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1. Introduction and we say f(z) is subordinate of g(z) symbolically
Let A(p) denote a class of p-valent functions of the write as frwrg or f(z)mg(z) if there exists a
form: Schwarz function w(z) in U such that

L) f@)=2"+ Sa,zk f(2)=9W(2), z€ V.

k=p+1 . :
b Let P denote the class of all functions ¢ which are

N={1,2,...}) which are analytic in the unit
(p N={1.2...} N analytic in U and ¢(U)is convex with ¢(0) = 1 and

disc U:={Z€C: |z| < 1}' Re{#(z)} >0, ze U.

For a function fe A(p) given by (1.1) and ge A(p)
Making use of the principle of subordination, several

given by:
authors have studied subclasses Sp(o,¢) and

12 9(z)=2"+ ibkzk

Kep il Kp(ow ) of A(p) for gePand 0<a <p whichare

a convolution (Hadmard product) of f(z) and g(z) is defined as:
p-a f(z)

defined as: (1.4) s;(q,¢)={f f e Apand L[Zf—(z) - oc] ni(z)ze U}

13)  (F*g)z)=2z"+ D a.b,z"
k=p+1
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p

1 [1+ 2"(z) —a] T q)(z)}, zeU

(1.5) Kp(a,q)):{f:feA and

p-al  f(2)
If ¢(z)=i—§, z e U,classes Sp (o, ¢)and K (a,¢)

are, respectively, called p-valently starlike and

1+Bz

convex of order o. Further, if ¢(z) = ,Z2eU,

classes Sy (a,¢) and K (a,¢) are called p-valently

starlike and convex of order acand type f3.

Recently, fractional integral operators have
found their applications in defining several classes of
analytic functions in geometric function theory. In
our investigation we consider certain subclasses of
A(p) involving repeated Erdélyi-Kober integral

operator [6] which is studied by Saigo et al. in [9]
and is defined for integer m>1, §; =20,

v: €R, B; >0,i=1....,m as follows:

where Ig's is the Erdélyi-Kober integral operator [5]

defined by
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(L7) 1:°f(z)= %8)

O ey

1
(1—t)5_1tyf[zt‘3 }ﬂ,s eR,

=f(2), 6 =0.
The image of power function z* [6] under this
operator is given as:

(L.8) I{)0)(Z¢) =, z*, with

F(yi +1+kj

19 =] ”
=1 F[yi +8; +1+ Bj

for each k > max[-B;(v; +1)].

1<i<m

Thus a normalized repeated Erdélyi-Kober

fractional integral operator Eggig’gi) on feA(p) is

defined for integerm=>1, §; >0,

v, 2-1 B; >0, i=1..,mas:

L10) EfOz)= ()" 110 (2).

The series expansion of (1.9) using (1.8) for

f € A(p) of the form (1.1) is given by

gzgi)f(z): z° + iakekzk

(110) Ef(2)=E
k=p+1

Vi
B

= {zp + i@kzk}*f(z)

k=p+1

where,
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. F{yi +1+[:J F[yi +9; +1+[§J
o =] ! s

=1 F(yi +3; +1+;] F{yi +l+[fi]

Further we consider an operator E'f(z) for

f € A(p) of the form (1.1) which is defined as:

(1.11) Ejf(z)—{zp+ ief;zk}*f(z)

k=p+
where
[yj +1+;J
0l =~————"20, forsome j(1< j<m) such that
Lyj +1+§j]
0; >0.

]

It is easily verified from (1.10) and (1.11) that,

(1.12) é(Ef(z))' :(y ; +1+§]Ejf(z)—(y | +1Ef (2)

] J

which can also be written as :

113 Ef@ z (Ef(z)j'+Ef(z)_

zP :Bj(Yj+1)+p zP zP

By specializing the parameters, the integral operator
E defined in (1.10) reduces into various operators
which were earlier studied by several authors. For
example:

Onsetting v;j= b -1-p , 8;= ¢; —b;, B;=1,
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b
we get 0, =
c

and E reduces to Dziok-Srivastava operator [2] for

the class A(p).

