\mathrm{j}}=\frac{\left(\gamma_{\mathrm{j}}+1+\frac{\mathrm{k}}{\beta_{\mathrm{j}}}\right)}{\left(\gamma_{\mathrm{j}}+1+\frac{\mathrm{p}}{\beta_{\mathrm{j}}}\right)} \theta_{\mathrm{k}}$ for some $\mathrm{j}(1 \leq \mathrm{j} \leq \mathrm{m})$ such that $\delta_{j}>0$.

It is easily verified from (1.10) and (1.11) that,
(1.12) $\frac{z}{\beta_{j}}(E f(z))^{\prime}=\left(\gamma_{j}+1+\frac{p}{\beta_{j}}\right) E^{j} f(z)-\left(\gamma_{j}+1\right) \operatorname{Ef}(z)$
which can also be written as :
(1.13) $\frac{E^{j} f(z)}{z^{p}}=\frac{z}{\beta_{j}\left(\gamma_{j}+1\right)+p}\left(\frac{E f(z)}{z^{p}}\right)^{\prime}+\frac{E f(z)}{z^{p}}$.

By specializing the parameters, the integral operator E defined in (1.10) reduces into various operators which were earlier studied by several authors. For example:

On setting $\gamma_{i}=b_{i}-1-\mathrm{p}, \delta_{i}=\mathrm{c}_{\mathrm{i}}-\mathrm{b}_{\mathrm{i}}, \beta_{\mathrm{i}}=1$,
we get $\theta_{k}=\frac{\left(b_{1}\right)_{k-p} \ldots\left(b_{m}\right)_{k-p}}{\left(c_{1}\right)_{k-p} \ldots\left(c_{m}\right)_{k-p}}$
and E reduces to Dziok-Srivastava operator [2] for the class $\mathrm{A}(\mathrm{p})$.

Taking $\mathrm{m}=2, \gamma_{1}=b-1-p, \gamma_{2}=\mathrm{c}-1-\mathrm{p}$,
$\delta_{1}=1-\mathrm{b}, \quad \delta_{2}=\mathrm{d}-\mathrm{c}, \beta_{1}=\beta_{2}=1$, we obtain $\theta_{\mathrm{k}}=\frac{(\mathrm{b})_{\mathrm{k}-\mathrm{p}}(\mathrm{c})_{\mathrm{k}-\mathrm{p}}}{(\mathrm{d})_{\mathrm{k}-\mathrm{p}}(\mathrm{k}-\mathrm{p})!}, \quad$ and E reduces to Hohlov operator $\mathrm{F}(\mathrm{b}, \mathrm{c}$; d) [4] for the class $\mathrm{A}(\mathrm{p})$ which further, on taking $\mathrm{b}=\mathrm{p}, \mathrm{c}=\alpha+\mathrm{p}, \mathrm{d}=\mathrm{p}, \quad$ gives $\theta_{\mathrm{k}}=\frac{(\alpha+\mathrm{p})_{\mathrm{k}-\mathrm{p}}}{(\mathrm{k}-\mathrm{p})!}$, and E reduces to Ruscheweyh derivative operator [8] for the class $\mathrm{A}(\mathrm{p})$.

Again, putting $\mathrm{m}=1, \gamma_{1}=\mathrm{b}-1-\mathrm{p}, \quad \delta_{1}=\mathrm{d}-\mathrm{b}$, $\beta_{1}=1$, we get $\theta_{\mathrm{k}}=\frac{(\mathrm{b})_{\mathrm{k}-\mathrm{p}}}{(\mathrm{d})_{\mathrm{k}-\mathrm{p}}}$, and E reduces to Carlson-Shaffer type operator [1] introduced by Saitoh [10] for the class A(p).

