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1. Introduction 

Let A(p) denote a class of p-valent functions of the 

form: 

(1.1)    





1pk

k
k

p zazzf          

 (p N={1,2,...}) which are  analytic in the unit             

 disc  1|z|:Cz:U  . 

 For a function fA(p) given by (1.1) and gA(p)    

 given by: 

 (1.2)        





1pk

k
k

p zbzzg                                                                                           

a convolution (Hadmard product) of  zf  and  zg  is 

defined as: 

(1.3 )         





1pk

k
kk

p zbazzgf   

and we say f(z) is subordinate of g(z) symbolically 

write as gf    or )z(g)z(f   if there exists a 

Schwarz function w(z)  in U such that 

))z(w(g)z(f  , Uz . 

Let P denote the class of all functions   which are 

analytic in U and  U is convex with  0  = 1 and 

  zRe  > 0, z .U  

Making use of the principle of subordination, several 

authors have studied subclasses   ,Sp  and 

 ,Kp  of  A(p) for P and  p0   which are 

defined as:  

(1.4)    
 
 

 

























 Uz,z

zf

zfz

p

1
andpAf:f,pS 
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 (1.5)    


  andpAf:f,pK   

                         
 

 
  Uz,z

zf

zfz
1

p

1


















 





  

If 
z1

z1
)z(




 , z ,U classes   ,Sp and  ,Kp  

are, respectively, called p-valently starlike and 

convex of order  . Further, if 
z1

z1
)z(




 , z U , 

classes   ,Sp  and  ,Kp  are called p-valently 

starlike and convex of order  and type  . 

Recently, fractional integral operators have 

found their applications in defining several classes of 

analytic functions in geometric function theory. In 

our investigation we  consider certain  subclasses of 

A(p) involving repeated Erdélyi-Kober integral 

operator [6] which is studied  by Saigo et al. in [9] 

and is defined for integer  m 1 , ,0i   

m,.....,1i,0,R ii   as follows: 

(1.6)   
       zfzf

m

1i

,,

m,
ii

i

ii

i













 










,    0

m

1i

i 


                                                

                              0....,zf m21      

where 



,

I  is the Erdélyi-Kober integral operator [5] 

defined by 

 

 

(1.7)  
 

  



 
















  R,dtztftt1

1
zfI

1

0

1

1,                                                          

                         = f (z),  =0. 

The image of power function kz  [6] under this 

operator is given as: 

(1.8)  
     k

k

k,

m, zzii

i




 , with   

(1.9)   0
k

1

k
1

m

1i

i
ii

i
i

k 

























 


                                   

for each   1maxk ii
mi1




. 

 Thus a normalized repeated Erdélyi-Kober 

fractional integral operator  
   ii

i

,

m,
E




 on )p(Af   is 

defined for integer 1m  , ,0i   

m,....,1i,0,1 ii   as: 

(1.10)   
      


zfE ii

i

,

m,
 1

p )(     
     zfii

i

,

m,




 . 

The series expansion of (1.9) using (1.8) for 

)p(Af  of the form (1.1) is given by  

(1.10)     
      










1pk

k
kk

p,

m,
zazzfEzEf ii

i
   

                                                                 
 

                 zfzz
1pk

k
k

p 












 




    

where,  
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















































 


i
i

i
iim

1i

i
ii

i
i

k
p

1

p
1

k
1

k
1

. 

Further we consider an operator  zfE j  for 

)p(Af  of the form (1.1) which is defined as: 

(1.11)       zfzzzfE
1pk

kj
k

pj 












 




      

where   

k

j

j

j

j

j

k

p
1

k
1





































   for some j  mj1   such that  

0j  . 

It is easily verified from (1.10) and (1.11) that, 

(1.12)           zEf1zfE
p

1zEf
z

j
j

j
j

j






















  

which can also be written as : 

(1.13)  
 

 
   

pp
jj

p

j

z

zEf

z

zEf

p1

z

z

zfE














 .                                                    

By specializing the parameters, the integral operator 

E defined in (1.10) reduces into various operators 

which were earlier studied by several authors. For 

example: 

On setting  i = p1bi   , i = ii bc  , i = 1,  

we get 
   

   
pkmpk1

pkmpk1

k
c...c

b...b




                                                                               

and E reduces to Dziok-Srivastava operator [2] for 

the class A(p).  

