Mamta Pathak et al./ Elixir Appl. Math. 59 (2013) 15260-15266

Available online at www.elixirpublishers.com (Elixir International Journal)

Applied Mathematics

Elixir Appl. Math. 59 (2013) 15260-15266

Some classes of p-valent analytic functions involving certain integral operators

Mamta Pathak and Poonam Sharma

Department of Mathematics & Astronomy, University of Lucknow, Lucknow 226007, India.

ARTICLE INFO

Article history: Received: 12 April 2013; Received in revised form: 24 May 2013; Accepted: 31 May 2013;

A

In this paper we introduce some classes of p-valent analytic functions involving repeated Erdélyi-Kober fractional integral operators and investigate some of their properties specially inclusion relations for these classes. Some class preserving properties of an integral operator are also discussed.

© 2013 Elixir All rights reserved.

or $f(z) \pi g(z)$ if there exists a

Keywords Analytic functions, Erdélyi-Kober integral operator, Hohlov operator, Carlson and Shaffer operator, Convolution,

1. Introduction

Subordination.

Let A(p) denote a class of p-valent functions of the

form:

(1.1)
$$f(z) = z^{p} + \sum_{k=p+1}^{\infty} a_{k} z^{k}$$

 $(p \in N = \{1, 2, ...\})$ which are analytic in the unit

$$\text{disc } U\coloneqq \Big\{\!z\in C\colon \mid z\mid < \ 1 \Big\}.$$

For a function $f \in A(p)$ given by (1.1) and $g \in A(p)$

given by:

(1.2)
$$g(z) = z^p + \sum_{k=p+1}^{\infty} b_k z^k$$

a convolution (Hadmard product) of f(z) and g(z) is defined as:

(1.3)
$$(f * g)(z) = z^p + \sum_{k=p+1}^{\infty} a_k b_k z^k$$

Tele: E-mail addresses: pathakmamta_2007@rediffmail.com © 2013 Elixir All rights reserved and we say f(z) is subordinate of g(z) symbolically

Schwarz function w(z) in U such that

$$f(z) = g(w(z)), z \in U$$
.

write as $f \pi g$

Let P denote the class of all functions ϕ which are analytic in U and $\phi(U)$ is convex with $\phi(0) = 1$ and $\operatorname{Re}\{\phi(z)\} > 0, z \in U.$

Making use of the principle of subordination, several authors have studied subclasses $S_{p}^{*}(\alpha, \phi)$ and $K_{p}(\alpha, \phi)$ of A(p) for $\phi \in P$ and $0 \le \alpha < p$ which are defined as:

(1.4)
$$S_p^*(\alpha, \phi) = \left\{ f : f \in A_p \text{ and } \frac{1}{p - \alpha} \left(\frac{zf'(z)}{f(z)} - \alpha \right) \pi \phi(z), z \in U \right\}$$

(1.5)
$$K_p(\alpha, \phi) = \{f : f \in A_p \text{ and } f : f \in A_p \}$$

$$\frac{1}{p-\alpha} \left(1 + \frac{zf''(z)}{f'(z)} - \alpha \right) \pi \phi(z) \bigg\}, \ z \in U$$

If $\phi(z) = \frac{1+z}{1-z}$, $z \in U$, classes $S_p^*(\alpha, \phi)$ and $K_p(\alpha, \phi)$ are, respectively, called p-valently starlike and

convex of order α . Further, if $\phi(z) = \frac{1+\beta z}{1-\beta z}$, $z \in U$,

classes $S_p^*(\alpha, \phi)$ and $K_p(\alpha, \phi)$ are called p-valently starlike and convex of order α and type β .