Involving fractional integral operators $\mathrm{Ef}(\mathrm{z})$ and $E^{j} f(z)$ defined by (1.10) and (1.11) respectively, we introduce following subclasses of $\mathrm{A}(\mathrm{p})$ as follows:
$E S_{p}(\alpha, \phi)=\left\{\mathrm{f}: \mathrm{f} \in \mathrm{A}(\mathrm{p})\right.$ and $\left.\mathrm{Ef} \in \mathrm{S}_{\mathrm{p}}^{*}(\alpha, \phi)\right\}$
$\operatorname{ES}^{\mathrm{j}}{ }_{\mathrm{p}}(\alpha, \phi)=\left\{\mathrm{f}: \mathrm{f} \in \mathrm{A}(\mathrm{p})\right.$ and $\left.\mathrm{E}^{\mathrm{j}} \mathrm{f} \in \mathrm{S}_{\mathrm{p}}^{*}(\alpha, \phi)\right\}$
$E K_{p}(\alpha, \phi)=\left\{\mathrm{f}: \mathrm{f} \in \mathrm{A}(\mathrm{p})\right.$ and $\left.\mathrm{Ef} \in \mathrm{K}_{\mathrm{p}}(\alpha, \phi)\right\}$
$E^{j} K_{p}(\alpha, \phi)=\left\{f: f \in A(p)\right.$ and $\left.E^{j} f \in K_{p}(\alpha, \phi)\right\}$.
Also for $\phi \in \mathrm{P}$ and $0 \leq \alpha<\mathrm{p}$
$\mathrm{EC}_{\mathrm{p}}(\alpha, \phi)=\left\{\mathrm{f}: \mathrm{f} \in \mathrm{A}(\mathrm{p})\right.$ and $\left.\frac{1}{1-\alpha}\left\{\frac{\mathrm{Ef}(\mathrm{z})}{\mathrm{z}^{\mathrm{p}}}-\alpha\right\} \pi \phi(\mathrm{z}), \mathrm{z} \in \mathrm{U}\right\}$ $\mathrm{EC}^{\mathrm{j}} \mathrm{p}(\alpha, \phi)=\left\{\mathrm{f}: \mathrm{f} \in \mathrm{A}(\mathrm{p})\right.$ and $\left.\frac{1}{1-\alpha}\left\{\frac{\mathrm{E}_{\mathrm{f}}(\mathrm{z})}{\mathrm{z}^{\mathrm{p}}}-\alpha\right\} \pi \phi(\mathrm{z}), \mathrm{z} \in \mathrm{U}\right\}$ and for $0 \leq \lambda \leq 1$
$E Q_{p}^{\lambda}(\alpha, \phi)=\{\mathrm{f}: \mathrm{f} \in \mathrm{A}(\mathrm{p})$ and

$$
\left.\frac{1}{1-\alpha}\left\{(1-\lambda) \frac{\mathrm{Ef}(\mathrm{z})}{z^{\mathrm{p}}}+\lambda \frac{\mathrm{E}^{\mathrm{j}} \mathrm{f}(\mathrm{z})}{\mathrm{z}^{\mathrm{p}}}-\alpha\right\} \pi \phi(\mathrm{z}), \mathrm{z} \in \mathrm{U}\right\}
$$

Clearly, $f \in E^{j} S_{p}(\alpha, \phi) \Leftrightarrow E^{j} f \in S_{p}^{*}(\alpha, \phi)$ and

$$
\begin{equation*}
\mathrm{f}(\mathrm{z}) \in \mathrm{EK}_{\mathrm{p}}(\alpha, \phi) \Leftrightarrow \frac{\mathrm{zf}}{} \mathrm{f}^{\prime}(\mathrm{z}), \mathrm{ES}_{\mathrm{p}}(\alpha, \phi) . \tag{1.14}
\end{equation*}
$$

Inclusion relations, in Geometric function theory play important role. To obtain some of the inclusion relations between aforementioned classes we use Briot-Bouquet differential subordination method in the form of following lemma:

Lemma 1.1 [7] Let $\beta, \gamma \in \mathrm{C}, \phi$ be convex in U with $\phi(0)=1$ and $\operatorname{Re}\{\beta \phi(\mathrm{z})+\gamma\}>0, \quad \mathrm{z} \in \mathrm{U}$ and let $\mathrm{q}(\mathrm{z})=1+\mathrm{q}_{1} \mathrm{z}+\mathrm{q}_{2} \mathrm{z}^{2}+\ldots \ldots$ be analytic in U. Then $\mathrm{q}(\mathrm{z})+\frac{\mathrm{zq}^{\prime}(\mathrm{z})}{\beta \mathrm{q}(\mathrm{z})+\gamma} \pi \phi(\mathrm{z}) \Rightarrow \mathrm{q}(\mathrm{z}) \pi \phi(\mathrm{z}) \quad(\mathrm{z} \in \mathrm{U})$.

