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1. Introduction :
In the recent past many authors have extended Hankel transformation.
k = dx ,
(m®)) = | 90 VT ], Cey) 1)
1

0<y< oo, o= . . . .
=Y #=773 to distributions belonging to Hi on ! = (0, ). where Ju is the Bessel function of the

first kind and order & - Zemanian [15] has considered these transformations in his monograph. Waphare [14] has
investigated Hankel type transformation

(hop @) &)= J;"“Lgt]mﬂ Ja_p (s1) 9(8) dt w2

Hop consisting of all complex valued

and has been extended to distributions belonging to the dual space
infinitely differentiable functions ® defined on | satisfying
o3 _ m .- ko 2f-1
=3 D = 0o,
P (@)= Sup ™ (7t DY 2 gl < oo 13)
forall Mk € Ny

The generalized Hankel type transformation g is defined as the adjoint of Rap through the relation
{hﬂ,ﬂ f.r f}r’} = {fr h[{,ﬂ ‘f’}; (14)

1 ,
Wherem_‘mz_i’ fe Hap and @ € Hap -

The classical Hankel type convolution transform of / and 9 belonging to the class

Ll&,ﬂ = {f= Wlleg = Jnmlf{xlll ¥ dx <o, (a—F)= _1}

2
is defined by
(f £ g) (x) = J. FO) o) Gdy, x el, L9
where
@) 0)= | 9@ DgpCry2dz,  xy el Lo
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and for %..zZ €.

Dep Gy, = [ 0¥ jo_p GO jo_p G0 o GO

(1.7)
Gy Plz? — o — AT 2P [ + 9P - 221%F Loz a
= 2a—-5f 2ol -yl zaxsy
0 ; oy, zel, 0<z=lx—vlorx+y<z<w@
with
Ja_g &t)= t)*F [, g (xt), (1.8)
It follows from the definition of Pa.g € Y-2Z} that
L Ja—g G Dag (y.2) dz = 372 jo_g (et) jo_p () (1.9)

The theory and applications of the Hankel convolution transform can be found in [1], [2], [5], [7], [11], [14].
The Hankel convolution transfer defined by (1.5) was extended to distributions in Hep by Betancor and Marrero

[1], [2].

Ultra distributions have been introduced by Beurling [3], Bjorck [4], and Roumieu [12] as generalizations
of Schwartz distributions. A unification of Beurling Bjorck theory and Roumieu theory has been given by
Komatsu [8]. The Hankel transform of ultradistributions in Roumieu setting has been given by Pathak and Pandey
[10]. The purpose of the present paper is to introduce Gevrey type ultradistributions which are suitable for the
study of Hankel type transform and Hankel type convolution transform.

. : af - : . : .
In this paper, a test function space " - generalizing the Zemanian space Ha,g is defined. It is shown that the
L, P "
conventional Hankel type transform (1.2) is an automorphism of Hi?. por win) =log (1+2) it reduces to

_ wh . :
Hag and for wix) = x® (0 <a<1), Hy" is a Gevrey space of test functions. The generalized Hankel
@p
type transform of ultradistributions belonging to (HW ) is defined by the adjoint operator method (1.4) and it is
e, f§ .
found that the generalized Hankel type transform is also an automorphism of (HW ) . Multiplication on Hff-'ﬂ and

. (HSF)
convolutionon \""w / are investigated.

r

5 HEjﬁ and (H:,‘ﬁ) spaces :

the following properties:

(a)l]Ew(,s+t} =wis)+ wit) , forall st €1,
" wi(s)

(b) .L 1+ 52

(©) wis) = a+blog (1 +3) for some real @b = 0.

We denote by M the set of all continuous real valued functions satisfying (a), (b) and (c). From (c) it follows that
a wix)
x < ebe b , x=>0. (2.1)

Let W be a continuous real valued function defined on ! = {0, 2} possessing

< oo,

For each real number (@ — £). the space HP 1) is defined as follows.

. .. @f .
A complex valued € — function ® on! is said to belong to the space Fw" ) if
af _ Awixd ro—1 p k[ 2B8-1 o0 -
n, .. (@)= Sup|e (x™+ D)% |x plxi|| <co
Ak el | 2| | (2.2)
for all non-negative real numbers 4 and non-negative integers k.