Recently, fractional integral operators have found their applications in defining several classes of analytic functions in geometric function theory. In our investigation we consider certain subclasses of A(p) involving repeated Erdélyi-Kober integral operator [6] which is studied by Saigo et al. in [9] and is defined for integer $m \ge 1$, $\delta_i \ge 0$, $\gamma_i \in \mathbb{R}$, $\beta_i > 0, i = 1,...,m$ as follows:

(1.6)
$$I_{(\beta_{i}),m}^{(\gamma_{i}),(\delta_{i})}f(z) = \left[\prod_{i=1}^{m} I_{\beta_{i}}^{\gamma_{i},\delta_{i}}\right]f(z), \quad \sum_{i=1}^{m} \delta_{i} > 0$$
$$= f(z), \quad \delta_{1} = \delta_{2} = \dots = \delta_{m} = 0$$

where $I_{\beta}^{\gamma,\delta}$ is the Erdélyi-Kober integral operator [5] defined by

(1.7)
$$I_{\beta}^{\gamma,\delta}f(z) = \frac{1}{\Gamma(\delta)} \int_{0}^{1} (1-t)^{\delta-1} t^{\gamma} f\left(zt^{\frac{1}{\beta}}\right) dt, \delta \in \mathbb{R}_{+}$$
$$= f(z), \ \delta = 0.$$

The image of power function z^k [6] under this operator is given as:

(1.8)
$$I_{(\beta_i),m}^{(\gamma_i),(\delta_i)}(z^k) = \lambda_k z^k$$
, with

(1.9)
$$\lambda_{k} = \prod_{i=1}^{m} \frac{\Gamma\left(\gamma_{i}+1+\frac{k}{\beta_{i}}\right)}{\Gamma\left(\gamma_{i}+\delta_{i}+1+\frac{k}{\beta_{i}}\right)} > 0$$

 $\label{eq:states} \text{for each } k > \underset{1 \leq i \leq m}{\text{max}} \big[- \beta_i \big(\gamma_i + 1 \big) \big].$

Thus a normalized repeated Erdélyi-Kober fractional integral operator $E_{(\beta_i),m}^{(\gamma_i),(\delta_i)}$ on $f \in A(p)$ is defined for integer $m \ge 1$, $\delta_i \ge 0$,

 $\gamma_i \geq -1, \hspace{0.2cm} \beta_i > 0, \hspace{0.2cm} i = 1, ..., m \hspace{0.2cm} as:$

(1.10)
$$E_{(\beta_i),m}^{(\gamma_i),(\delta_i)}f(z) = (\lambda_p)^{-1} I_{(\beta_i),m}^{(\gamma_i),(\delta_i)}f(z).$$

The series expansion of (1.9) using (1.8) for $f \in A(p)$ of the form (1.1) is given by

(1.10)
$$\operatorname{Ef}(z) \equiv \operatorname{E}_{(\beta_{i}),m}^{(\gamma_{i}),(\delta_{i})} f(z) = z^{p} + \sum_{k=p+1}^{\infty} a_{k} \theta_{k} z^{k}$$
$$= \left\{ z^{p} + \sum_{k=p+1}^{\infty} \theta_{k} z^{k} \right\} * f(z)$$

where,

$$\theta_k = \prod_{i=1}^m \frac{\Gamma\left(\gamma_i + 1 + \frac{k}{\beta_i}\right)}{\Gamma\left(\gamma_i + \delta_i + 1 + \frac{k}{\beta_i}\right)} \frac{\Gamma\left(\gamma_i + \delta_i + 1 + \frac{p}{\beta_i}\right)}{\Gamma\left(\gamma_i + 1 + \frac{p}{\beta_i}\right)}.$$

Further we consider an operator $E^{j}f(z)$ for $f \in A(p)$ of the form (1.1) which is defined as:

(1.11)
$$E^{j}f(z) = \left\{ z^{p} + \sum_{k=p+1}^{\infty} \theta_{k}^{j} z^{k} \right\} * f(z)$$

where

$$\theta_{k}^{j} = \frac{\left(\gamma_{j} + 1 + \frac{k}{\beta_{j}}\right)}{\left(\gamma_{j} + 1 + \frac{p}{\beta_{j}}\right)} \theta_{k} \text{ for some } j (1 \le j \le m) \text{ such that}$$

$$\delta_j > 0$$

It is easily verified from (1.10) and (1.11) that,

(1.12)
$$\frac{z}{\beta_{j}} \left(Ef(z) \right)' = \left(\gamma_{j} + 1 + \frac{p}{\beta_{j}} \right) E^{j}f(z) - \left(\gamma_{j} + 1 \right) Ef(z)$$

which can also be written as :