Taking m = 2, 1 ,1 pb  2 = p1c  , 

1 = b1 , cd2  , 21  = 1, we obtain 

   

   !pkd

cb

pk

pkpk
k







,  and E reduces to Hohlov 

operator F(b, c; d) [4] for the class A(p) which 

further, on taking pd,pc,pb  ,  gives 

 

 !pk

p pk
k







, and E reduces to Ruscheweyh 

derivative operator [8] for the class A(p).  

Again,  putting m=1, 1 = p1b  , bd1  , 

11  ,  we get  
 

  pk

pk
k

d

b




 ,  and E reduces to 

Carlson-Shaffer type  operator [1] introduced by 

Saitoh [10] for the class A(p).                                                                                                          

Involving fractional integral operators  zEf  and 

 zfE j defined by (1.10) and (1.11) respectively, we 

introduce following subclasses of A(p) as follows:  

        ,SEfandpAf:f,ES pp    

        ,SfEandpAf:f,ES p

j
p

j
   

       ,KEfandpAf:f,EK pp    
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       ,KfEandpAf:f,KE p

j

p

j  .   

Also for P and  p0   

   
 

 




















 Uz,zp
z

zEf

1

1
andpAf:f,pEC 

   
 

 































 Uz,zp

z

zf
j

E

1

1
andpAf:f,p

j
EC 

and for 10   

    andpAf:f,EQp 
 

 
   

 






















Uz,z
z

zfE

z

zEf
1

1

1
p

j

p
  

Clearly,      ,SfE,SEf p
j

p
j  and 

(1.14)  
 

 


 ,ES
p

zfz
,EK)z(f pp .  

Inclusion relations, in Geometric function 

theory play important role. To obtain some of the 

inclusion relations between aforementioned classes 

we use Briot-Bouquet differential subordination 

method in the form of following lemma: 

Lemma 1.1 [7] Let  ,C,  be convex in U with 

 (0) = 1 and Re    0z  , zU and let 

  ......zqzq1zq 2
21   be analytic in U. Then        

 
 

 
     zzqz

zq

zqz
zq 




     (zU). 

Lemma 1.2 [3] Let h be an analytic and convex 

univalent in U. Let  be analytic in U with  

.1)0()0(h   Then for   0Re,C   

0and  , 


 



z

0

1 )z(hdt)t(ht
z

)z(q)z(  . 

where q(z) is the best dominant. 

2. Inclusion relations  

Theorem 2.1 Let the operators jEandE be defined, 

respectively, by (1.10) and (1.11) with 

Re   
 

p

1
z

jj




 .  Then 

                 ,ES,SE pp
j . 

Proof: Let   ,SEf p
j  and set 

(2.1)         
  
  




















zEf

zEfz

p

1
zq                                           

which is analytic in U with q(0) = 1 and q(z) 0  for 

all .Uz  From (1.12) and (2.1),  we obtain 

(2.2)    

 

 
  








































j

j

j

j

j

j

1pzq
1

zEf

zfE
p

1

.                              

Taking logarithmic differentiation on both sides of 

(2.2), we get  

  
 

  
 

  

  













































j
j

j
j

j

j

1
pzq

pzqz

zEf

zEfz

zfE

zfEz

or, 

   
 

 
 

     





















j

1
j

pzq

zqz
zq

zf
j

E

zf
j

Ez1

p
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which on applying the hypothesis and Lemma 1.1, 

yields that  

                        zzq   in U.  

This proves Theorem 2.1. 

Theorem 2.2 Let the operators jEandE be defined 

by (1.10) and (1.11) respectively and 

P,p0   with Re   
 

p

1
z

jj




 . 

 Then     ,EK,KE pp
j . 

Proof: On applying (1.14) and Theorem 2.1, we 

observe that  

    ,KEzf p
j      ;KzfE p

j  

  
 



  ;S
p

zfEz
p

j

  

 
 







 
  ;S

p

zfz
E p

j

 
 

 
 





 ,ES

p

zfz
,SE

p

zfz
pp

j

 
 







 
  ;S

p

zfz
E p  

  
 


  ;S

p

zEfz
p  

    ;KzEf p     ,EKzf p  

which proves Theorem 2.2. 