: : a.p
HYP O g clearly a linear space. The topology of HE s generated by the seminorms [”M ] Following

technique used in [15, p.131], it can be proved that Hﬁ:ﬁ is a Frechet space.
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... . . m A wixy . H':r"Er C H ;
From definitions (1.3), (2.2) and the inequality x™ = e for Ab = m, jt follows that ““w = @B Itis
also clear that DU) = HyP @) < EW. Since DU is a dense subspace of E () then # B M is dense in

r o fF :
ED. Hence £ @ < (HW ) M- the dual of Ha’ O, called the space of Gevrey ultradistributions. Since
af
Hy," < Hap | the following properties given by Zemanian [15] hold in the present case also when W € .

We use the following definitions [14]
Nag = x3% D x3h-1, Mgg= x3F-1 p x3a,
Bypg= MgpgNgg= x2F-1D x4 D x3-1
= (28 —1)(4a + 28 — 2) x%+E-1 L 225 + 28 — 1)
w yAot+afi-z D, + L Hza+zf-1) D_:. )

1 u 1
fwetake “ =272 7 P T 372" we obtain
— N3z (1 —4p%)
Su=Dx+ —m ' the operator studied in Zemanian [15].
Lemma 2.1:

. : . : : : wfar . gdf
(i) The operation ¢ = Mypg P jsa continuous linear mapping of w  into Hw -

(i)  The operation ¢ = Nog @ jsa continuous linear mapping of Hiﬁ into & Eﬁl.
(ili)  The operation ¢ = Bup? jsa continuous linear mapping of Hﬁ-’ﬁ into itself.

(iv)  If 49 isan even integer, then HiP < P,
Using (2.1), the following result can be easily proved.

. o . LR &
Lemma 2.2: Differentiation is a continuous operator of w  into ‘1w .

3. The generalized Hankel type transformation:

(@—-F) = -

1
The conventional Hankel type transform ha.p: 2 defined by (1.2) exists for every

o B
¢ € H,” < L' (0,0) Fyrther more, we have

1
Theorem 3.1: For @-F) = - 2’ the conventional Hankel type transform Raf isan automorphism of Hﬁ-’ﬁ
= T ‘IB -
proof: Let ® = (R ) O \yhere ® € Hy"- The following facts are well known [15, p. 139].

hﬂ,ﬁ,l {_xqb} = NI.LE hl’Lﬁ ¢ (31)
hl’Lﬁ,l (Na:,ﬁ’ qb) = -y hl:faﬁ ¢ . (32)
Applying (3.1) ¥ times and (3.2) m-times and then using Zemanian’s identity [15, p. 141], we obtain

k
(—pkemym (3o i,) v (hap ) O

- d m
— l L4atzk+m (x—1£) [x:,t?—1 qbl(x}] (x}’}_[a_ﬁ+mfﬁc—,ﬁ'+k+m () dx

so that
o . . K

Can Avy™ ( _, d _ \ ron

| — |'[f _ mE -7 il 1_ ,-25 1 fETa]

(1) mZ.,( = (} d},) y2671 (hep ) ()
@AM m o gm

= Y= [Tt (pm12) 1 o] G @B g g ) i,
m=o

where 4 = 0. Also, by property

00 W{S}

| ——ds< o, fore=o0 _

fo 1457 there exists a constant ¢{€?
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such that w(s} < es + cle) Hence

[£a]
m
evw{e} <= ev£s+vc{£} = evc{e} {ve} m
ml
m=n
Now, for any choice of ¥ and ¥ we have
x,
et @)= Sup
; FEL.
g gF\‘rﬁEl |5—1_| 52,‘3—1 i [5]
! ds;
= Sup
o am . k
g gi-::,'.lEl Eﬁzul L;f!: Sm I:.S—:I.%;I 52,'3_1 CIJ'I:S:I
= glcie Sup
i o—qd ™
o UE:Im - lxd.:r+2k+m II_.x iﬁ_.'

5 |4am=0 gl v

" [xzﬁ—i ¢m_]] (x5)l@-B+kl Ja—piism (25) dx

1
A @—B) = -3, ) @FR T oo (X5)

2 is bounded on 0 < x, s <@ py the constant Br.m- Let

. 1
N pe an integer no less than @ —F +k + M+ Then
x4|:r+:k+m < (1 +.’I=}N for r = 0.