(1.13)
$$\frac{\mathrm{E}^{j}\mathrm{f}(z)}{z^{p}} = \frac{z}{\beta_{j}(\gamma_{j}+1)+p} \left(\frac{\mathrm{E}\mathrm{f}(z)}{z^{p}}\right)' + \frac{\mathrm{E}\mathrm{f}(z)}{z^{p}}.$$

By specializing the parameters, the integral operator E defined in (1.10) reduces into various operators which were earlier studied by several authors. For example:

On setting
$$\gamma_i = b_i - 1 - p$$
, $\delta_i = c_i - b_i$, $\beta_i = 1$,

we get
$$\theta_{k} = \frac{(b_{1})_{k-p}...(b_{m})_{k-p}}{(c_{1})_{k-p}...(c_{m})_{k-p}}$$

and E reduces to Dziok-Srivastava operator [2] for the class A(p).

Taking m = 2,
$$\gamma_1 = b - 1 - p$$
, $\gamma_2 = c - 1 - p$,
 $\delta_1 = 1 - b$, $\delta_2 = d - c$, $\beta_1 = \beta_2 = 1$, we obtain
 $\theta_k = \frac{(b)_{k-p}(c)_{k-p}}{(d)_{k-p}(k-p)!}$, and E reduces to Hohlov

operator F(b, c; d) [4] for the class A(p) which further, on taking $b = p, c = \alpha + p, d = p$, gives

$$\theta_k = \frac{(\alpha + p)_{k-p}}{(k-p)!}, \text{ and } E \text{ reduces to Ruscheweyh}$$

derivative operator [8] for the class A(p).

Again, putting $m=1, \gamma_1=b-1-p$, $\delta_1=d-b$,

$$\beta_1 = 1$$
, we get $\theta_k = \frac{(b)_{k-p}}{(d)_{k-p}}$, and E reduces to

Carlson-Shaffer type operator [1] introduced by Saitoh [10] for the class A(p).

Involving fractional integral operators Ef(z) and $\text{E}^{j}f(z)$ defined by (1.10) and (1.11) respectively, we introduce following subclasses of A(p) as follows:

$$ES_{p}(\alpha, \phi) = \left\{ f : f \in A(p) \text{ and } Ef \in S_{p}^{*}(\alpha, \phi) \right\}$$
$$ES^{j}_{p}(\alpha, \phi) = \left\{ f : f \in A(p) \text{ and } E^{j}f \in S_{p}^{*}(\alpha, \phi) \right\}$$
$$EK_{p}(\alpha, \phi) = \left\{ f : f \in A(p) \text{ and } Ef \in K_{p}(\alpha, \phi) \right\}$$

$$E^{j}K_{p}(\alpha,\phi) = \left\{\! f: f \in A(p) \text{and} \, E^{j}f \in K_{p}(\alpha,\phi)\!\right\}.$$

Also for $\phi \in P$ and $0 \le \alpha < p$

$$\begin{split} & \text{EC}_{p}(\alpha, \phi) = \left\{ f: f \in A(p) \text{ and } \frac{1}{1 - \alpha} \left\{ \frac{\text{Ef}(z)}{z^{p}} - \alpha \right\} \pi \phi(z), z \in \mathbf{U} \right\} \\ & \text{EC}^{j}_{p}(\alpha, \phi) = \left\{ f: f \in A(p) \text{ and } \frac{1}{1 - \alpha} \left\{ \frac{\text{E}^{j}_{f}(z)}{z^{p}} - \alpha \right\} \pi \phi(z), z \in \mathbf{U} \right\} \\ & \text{and for } 0 \leq \lambda \leq 1 \end{split}$$

 $EQ_{p}^{\lambda}(\alpha,\phi) = \{f : f \in A(p) \text{ and }$ $\frac{1}{1-\alpha}\left\{\left(1-\lambda\right)\frac{\mathrm{Ef}(z)}{z^{\mathrm{p}}}+\lambda\frac{\mathrm{E}^{\mathrm{j}}f(z)}{z^{\mathrm{p}}}-\alpha\right\}\pi\phi(z), z\in U\right\}$