Lemma 1.2 [3] Let h be an analytic and convex univalent in U. Let ϕ be analytic in U with
$\mathrm{h}(0)=\phi(0)=1$. Then for $\gamma \in \mathrm{C}, \operatorname{Re}\{\gamma\} \geq 0$ and $\gamma \neq 0, \phi(\mathrm{z}) \pi \mathrm{q}(\mathrm{z})=\frac{\gamma}{\mathrm{z}^{\gamma}} \int_{0}^{\mathrm{z}} \mathrm{t}^{\gamma-1} \mathrm{~h}(\mathrm{t}) \mathrm{dt} \pi \mathrm{h}(\mathrm{z})$.
where $\mathrm{q}(\mathrm{z})$ is the best dominant.

2. Inclusion relations

Theorem 2.1 Let the operators E and E^{j} be defined, respectively, by (1.10) and (1.11) with $\operatorname{Re}\{\phi(\mathrm{z})\}<\frac{\beta_{\mathrm{j}}\left(\gamma_{\mathrm{j}}+1\right)+\alpha}{\alpha-\mathrm{p}}$. Then

$$
\mathrm{E}^{\mathrm{j}} \mathrm{~S}_{\mathrm{p}}(\alpha, \phi) \subset \mathrm{ES}_{\mathrm{p}}(\alpha, \phi)
$$

Proof: Let $\mathrm{f} \in \mathrm{E}^{\mathrm{j}} \mathrm{S}_{\mathrm{p}}(\alpha, \phi)$ and set

$$
\begin{equation*}
\mathrm{q}(\mathrm{z})=\frac{1}{\mathrm{p}-\alpha}\left(\frac{\mathrm{z}(\operatorname{Ef}(\mathrm{z}))^{\prime}}{\operatorname{Ef}(\mathrm{z})}-\alpha\right) \tag{2.1}
\end{equation*}
$$

which is analytic in U with $\mathrm{q}(0)=1$ and $\mathrm{q}(\mathrm{z}) \neq 0$ for all $\mathrm{z} \in \mathrm{U}$. From (1.12) and (2.1), we obtain
(2.2) $\frac{\left(\gamma_{j}+1+\frac{p}{\beta_{j}}\right) E^{j} f(z)}{E f(z)}=\frac{1}{\beta_{j}} q(z)(p-\alpha)+\left(\gamma_{j}+1+\frac{\alpha}{\beta_{j}}\right)$.

Taking logarithmic differentiation on both sides of (2.2), we get

$$
\frac{z\left(E^{j} f(z)\right)^{\prime}}{E^{j} f(z)}-\frac{z(E f(z))^{\prime}}{E f(z)}=\frac{z q^{\prime}(z)(p-\alpha)}{\beta_{j}\left\{\frac{q(z)(p-\alpha)}{\beta_{j}}+\left(\gamma_{j}+1+\frac{\alpha}{\beta_{j}}\right)\right\}}
$$

or,

$$
\frac{1}{p-\alpha}\left\{\frac{z\left(E^{j} f(z)\right)^{\prime}}{E^{j} f(z)}-\alpha\right\}=q(z)+\frac{z q^{\prime}(z)}{q(z)(p-\alpha)+\left(\gamma_{j}+1\right) \beta_{j}+\alpha}
$$