) O
Takingm=2,y, =b-1-p,y,=c-1-p,
6= 1-b, 6,=d-c,B;=B>= 1, we obtain

ek _ ((b)k—p (c)k—p

, and E reduces to Hohlov
d)y_p(k—p)
operator F(b, c; d) [4] for the class A(p) which

further, on taking b=p,c=a+p,d=p, gives

o+p),._
ekzﬂ, and E reduces to Ruscheweyh

(k—p)
derivative operator [8] for the class A(p).

Again, putting m=1,y;=b-1-p, &, =d-b,

(bp
(d)k—p ,

Carlson-Shaffer type operator [1] introduced by

p=1, we get 0y = and E reduces to

Saitoh [10] for the class A(p).

Involving fractional integral operators Ef(z) and

E 'f(z) defined by (1.10) and (1.11) respectively, we
introduce following subclasses of A(p) as follows:
ES, (a,¢0)={f : f  A(p)and Ef €S (o, 0)}

ES's(a,¢) = {f : f € A(p)and E'F S} (ot, §)}

EK, (o d)=1{f : f € A(p)and Ef € K, (ot, ¢)]
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E'K, (o ¢)=1{f :f e A(p)and EIf e K (a1, )} -
Also for pePand 0<a<p

ECp(o, ¢)= {f :f e A(p)and i{%gz)—a} ndz)ze U}

l-a

EChn(a, )= {f £ < Alp)and L{%% ri(z)ze u}

1-a

and for 0<A <1

EQ;(a,¢)={f : f  A(p)and

ﬁ{(l—x)i(z)mip(z)—a} nz)ze U}

zP z
Clearly, f € EIS, (0., ¢) < EIf €S} (a,¢) and

zf'(2)

(1.14) f(z2) eEK (o, ¢) < € ES, (. ¢).

Inclusion relations, in Geometric function
theory play important role. To obtain some of the
inclusion relations between aforementioned classes
we use Briot-Bouquet differential subordination
method in the form of following lemma:

Lemma 1.1 [7] Let B,yeC,¢ be convex in U with
$(0) = 1 and Re{Bd(z)+y}>0, zeU and let

A(z)=1+0,2+q,2% +..... be analytic in U. Then

o)+ 22

Ba(z)+y n d(z)=a(2)n ¢(z) (zeU).

Lemma 1.2 [3] Let h be an analytic and convex

univalent in U. Let ¢ be analytic in U with

h(0)=¢(0)=1. Then for yeC, Re{y}>0

and v 0, &(z) 7 q(2) :Zlyft“h(t)dt T h(@).

where () is the best dominant.

2. Inclusion relations
Theorem 2.1 Let the operators E and Ebe defined,
respectively, by (1.10) and (1.11) with

Bj(yj+1)+oc
a—p

Re {4(z)} < . Then

E’S, (on ¢) < ESp (o, ).

Proof: Let f € EJS;(a, ¢) and set

e =

p—oa
which is analytic in U with q(0) = 1 and q(z) = 0 for

all ze U. From (1.12) and (2.1), we obtain

[yj +1+p]Ejf(z)
(2.2) il :iq(z)(p—oc){y. +1+g].
Ef(2) B, LB

Taking logarithmic differentiation on both sides of

(2.2), we get

’

z(Ejf(z))’ 2(Ef(2)) _

_ 2q'(z)p - )

E'f(2) Ef(2) . a(z)p—a) _ o
BJ{B] +(YJ+1+BJ}

or,

1 gz Ejf(z), zq'gz)
p—o | Elf(z)

a} =Q(Z)+ q(z)(p—oc)+(yj +1)3j o
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which on applying the hypothesis and Lemma 1.1,
yields that
q(z) 7 ¢(z) in U.

This proves Theorem 2.1.

Theorem 2.2 Let the operators E and EJbe defined

by (1.10) and (1.11) respectively and

0<a<p, ¢eP with Re{¢(z)}<w#.
o

Then E'K,(ct,¢) < EK (1, d).

Proof: On applying (1.14) and Theorem 2.1, we

observe that
f(z) e ENK,(on¢) Ef(z) e Ky (o 6)

!

z EJ:)(Z) £S5 (i)

e Els, (o, 0) = f;)(z)eESp(oc,(l))

Qz(Ef(z))' 5 (o
. Sp(ai0)

< Ef(z)e Ky(o9) < f(z) € EK (o, ¢)
which proves Theorem 2.2.