Theorem 2.3 Let the operator E be defined in (1.10) 

with the same conditions on parameters and 

P,p0  , then for   10  , 

           ,CE ,EQ pp .   

Proof:  Let    ,EQf p , and set  

               
 













pz

zEf

1

1
zq .                                                   

We have   

h(z):=  
   

)z(
z

zfE

z

zEf
1

1

1
p

j

p













 . 

Using (1.13) we get 

        








p
z

zEf
1

1
)z(h

1
       

                  
   


































 p

z

zEf

p
z

zEf

p1
jj

z
 

=
 










 pz

zEf

1

1
     

     
 

 

























p

jj z

zEf

1

1

p1

z
 

=  
 

 
 z

p1

zqz
zq

jj





  .                                                                                

On applying Lemma 1.2, it follows that    zzq  in 

U, hence this proves the result of Theorem 2.3. 

For 1 , Theorem 2.3 gives following corollary. 

Corollary 2.1 Let the operator E be defined in (1.10) 

and P,p0  , then   

                  ,CE ,CE pp
j .   

Corollary 2.2 Let the operator E be defined in (1.10) 

and P,p0  , then for   
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   


,EQ ,EQ10 12
pp,21 .   

Proof: Let  


,EQf 2
p . A simple computation 

gives  

 

(2.8)     
   










 p

j

1p1
z

zfE

z

zEf
1

1

1
 

    

 

































p

2

1

z

zEf

1

1
1

 
   

.
z

zfE

z

zEf
1

)1(

1
p

j

2p2

2

1
























. 

By the hypothesis and Theorem 2.3, the right hand 

side of (2.8) is a convex combination of functions 

which are the subordinate of a convex function    

hence it is a subordinate of   and  


,EQf 1
p  . 

That proves Corollary 2.2. 

Theorem 2.4 Let  1p1 ,EQf 


 and 

 2p2 ,EQf 


, then  

     
 

 21p

p

21 ,EQ
1

zffE




 
. 

Proof: we have  

(2.9)     )z(
z

)z(fE

z

)z(Ef
1

1

1
1p

1

j

p

1 











  (zU). 

 

and by Theorem 2.3 we have 

 (2.10)   )z(
z

)z(Ef

1

1
2p

2 











     (zU). 

We know [3] that if in a unit disk, Ff  and Gg    

for convex functions F and G, then GFgf   .  

Thus, by (2.9) and (2.10) we get 

 

 
















































 p

p

21

z

1

zffE
E

1
1

1
  

 


















































p

p

21j

z

1

zffE
E

  )z(21  . 

This proves Theorem 2.4. 

3. Integral Operator  fR c  

In this section, we examine some class preserving 

properties of an integral operator  fR c  defined by 

(3.1)  
 

 dttft
z

pc
fR

z

0

1c

cc 


     (   pc,pAf  ).                           

Theorem 3.1 Let the operator E be defined in (1.10) 

and P,p0  , then   

     ,ES,ES:R ppc . 

Proof: To prove the theorem, let   ,ESf p  and 

let,      
  
  




















fER

fERz

p

1
zq

c

c                                                    

which is analytic in U with q(0) = 1 and q(z) 0 for 

all .Uz  From (3.1), we obtain, 

  
 

 
  
 

c
fER

zEf
pc

fER

fERz

cc

c 



 

or, 
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  
  
















 fER

fERz

p

1

c

c  
  
  











 c
fER

zEf
pc

p

1

c

 

or, 

(3.2) 
    

 
   


cpzq

fER

zEfpc

c

.                                                                  

By using logarithmic differentiation on both sides of 

(3.2), we get  

  
 

 
  

  )z(zq
cpzq

zqz

zEf

zEfz

p

1

























 .                                              

Hence by the hypothesis and Lemma 1.1, we 

conclude that    zzq   in U, which implies 

that     ,ESfR pc . This proves Theorem 3.1. 

Theorem 3.2 Let the operator E be defined in (1.10) 

and P,p0  , then   

     ,EK,EK:R ppc . 

Proof:  On applying (1.14) and Theorem 3.1 it 

follows that, 

    ,EKzf p  
 

 


,ES
p

zfz
p   

 
 







 
 ,ES

p

zfz
R pc

  
 



 ,ES
p

zfRz
p

c  

                 ,EKzfR pc , 

which proves Theorem 3.2. 
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