which on applying the hypothesis and Lemma 1.1, yields that

$$
\mathrm{q}(\mathrm{z}) \pi \phi(\mathrm{z}) \text { in } \mathrm{U} .
$$

This proves Theorem 2.1.
Theorem 2.2 Let the operators E and E^{j} be defined by (1.10) and (1.11) respectively and $0 \leq \alpha<\mathrm{p}, \quad \phi \in \mathrm{P}$ with $\operatorname{Re}\{\phi(\mathrm{z})\}<\frac{\beta_{\mathrm{j}}\left(\gamma_{\mathrm{j}}+1\right)+\alpha}{\alpha-\mathrm{p}}$. Then $\mathrm{E}^{\mathrm{j}} \mathrm{K}_{\mathrm{p}}(\alpha, \phi) \subset \mathrm{EK}_{\mathrm{p}}(\alpha, \phi)$.

Proof: On applying (1.14) and Theorem 2.1, we observe that

$$
\begin{aligned}
& f(z) \in E^{j} K_{p}(\alpha, \phi) \Leftrightarrow \quad E^{j} f(z) \in K_{p}(\alpha ; \phi) \\
& \Leftrightarrow \frac{z\left(E^{j} f(z)\right)^{\prime}}{p} \in S_{p}^{*}(\alpha ; \phi) \\
& \Leftrightarrow E^{j}\left(\frac{\mathrm{zf}^{\prime}(z)}{p}\right) \in S_{p}^{*}(\alpha ; \phi) \\
& \Leftrightarrow \frac{z^{\prime}(z)}{p} \in E^{j} S_{p}(\alpha, \phi) \Rightarrow \frac{\mathrm{zf}^{\prime}(z)}{p} \in E_{p}(\alpha, \phi) \\
& \Leftrightarrow E\left(\frac{z f^{\prime}(z)}{p}\right) \in S_{p}^{*}(\alpha ; \phi) \Leftrightarrow \frac{z(E f(z))^{\prime}}{p} \in S_{p}^{*}(\alpha ; \phi) \\
& \Leftrightarrow E f(z) \in K_{p}(\alpha ; \phi) \Leftrightarrow f(z) \in E K_{p}(\alpha, \phi)
\end{aligned}
$$

which proves Theorem 2.2.
Theorem 2.3 Let the operator E be defined in (1.10) with the same conditions on parameters and $0 \leq \alpha<\mathrm{p}, \phi \in \mathrm{P}$, then for $0 \leq \lambda \leq 1$,

$$
\mathrm{EQ}_{\mathrm{p}}^{\lambda}(\alpha, \phi) \subseteq \mathrm{EC}_{\mathrm{p}}(\alpha, \phi)
$$

Proof: Letf $\in \mathrm{EQ}_{\mathrm{p}}^{\lambda}(\alpha, \phi)$, and set

$$
\mathrm{q}(\mathrm{z})=\frac{1}{1-\alpha}\left\{\frac{\mathrm{Ef}(\mathrm{z})}{\mathrm{z}^{\mathrm{p}}}-\alpha\right\} .
$$

We have
$h(z):=\frac{1}{1-\alpha}\left\{(1-\lambda) \frac{E f(z)}{z^{p}}+\lambda \frac{E^{j} f(z)}{z^{p}}-\alpha\right\} \pi \phi(z)$.
Using (1.13) we get

$$
h(z)=\frac{1}{1-\alpha}\left\{(1-\lambda) \frac{\operatorname{Ef}(z)}{{ }_{z} p}\right.
$$

$$
\left.+\lambda\left(\frac{z}{\beta_{j}\left(\gamma_{j}+1\right)+p}\left(\frac{\operatorname{Ef}(z)}{z^{p}}\right)^{\prime}+\frac{\operatorname{Ef}(z)}{z^{p}}\right)-\alpha\right\}
$$

$$
=\frac{1}{1-\alpha}\left\{\frac{\operatorname{Ef}(\mathrm{z})}{\mathrm{z}^{\mathrm{p}}}-\alpha\right\}
$$

$$
+\frac{\lambda z}{\beta_{j}\left(\gamma_{j}+1\right)+p}\left\{\frac{1}{1-\alpha}\left(\frac{\operatorname{Ef}(z)}{z^{p}}-\alpha\right)\right\}^{\prime}
$$

$$
=q(z)+\frac{\lambda z q^{\prime}(z)}{\beta_{j}\left(\gamma_{j}+1\right)+p} \pi \phi(z)
$$

On applying Lemma 1.2, it follows that $\mathrm{q}(\mathrm{z}) \pi \phi(\mathrm{z})$ in U , hence this proves the result of Theorem 2.3.