Clearly, $f \in E^{j}S_{p}(\alpha, \phi) \Leftrightarrow E^{j}f \in S_{p}^{*}(\alpha, \phi)$ and

(1.14)
$$f(z) \in EK_p(\alpha, \phi) \Leftrightarrow \frac{zf'(z)}{p} \in ES_p(\alpha, \phi).$$

Inclusion relations, in Geometric function theory play important role. To obtain some of the inclusion relations between aforementioned classes we use Briot-Bouquet differential subordination method in the form of following lemma:

Lemma 1.1 [7] Let $\beta, \gamma \in C, \phi$ be convex in U with $\phi(0) = 1$ and $\operatorname{Re} \{\beta\phi(z) + \gamma\} > 0$, $z \in U$ and let $q(z)=1+q_1z+q_2z^2+\dots$ be analytic in U. Then $q(z) + \frac{zq'(z)}{\beta q(z) + \gamma} \pi \phi(z) \Longrightarrow q(z) \pi \phi(z) \quad (z \in U).$

Lemma 1.2 [3] Let h be an analytic and convex univalent in U. Let ϕ be analytic in U with

h(0) =
$$\phi(0) = 1$$
. Then for $\gamma \in C$, Re $\{\gamma\} \ge 0$
and $\gamma \ne 0$, $\phi(z) \pi q(z) = \frac{\gamma}{z^{\gamma}} \int_{0}^{z} t^{\gamma-1} h(t) dt \pi h(z)$.

where q(z) is the best dominant.

2. Inclusion relations

Theorem 2.1 Let the operators E and E^j be defined, respectively, (1.10)with

and

(1.11)

Re
$$\{\phi(z)\} < \frac{\beta_j(\gamma_j + 1) + \alpha}{\alpha - p}$$
. Then

by

$$E^{J}S_{p}(\alpha,\phi) \subset ES_{p}(\alpha,\phi).$$

Proof: Let $f \in E^{j}S_{p}(\alpha, \phi)$ and set

(2.1)
$$q(z) = \frac{1}{p - \alpha} \left(\frac{z(Ef(z))'}{Ef(z)} - \alpha \right)$$

which is analytic in U with q(0) = 1 and $q(z) \neq 0$ for all $z \in U$. From (1.12) and (2.1), we obtain

(2.2)
$$\frac{\left(\gamma_{j}+1+\frac{p}{\beta_{j}}\right)E^{j}f(z)}{Ef(z)} = \frac{1}{\beta_{j}}q(z)(p-\alpha) + \left(\gamma_{j}+1+\frac{\alpha}{\beta_{j}}\right).$$

Taking logarithmic differentiation on both sides of (2.2), we get

$$\frac{z(E^{j}f(z))'}{E^{j}f(z)} - \frac{z(Ef(z))'}{Ef(z)} = \frac{zq'(z)(p-\alpha)}{\beta_{j}\left\{\frac{q(z)(p-\alpha)}{\beta_{j}} + \left(\gamma_{j}+1+\frac{\alpha}{\beta_{j}}\right)\right\}}$$

or,

$$\frac{1}{p-\alpha}\left\{\frac{z\left(E^{j}f(z)\right)'}{E^{j}f(z)}-\alpha\right\} = q(z) + \frac{zq'(z)}{q(z)(p-\alpha)+(\gamma_{j}+1)\beta_{j}+\alpha}$$

which on applying the hypothesis and Lemma 1.1, yields that

$$q(z)\pi \phi(z)$$
 in U.

This proves Theorem 2.1.

Theorem 2.2 Let the operators E and E^{j} be defined

by (1.10) and (1.11) respectively and $0 \le \alpha < p, \ \phi \in P \text{ with } \operatorname{Re} \{\phi(z)\} < \frac{\beta_j(\gamma_j + 1) + \alpha}{\alpha - p}.$

Then $E^{j}K_{p}(\alpha,\phi) \subset EK_{p}(\alpha,\phi)$.

