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1. Introduction :  

In the recent past many authors have extended Hankel transformation.  

                                      (1.1) 

to distributions belonging to  on   where  is the Bessel function of the 

first kind and order  Zemanian [15] has considered these transformations in his monograph. Waphare [14] has 

investigated Hankel type transformation 

                           (1.2) 

and has been extended to distributions belonging to the dual space  consisting of all complex valued 

infinitely differentiable functions  defined on I satisfying  

                        (1.3) 

for all  . 

The generalized Hankel type transformation  is defined as the adjoint of  through the relation 

                                                                                             (1.4) 

where and  

The classical Hankel type convolution transform of and  belonging to the class  

 
is defined by  

                       (1.5) 

where  

                     (1.6)
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and for  

                   (1.7) 

 
with  

                                   (1.8) 

It follows from the definition of  that  

.                 (1.9)  

The theory and applications of the Hankel convolution transform can be found in [1], [2], [5], [7], [11], [14]. 

The Hankel convolution transfer defined by (1.5) was extended to distributions in by Betancor and Marrero 

[1], [2]. 

 Ultra distributions have been introduced by Beurling [3], Bjorck [4], and Roumieu [12] as generalizations 

of Schwartz distributions. A unification of Beurling Bjorck theory and Roumieu theory has been given by 

Komatsu [8]. The Hankel transform of ultradistributions in Roumieu setting has been given by Pathak and Pandey 

[10]. The purpose of the present paper is to introduce Gevrey type ultradistributions which are suitable for the 

study of Hankel type transform and Hankel type convolution transform. 

In this paper, a test function space  generalizing the Zemanian space  is defined. It is shown that the 

conventional Hankel type transform (1.2) is an automorphism of  For it reduces to 

 and for  is a Gevrey space of test functions. The generalized Hankel 

type transform of ultradistributions belonging to  is defined by the adjoint operator method (1.4) and it is 

found that the generalized Hankel type transform is also an automorphism of . Multiplication on  and 

convolution on  are investigated. 

2.  Let  be a continuous real valued function defined on  possessing 

the following properties: 

(a)  

(b)  

(c) for some real  

We denote by  the set of all continuous real valued functions satisfying (a), (b) and (c). From (c) it follows that  

                                             (2.1)                                                          

For each real number  the space  is defined as follows. 

A complex valued function  on  is said to belong to the space  if  

                (2.2) 

for all non-negative real numbers  and non-negative integers k. 

 is clearly a linear space. The topology of   is generated by the seminorms . Following 

technique used in [15, p.131], it can be proved that  is a Frechet space. 
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From definitions (1.3), (2.2) and the inequality for it follows that . It is 

also clear that  Since  is a dense subspace of  then  is dense in 

 Hence  the dual of  called the space of Gevrey ultradistributions. Since  

, the following properties given by Zemanian [15] hold in the present case also when   

We use the following definitions [14] 

 

 

 

 

If we take we obtain 

the operator studied in Zemanian [15]. 

Lemma 2.1: 

(i) The operation  is a continuous linear mapping of  into  

(ii) The operation  is a continuous linear mapping of  into . 

(iii) The operation  is a continuous linear mapping of  into itself. 

(iv) If is an even integer, then  

Using (2.1), the following result can be easily proved. 

Lemma 2.2: Differentiation is a continuous operator of  into  . 

3. The generalized Hankel type transformation: 

The conventional Hankel type transform  defined by (1.2) exists for every 

Further more, we have  

Theorem 3.1: For  the conventional Hankel type transform  is an automorphism of . 

Proof: Let   where  The following facts are well known [15, p. 139]. 

                                                      (3.1) 

                                              (3.2)                       

Applying (3.1)  times and (3.2) m-times and then using Zemanian’s identity [15, p. 141], we obtain 

 

 
so that  

 

 

where  Also, by property 

 there exists a constant  
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such that . Hence 

 

Now, for any choice of  and  we have 

 

 

 

As  is bounded on  by the constant  Let 

 be an integer no less than . Then  

 
So that 

 

 

 
Since 

 
then 

 
so that 

 

 

 
Now choosing 

 
we have for some  
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This proves that and that the linear mapping  is also continuous from   into  Since 

when  we can apply the classical inversion theorem and the  fact that 

to this case and conclude that  is one-to-one. Thus  is an automorphism on  

Thus proof is completed. 

The generalized Hankel type transformation  on  is defined to be the adjoint of  on . More 

precisely, for any  and  we have  

 
By using Theorem 3.1, we immediately obtain the following. 

Theorem 3.2: For any the generalized Hankel type transformation  is an automorphism of 

. 

4. Multiplication and convolution on  

We denote by the space of all  such that for each non-negative 

integer there exists a non-negative integer  for which 

 
is bounded. 

Here  is the space of multipliers for . The following results will be used in the sequel. 

If  then from [1, p. 285] we have 

                       (4.1)  

and  

                (4.2) 

our aim in this section is to study Hankel type convolution on  

Theorem 4.1: If and  then  

Proof: For non-negative integer and non-negative real number , we have by definition (2.2), 

 

                  
Now by using Leibnitz theorem, we obtain  

 

 

Hence  Thus proof is completed. 

Theorem 4.2: For every  the mapping  is continuous from  into itself. 

Proof: Let  Then   By definitions  

(1.2) and (1.6), we have 
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Now by making use of (1.9) we can obtain 

 
Now we show that 

 
We have 

 

 

so that there exists  such that 

for every  

Hence for fixed   But 

 then . 

As  is an automorphism of  therefore and the mapping  is continuous from 

 into itself. 

This completes the proof. 

Theorem 4.3: If   then  

Proof: By using (2.2), we have 

 
Now using (4.2), we obtain 

 
One of the applications of Leibnitz theorem gives  

 

Thus  As is an automorphism of therefore . 

This completes the proof. 

5. Hankel type convolution on  

In this section we study Hankel type convolution on . 

Definition 5.1 : For and  the convolution  of  is defined by 

.                                   (5.1) 

Since for every generates an ultradistribution belonging to , we have 
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so that the classical Hankel type convolution is the special case of the generalized Hankel type convolution (5.1). 

The following lemma will be useful in the sequel. Moreover (5.1) holds. 

Lemma 5.2: If  then  

Proof: Let  Choose  such that  

on a neighbourhood of the support Then 

 
so that 

 
We then have 

 

                                                      
so that 

 

 

As  there exists a positive constant and non-negative integer  such that 

 
               

 

 

 

 
so that 

 

Hence,  Thus proof is completed. 

Theorem 5.3: For any  and  we have  

 

and  

 

Proof: Let  and  Then as in [11, p. 1341], 

we have  

 
An application of (4.1) yields 
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Now by Lemma 5.2,  so that  

Since  is an automorphism of   therefore  

Thus proof is completed. 

Definition 5.4: For  and  the Hankel type convolution is defined by  

 

Theorem 5.5: If  and   then and  

 

Proof: Let be a sequence of functions in that converges to zero in . Then by Definition 5.4,  

 

As  and  therefore by Theorem 5.3 we have  

 

and  

 

Since  in  therefore in   so that 

 

That is is continuous on  Similarly we can prove linearity. Hence  

Moreover,  

 

 

 

 
so that 

 
Thus the proof is completed. 
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