For $\lambda=1$, Theorem 2.3 gives following corollary.
Corollary 2.1 Let the operator E be defined in (1.10) and $0 \leq \alpha<\mathrm{p}, \phi \in \mathrm{P}$, then

$$
\mathrm{E}^{\mathrm{j}} \mathrm{C}_{\mathrm{p}}(\alpha, \phi) \subset \mathrm{EC}_{\mathrm{p}}(\alpha, \phi)
$$

Corollary 2.2 Let the operator E be defined in (1.10) and $0 \leq \alpha<\mathrm{p}, \phi \in \mathrm{P}$, then for
$0 \leq \lambda_{1} \leq \lambda_{2} \leq 1, \mathrm{EQ}_{\mathrm{p}}^{\lambda_{2}}(\alpha, \phi) \subseteq \mathrm{EQ}_{\mathrm{p}}^{\lambda_{1}}(\alpha, \phi)$.
Proof: Let $\mathrm{f} \in \mathrm{EQ}_{\mathrm{p}}^{\lambda_{2}}(\alpha, \phi)$. A simple computation gives

$$
\begin{align*}
& \frac{1}{1-\alpha}\left\{\left(1-\lambda_{1}\right) \frac{E f(z)}{z^{p}}+\lambda_{1} \frac{E^{j} f(z)}{z^{p}}-\alpha\right\} \tag{2.8}\\
= & \left(1-\frac{\lambda_{1}}{\lambda_{2}}\right)\left\{\frac{1}{1-\alpha}\left(\frac{E f(z)}{z^{p}}-\alpha\right)\right\} \\
+ & \frac{\lambda_{1}}{\lambda_{2}} \frac{1}{(1-\alpha)}\left\{\left(\left(1-\lambda_{2}\right) \frac{E f(z)}{z^{p}}+\lambda_{2} \frac{E^{\mathrm{j}} \mathrm{f}(\mathrm{z})}{z^{\mathrm{p}}}\right)-\alpha\right\} .
\end{align*}
$$

By the hypothesis and Theorem 2.3, the right hand side of (2.8) is a convex combination of functions which are the subordinate of a convex function ϕ hence it is a subordinate of ϕ and $\mathrm{f} \in \mathrm{EQ}_{\mathrm{p}}^{\lambda_{1}}(\alpha, \phi)$. That proves Corollary 2.2.

Theorem 2.4 Let $f_{1} \in \operatorname{EQ}_{\mathrm{p}}^{\lambda}\left(\alpha, \phi_{1}\right) \quad$ and $f_{2} \in E Q_{p}^{\lambda}\left(\alpha, \phi_{2}\right)$, then

$$
\frac{E\left(f_{1} * f_{2}\right)-\alpha z^{p}}{1-\alpha} \in E Q_{p}^{\lambda}\left(\alpha, \phi_{1} * \phi_{2}\right) .
$$

Proof: we have

$$
\begin{equation*}
\frac{1}{1-\alpha}\left\{(1-\lambda) \frac{E f_{1}(z)}{z^{p}}+\lambda \frac{\mathrm{Ef}_{1}(z)}{z^{p}}-\alpha\right\} \pi \phi_{1}(z)(z \in \mathrm{U}) . \tag{2.9}
\end{equation*}
$$

and by Theorem 2.3 we have

$$
\begin{equation*}
\frac{1}{1-\alpha}\left\{\frac{\mathrm{Ef}_{2}(\mathrm{z})}{\mathrm{z}^{\mathrm{p}}}-\alpha\right\} \pi \phi_{2}(\mathrm{z}) \quad(\mathrm{z} \in \mathrm{U}) \tag{2.10}
\end{equation*}
$$

We know [3] that if in a unit disk, f π F and $g \pi$ G for convex functions F and G , then $\mathrm{f} * \mathrm{~g} \pi \mathrm{~F} * \mathrm{G}$.