Proof: On applying (1.14) and Theorem 2.1, we observe that

$$\begin{split} f(z) &\in E^{j}K_{p}(\alpha, \phi) \Leftrightarrow \qquad E^{j}f(z) \in K_{p}(\alpha; \phi) \\ \Leftrightarrow \frac{z(E^{j}f(z))'}{p} &\in S_{p}^{*}(\alpha; \phi) \\ \Leftrightarrow E^{j}\left(\frac{zf'(z)}{p}\right) \in S_{p}^{*}(\alpha; \phi) \\ \Leftrightarrow \frac{zf'(z)}{p} &\in E^{j}S_{p}(\alpha, \phi) \Rightarrow \frac{zf'(z)}{p} \in ES_{p}(\alpha, \phi) \\ \Leftrightarrow E\left(\frac{zf'(z)}{p}\right) \in S_{p}^{*}(\alpha; \phi) \Leftrightarrow \frac{z(Ef(z))'}{p} \in S_{p}^{*}(\alpha; \phi) \\ \Leftrightarrow Ef(z) \in K_{p}(\alpha; \phi) \Leftrightarrow f(z) \in EK_{p}(\alpha, \phi) \end{split}$$

which proves Theorem 2.2.

Theorem 2.3 Let the operator E be defined in (1.10) with the same conditions on parameters and $0 \le \alpha < p, \ \phi \in P$, then for $0 \le \lambda \le 1$,

$$\mathrm{EQ}_{\mathrm{p}}^{\lambda}(\alpha,\phi) \subseteq \mathrm{EC}_{\mathrm{p}}(\alpha,\phi).$$

Proof: Let $f \in EQ_p^{\lambda}(\alpha, \phi)$, and set

$$q(z) = \frac{1}{1-\alpha} \left\{ \frac{Ef(z)}{z^p} - \alpha \right\}.$$

We have

$$\mathbf{h}(\mathbf{z}) \coloneqq \frac{1}{1-\alpha} \left\{ (1-\lambda) \frac{\mathrm{Ef}(\mathbf{z})}{\mathbf{z}^{\mathrm{p}}} + \lambda \frac{\mathrm{E}^{\mathrm{j}} \mathbf{f}(\mathbf{z})}{\mathbf{z}^{\mathrm{p}}} - \alpha \right\} \pi \, \phi(\mathbf{z}) \, .$$

Using (1.13) we get

$$\begin{split} h(z) &= \frac{1}{1 - \alpha} \left\{ (1 - \lambda) \frac{Ef(z)}{z^p} \\ &+ \lambda \left(\frac{z}{\beta_j (\gamma_j + 1) + p} \left(\frac{Ef(z)}{z^p} \right)' + \frac{Ef(z)}{z^p} \right) - \alpha \right\} \\ &= \frac{1}{1 - \alpha} \left\{ \frac{Ef(z)}{z^p} - \alpha \right\} \\ &+ \frac{\lambda z}{\beta_j (\gamma_j + 1) + p} \left\{ \frac{1}{1 - \alpha} \left(\frac{Ef(z)}{z^p} - \alpha \right) \right\}' \\ &= q(z) + \frac{\lambda z q'(z)}{\beta_j (\gamma_j + 1) + p} \pi \phi(z). \end{split}$$

On applying Lemma 1.2, it follows that $q(z)\pi \phi(z)$ in U, hence this proves the result of Theorem 2.3.

For $\lambda = 1$, Theorem 2.3 gives following corollary.

Corollary 2.1 Let the operator E be defined in (1.10)

and $0 \le \alpha < p$, $\phi \in P$, then

$$\mathrm{E}^{j}\mathrm{C}_{p}(\alpha,\phi)\subset\mathrm{E}\mathrm{C}_{p}(\alpha,\phi).$$

Corollary 2.2 Let the operator E be defined in (1.10)

and $0 \le \alpha < p$, $\phi \in P$, then for

15264

$$0 \leq \lambda_1 \leq \lambda_2 \leq 1$$
, $EQ_p^{\lambda_2}(\alpha, \phi) \subseteq EQ_p^{\lambda_1}(\alpha, \phi)$.