Theorem 2.3 Let the operator E be defined in (1.10)

with the same conditions on parameters and

O0<a<p, ¢eP,thenfor 0<AL],

EQ; (o, ) = EC, (c, ).

Proof: Letf e EQ}(c,¢), and set

q(z)= L{i(z)—oc} :

l-a | Z°

We have

h(z):= a{(l 7\’) Ef( ) KEjpr(z)—

z°

a} T ¢(2).

Using (1.13) we get

h(z) =1L{(1—A)Ef(z)

- 2P

On applying Lemma 1.2, it follows thatq(z) = ¢(z)in
U, hence this proves the result of Theorem 2.3.
ForA =1, Theorem 2.3 gives following corollary.

Corollary 2.1 Let the operator E be defined in (1.10)
and 0<a<p, deP,then

EIC, (o, ¢) cECp (o, ).
Corollary 2.2 Let the operator E be defined in (1.10)

and 0<a<p, ¢<€P,then for
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0<hy <hp <1 EQR2(on,¢) S EQp (o 6).

Proof: Let f e EQ?;2 (o, ). A simple computation
gives

28) ﬁ{(l—kl)Efgz)”‘lEjf(Z)‘O‘}

y4 z°

A, 1 {((1_k2)|5f(z)+k2 Eif(z)j_a}

+_
A, (1—a) zP

By thé hypothesis and Theorem 2.3, the right hand

side of (2.8) is a convex combination of functions

which are the subordinate of a convex function ¢
hence it is a subordinate of ¢ and f e EQ (o ¢) .
That proves Corollary 2.2.

Theorem 2.4  Let fleEQfo‘ (o,4,) and

f, €EQp (o), then

E(f, *f,)-az"

. cEQ, (o ¢, *d,).
—Q

Proof: we have

(2.9) 1—1a {(1—%) Elep(z) + £ le(z) - oc} nd,(z) (zeV).

and by Theorem 2.3 we have

e L[E0,

}nd)z(z) (zeU).

We know [3] that if in a unit disk, f = Fand g G

for convex functions F and G, thenf xg F*G..
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Thus, by (2.9) and (2.10) we get

I E{ E(f, *1f_2 L— az” }
(1-x

Zp

1
1-a

EJ{E(fl*fz)—azp}
M

1-a

—ou| 7 (9 * 92 )(2).

+

Zp

This proves Theorem 2.4.

3. Integral Operator R(f)

In this section, we examine some class preserving

properties of an integral operator R (f) defined by

(3.1) Rc(f):(chp)jtc-lf(t)dt (feA(p).c>-p).
Z" 0

Theorem 3.1 Let the operator E be defined in (1.10)
and 0<a<p, ¢€P,then
Re 1ESp (o, d) > ES, (o 9).

Proof: To prove the theorem, let f e ESp(a,d)) and

o q)- [z(ERxf»’aJ

p-—a ERc(f)

which is analytic in U with q(0) = 1 and q(z)= Ofor

all ze U. From (3.1), we obtain,

or,
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1 |zER(F) | 1 (Ef(2))
{ a}—pa{(wp) —c—a}

p-o| ER.(f) ER(f)
(3.2) (c+pXEf) _ q(z)p-a)+c+a.

ER(f)

By using logarithmic differentiation on both sides of

(3.2), we get

1 {z(Ef(z»’ } 29(2)
(

p-o| Ef(z) z)(p—oc)+c+a+q(z)n¢(z)'

Hence by the hypothesis and Lemma 1.1, we
conclude that q(z)m ¢(z) in U, which implies
that R (f) e ES, (o, ¢). This proves Theorem 3.1.
Theorem 3.2 Let the operator E be defined in (1.10)
and 0<a<p, ¢peP,then

Re 1EK (o, ¢) > EK ().

Proof: On applying (1.14) and Theorem 3.1 it
follows that,

(2)e EK (0 8) %(Z)eesp(m)

zf'(2) CES (g
:RC[—p ) ES, (o ¢)
QMEES (o, )

p P

& Rf(z) e EK (o, 9),

which proves Theorem 3.2.
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