Thus, by (2.9) and (2.10) we get

$$
\begin{aligned}
& \frac{1}{1-\alpha}\left[(1-\lambda)\left\{\frac{E\left\{\frac{E\left(f_{1} * f_{2}\right)-\alpha z^{p}}{1-\alpha}\right\}}{z^{p}}\right\}\right. \\
& \left.+\lambda\left\{\frac{E^{j}\left\{\frac{E\left(f_{1} * f_{2}\right)-\alpha z^{p}}{1-\alpha}\right\}}{z^{p}}\right\}-\alpha\right] \pi\left(\phi_{1} * \phi_{2}\right)(z)
\end{aligned}
$$

This proves Theorem 2.4.

3. Integral Operator $R_{c}(f)$

In this section, we examine some class preserving properties of an integral operator $R_{c}(f)$ defined by (3.1) $\mathrm{R}_{\mathrm{c}}(\mathrm{f})=\frac{(\mathrm{c}+\mathrm{p})}{\mathrm{z}^{\mathrm{c}}} \int_{0}^{\mathrm{z}} \mathrm{t}^{\mathrm{c}-1} \mathrm{f}(\mathrm{t}) \mathrm{dt} \quad(\mathrm{f} \in \mathrm{A}(\mathrm{p}), \mathrm{c}>-\mathrm{p})$.

Theorem 3.1 Let the operator E be defined in (1.10) and $0 \leq \alpha<\mathrm{p}, \phi \in \mathrm{P}$, then

$$
\mathrm{R}_{\mathrm{c}}: \mathrm{ES}_{\mathrm{p}}(\alpha, \phi) \rightarrow \mathrm{ES}_{\mathrm{p}}(\alpha, \phi)
$$

Proof: To prove the theorem, let $\mathrm{f} \in \mathrm{ES}_{\mathrm{p}}(\alpha, \phi)$ and
let, $\quad \mathrm{q}(\mathrm{z})=\frac{1}{\mathrm{p}-\alpha}\left(\frac{\mathrm{z}\left(\mathrm{ER}_{\mathrm{c}}(\mathrm{f})\right)^{\prime}}{\mathrm{ER}_{\mathrm{c}}(\mathrm{f})}-\alpha\right)$
which is analytic in U with $\mathrm{q}(0)=1$ and $\mathrm{q}(\mathrm{z}) \neq 0$ for all $\mathrm{z} \in \mathrm{U}$. From (3.1), we obtain,

$$
\frac{\mathrm{z}\left(\mathrm{ER}_{\mathrm{c}}(\mathrm{f})\right)^{\prime}}{\operatorname{ER}_{\mathrm{c}}(\mathrm{f})}=(\mathrm{c}+\mathrm{p}) \frac{(\operatorname{Ef}(\mathrm{z}))}{E R_{\mathrm{c}}(\mathrm{f})}-\mathrm{c}
$$

or,
$\frac{1}{p-\alpha}\left\{\frac{z\left(\operatorname{ER}_{c}(\mathrm{f})\right)^{\prime}}{\mathrm{ER}_{\mathrm{c}}(\mathrm{f})}-\alpha\right\}=\frac{1}{\mathrm{p}-\alpha}\left\{(\mathrm{c}+\mathrm{p}) \frac{(\mathrm{Ef}(\mathrm{z}))}{\operatorname{ER}_{\mathrm{c}}(\mathrm{f})}-\mathrm{c}-\alpha\right\}$
or,
(3.2) $\frac{(c+p)(E f(z))}{E R_{c}(f)}=q(z)(p-\alpha)+c+\alpha$.