Proof: Let $f \in EQ_p^{\lambda_2}(\alpha, \phi)$. A simple computation gives

$$(2.8) \quad \frac{1}{1-\alpha} \left\{ (1-\lambda_1) \frac{\mathrm{Ef}(z)}{z^p} + \lambda_1 \frac{\mathrm{E}^{\mathrm{j}} f(z)}{z^p} - \alpha \right\}$$
$$= \left(1 - \frac{\lambda_1}{\lambda_2} \right) \left\{ \frac{1}{1-\alpha} \left(\frac{\mathrm{Ef}(z)}{z^p} - \alpha \right) \right\}$$
$$+ \frac{\lambda_1}{\lambda_2} \frac{1}{(1-\alpha)} \left\{ \left((1-\lambda_2) \frac{\mathrm{Ef}(z)}{z^p} + \lambda_2 \frac{\mathrm{E}^{\mathrm{j}} f(z)}{z^p} \right) - \alpha \right\}.$$

By the hypothesis and Theorem 2.3, the right hand side of (2.8) is a convex combination of functions which are the subordinate of a convex function ϕ hence it is a subordinate of ϕ and $f \in EQ_p^{\lambda_1}(\alpha, \phi)$. That proves Corollary 2.2.

Theorem 2.4 Let $f_1 \in EQ_p^{\lambda}(\alpha, \phi_1)$ and

$$f_{2} \in EQ_{p}^{\lambda}(\alpha,\phi_{2}),$$
 then
$$\frac{E(f_{1}*f_{2})-\alpha z^{p}}{1-\alpha} \in EQ_{p}^{\lambda}(\alpha,\phi_{1}*\phi_{2}).$$

Proof: we have

(2.9)
$$\frac{1}{1-\alpha} \left\{ \left(1-\lambda\right) \frac{Ef_1(z)}{z^p} + \lambda \frac{E^j f_1(z)}{z^p} - \alpha \right\} \pi \phi_1(z) \quad (z \in U).$$

and by Theorem 2.3 we have

(2.10)
$$\frac{1}{1-\alpha}\left\{\frac{\mathrm{Ef}_{2}(z)}{z^{\mathrm{p}}}-\alpha\right\}\pi\phi_{2}(z) \quad (z\in U).$$

We know [3] that if in a unit disk, f π F and g π G for convex functions F and G, then f * g π F * G.

Thus, by (2.9) and (2.10) we get

$$\begin{split} & \frac{1}{1-\alpha} \Bigg[(1-\lambda) \Biggl\{ \frac{E\Bigl\{ \frac{E\bigl(f_1 * f_2\bigr) - \alpha z^p}{1-\alpha} \Bigr\}}{z^p} \Biggr\} \\ & + \lambda \Biggl\{ \frac{E^j \Biggl\{ \frac{E\bigl(f_1 * f_2\bigr) - \alpha z^p}{1-\alpha} \Biggr\}}{z^p} \Biggr\} - \alpha \Bigg] \pi \left(\phi_1 * \phi_2 \right) (z) \, . \end{split}$$

This proves Theorem 2.4.

3. Integral Operator $R_c(f)$

In this section, we examine some class preserving properties of an integral operator $R_c(f)$ defined by

(3.1)
$$R_{c}(f) = \frac{(c+p)}{z^{c}} \int_{0}^{z} t^{c-1} f(t) dt \quad (f \in A(p), c > -p).$$

Theorem 3.1 Let the operator E be defined in (1.10)

and $0 \le \alpha < p, \ \phi \in P$, then

$$R_c: ES_p(\alpha, \phi) \rightarrow ES_p(\alpha, \phi).$$

Proof: To prove the theorem, let $f \in ES_p(\alpha, \phi)$ and

let,
$$q(z) = \frac{1}{p - \alpha} \left(\frac{z(ER_c(f))'}{ER_c(f)} - \alpha \right)$$

which is analytic in U with q(0) = 1 and $q(z) \neq 0$ for all $z \in U$. From (3.1), we obtain,

$$\frac{z(\text{ER}_{c}(f))'}{\text{ER}_{c}(f)} = (c+p)\frac{(\text{Ef}(z))}{\text{ER}_{c}(f)} - c$$

or,

$$\frac{1}{p-\alpha} \left\{ \frac{z(ER_{c}(f))'}{ER_{c}(f)} - \alpha \right\} = \frac{1}{p-\alpha} \left\{ (c+p)\frac{(Ef(z))}{ER_{c}(f)} - c - \alpha \right\}$$

or,

(3.2)
$$\frac{(c+p)(Ef(z))}{ER_{c}(f)} = q(z)(p-\alpha) + c + \alpha$$

By using logarithmic differentiation on both sides of

(3.2), we get

$$\frac{1}{p-\alpha} \left\{ \frac{z(Ef(z))'}{Ef(z)} - \alpha \right\} = \frac{zq'(z)}{q(z)(p-\alpha) + c + \alpha} + q(z)\pi \phi(z) + \frac{zq'(z)}{q(z)(p-\alpha) + c + \alpha} + q(z)\pi \phi(z) + \frac{zq'(z)}{q(z)(p-\alpha) + c + \alpha} + q(z)\pi \phi(z) + \frac{zq'(z)}{q(z)(p-\alpha) + c + \alpha} + \frac{zq'(z)}{q(z)(p-\alpha) + \alpha} + \frac{zq'(z)}{q(z)(q$$

Hence by the hypothesis and Lemma 1.1, we conclude that $q(z)\pi \phi(z)$ in U, which implies that $R_c(f) \in ES_p(\alpha, \phi)$. This proves Theorem 3.1.

Theorem 3.2 Let the operator E be defined in (1.10)

and $0 \le \alpha < p$, $\phi \in P$, then

$$R_{c}: EK_{p}(\alpha, \phi) \rightarrow EK_{p}(\alpha, \phi).$$

Proof: On applying (1.14) and Theorem 3.1 it follows that,

$$f(z) \in EK_{p}(\alpha, \phi) \Leftrightarrow \frac{zf'(z)}{p} \in ES_{p}(\alpha, \phi)$$
$$\Rightarrow R_{c}\left(\frac{zf'(z)}{p}\right) \in ES_{p}(\alpha, \phi)$$
$$\Leftrightarrow \frac{z(R_{c}f(z))'}{p} \in ES_{p}(\alpha, \phi)$$
$$\Leftrightarrow R_{c}f(z) \in EK_{p}(\alpha, \phi),$$

which proves Theorem 3.2.

References

[1]. Carlson B.C. and Shaffer D.B., Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15 (1984), 737-745.

[2]. Dzoik J., Srivastava H. M., Certain subclass of analytic functions associated with the generalized hypergeometric functions, Int.Transf. Spec. Funct. 14 (1), (2003), 7-18.

[3]. Hallenbeck D.I., Ruscheweyh S., Subordination by convex functions, Proc. Amer. Math. Soc., 52 (1975), 191-195.

[4]. Hohlov Yu., Convolution operators preserving univalent functions, Pliska. Studia Math. Bulg., 10, (1989), 87-92.

[5]. Kiryakova V., Generalized fractional calculus and application, Pitman Research Notes in Math. Series, 301, Longman, Harlow (UK), 1994.

[6]. Kiryakova V., Saigo M., Srivastava H.M., Frac.Calc. & Appl. Anal., 1 (1), (1998), 79-104.

[7]. Miller S. S., Mocanu P. T., Differential subordination and inequalities in the complex plane, J. Diff. Eqns., 67 (1987), 199-211.

[8]. Ruscheweyh S., New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109-115.

[9]. Saigo M., Owa S. and Kiryakova V., Characterization theorem for starlike and convex functions in terms of generalized fractional calculus, Compt. Rend. Acad. Bulg. Sci., 58 (10), (2005), 1135-1142.

[10]. Saitoh H., A Linear operator and its applications of first order differential subordination, Math. Japan, 44 (1996), 31-38.