By using logarithmic differentiation on both sides of (3.2), we get
$\frac{1}{\mathrm{p}-\alpha}\left\{\frac{\mathrm{z}(\operatorname{Ef}(\mathrm{z}))^{\prime}}{\operatorname{Ef}(\mathrm{z})}-\alpha\right\}=\frac{\mathrm{zq}}{}{ }^{\prime}(\mathrm{z}) \quad \mathrm{q}(\mathrm{z})(\mathrm{p}-\alpha)+\mathrm{c}+\alpha, \mathrm{q}(\mathrm{z}) \pi \phi(\mathrm{z})$.
Hence by the hypothesis and Lemma 1.1, we conclude that $\mathrm{q}(\mathrm{z}) \pi \phi(\mathrm{z})$ in U , which implies that $\mathrm{R}_{\mathrm{c}}(\mathrm{f}) \in \mathrm{ES}_{\mathrm{p}}(\alpha, \phi)$. This proves Theorem 3.1.

Theorem 3.2 Let the operator E be defined in (1.10) and $0 \leq \alpha<\mathrm{p}, \quad \phi \in \mathrm{P}$, then

$$
\mathrm{R}_{\mathrm{c}}: \mathrm{EK}_{\mathrm{p}}(\alpha, \phi) \rightarrow \mathrm{EK}_{\mathrm{p}}(\alpha, \phi)
$$

Proof: On applying (1.14) and Theorem 3.1 it follows that,

$$
\begin{aligned}
\mathrm{f}(\mathrm{z}) \in & \mathrm{EK}_{\mathrm{p}}(\alpha, \phi) \Leftrightarrow \frac{\mathrm{zf}^{\prime}(\mathrm{z})}{\mathrm{p}} \in \mathrm{ES}_{\mathrm{p}}(\alpha, \phi) \\
& \Rightarrow \mathrm{R}_{\mathrm{c}}\left(\frac{\mathrm{zf}^{\prime}(\mathrm{z})}{\mathrm{p}}\right) \in \mathrm{ES}_{\mathrm{p}}(\alpha, \phi) \\
& \Leftrightarrow \frac{\mathrm{z}\left(\mathrm{R}_{\mathrm{c}} \mathrm{f}(\mathrm{z})\right)^{\prime}}{\mathrm{p}} \in \mathrm{ES}_{\mathrm{p}}(\alpha, \phi) \\
& \Leftrightarrow \mathrm{R}_{\mathrm{c}} \mathrm{f}(\mathrm{z}) \in \mathrm{EK}_{\mathrm{p}}(\alpha, \phi)
\end{aligned}
$$

which proves Theorem 3.2.

References

[1]. Carlson B.C. and Shaffer D.B., Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15 (1984), 737-745.
[2]. Dzoik J., Srivastava H. M., Certain subclass of analytic functions associated with the generalized hypergeometric functions, Int.Transf. Spec. Funct. 14 (1), (2003), 7-18.
[3]. Hallenbeck D.I., Ruscheweyh S., Subordination by convex functions, Proc. Amer. Math. Soc., 52 (1975), 191-195.
[4]. Hohlov Yu., Convolution operators preserving univalent functions, Pliska. Studia Math. Bulg., 10, (1989), 87-92.
[5]. Kiryakova V., Generalized fractional calculus and application, Pitman Research Notes in Math. Series, 301, Longman, Harlow (UK), 1994.
[6]. Kiryakova V., Saigo M., Srivastava H.M., Frac. Calc. \& Appl. Anal., 1 (1), (1998), 79-104.
[7]. Miller S. S., Mocanu P. T., Differential subordination and inequalities in the complex plane, J. Diff. Eqns., 67 (1987), 199-211.
[8]. Ruscheweyh S., New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109115.
[9]. Saigo M., Owa S. and Kiryakova V., Characterization theorem for starlike and convex functions in terms of generalized fractional calculus, Compt. Rend. Acad. Bulg. Sci., 58 (10), (2005), 1135-1142.
[10]. Saitoh H., A Linear operator and its applications of first order differential subordination, Math. Japan, 44 (1996), 31-38.