So that
s M A0 m
nif @) < eve@ 3O Mg 4z () o
m=o oot
®* B
n+1 o 1+
ca
T (ve) N+1 "
o _reis) Ir 1 z2fi-1
= 5 € Z — kJmZ( )Sup x (x ) x gb(x}|
m=o r=o
Since
gWix) = ea+£]!ﬂg|:1+.x:|
then
2rwix) 2ar 2ar
e B = e b (14+x) = b x%7
so that
d m W X d m
ar (x—1£) w261 p(x)| = [ezar e B (x—l E) -1 (%)
Zar
= e n2f ()
?z,m
_=ar a3 o
e P My (@)
— &5
Now choosing
_1;
i, P fm
£ < (vm Ek,m nzii’+1] '~¢’»') . (m= 1)
—5
we have for some 4 = 0.
T o 1 1"|r+1 za.r
i@ s feroa 3L S
M=o  r—o
- N+1 N1 Sar
— voieh ' %
= — A b )
5 g g Z ( > ) g = 0

r=o



15255 B.B. Waphare/ Elixir Appl. Math. 59 (2013) 15251-15259

. o . . . . wh wh
This proves that ® € H,," and that the linear mapping ®«.£ is also continuous from " into Hw" - Since

a.ff — — . . .
Hy e L' 0,00, when @ ~F 2 =3 e can apply the classical inversion theorem and the fact that

1 = . . . . e,
hep = Raf 1o this case and conclude that *«8 is one-to-one. Thus 2«8 is an automorphism on " -
Thus proof is completed.

. . R (Hcr,,t?) . . . . h @
The generalized Hankel type transformation "&£ on \""w / is defined to be the adjoint of ®«.8 on #" . More
af

precisely, for any ¢ € Hy? and f € (H57) ) we have
{ﬁ:m'g f.@)= {frhcr,,ﬁ' P ).
By using Theorem 3.1, we immediately obtain the following.

1 r
Theorem 3.2: For any @-p) = 2’ the generalized Hankel type transformation heg is an automorphism of
(#57)
T ; e ff
4. Multiplication and convolution on i
We denote by Tm the space of all €® — functions ¢(x), 0 <x <0 sych that for each non-negative
integer ™ there exists a non-negative integer k¥ = k@) for which
T
e—k'lr'b'{ul'} (I_j'%) c,‘c‘.:{x}
IS bounded.

Here Tm is the space of multipliers for HE:"? . The following results will be used in the sequel.
it -9 € Lag 0.0 ypen from [1, p. 285] we have

(hep @) © = 2772 j 0 (Rep f) ®,  tel 4.1)
and

(hop (F29)) © = 3 (hyp ) @® (Repg) ®,  tel 4.2)

o .. . af
our aim in this section is to study Hankel type convolution on " -

Theorem 4.1: 1 f € Hy' () angx*%g € Hyf @, thenf o € HYP .
Proof: For non-negative integer ¥ and non-negative real number 4 , we have by definition (2.2),

o d\* 1,
5 (Fr= suplewe (‘""dﬁ) [x*F-* fix) g )]

xel

d k
Awriy - 28— 25— 2
A (67t ) [t f) vt g o]

Now by using Leibnitz theorem, we obtain
k

F 5 T
mif G < ) (¥)=su |2+ 1) (2 fio)

r=0
&

—:I.i - zffi-1 ¢ 30 o0
(x dx) [x gl < 0.

¥ Sup
X

B
Hence f 9 € Hy" (). Thus proof is completed.

Theorem 4.2: For every * €I = (0,00}, the mapping® — T» @ is continuous from Hi into itself.

\ o
Proof: Let ¥ € HyF . Then (Rap @) ® € HL® . By definitions
(1.2) and (1.6), we have
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he,p (Tx@) (t) = I‘ (TxP) ) jo_p t¥) dy
o
= hﬁﬂﬂ[l¢ﬁﬂh5&sz4dv
= I ¢ (2)dz l jap &) Do g G, y.2) dy.
Now by making use of (1.9) we can obtain

hep (T @) (8) = l d(z)e3h-1j g(tx)ig_g(tz) dz = ¢ v 3(1“1’}( af ‘ib) (t)-

Now we show that
t2h-1 Ja—p X)) € Ty,
We have

() ot = e () i)
= (=1 2EFIM (o) {or— ,|'.?+m]fa_ ,G'+m":t3‘-’:"
so that there exists P = 0 such that
m

g ~PwiL) (t‘l%) t=||3_1 .-illﬂ—ﬁ (t:‘r:} = oo

for every * € 1.

Hence £ * Ja—p ) € Tm oy fixed * €1. But
(hmﬁ ¢] £ H-lir:ﬁr then tzﬁ_ljrx_ﬁ {tx} (hmﬁ qb) {:t:} = H:::ﬁ .
As *«£ is an automorphism of HE:E » therefore Tx ¢ € HE-‘B’ and the mapping @ = Tx @ is continuous from

Hi into itself.
This completes the proof.

Theorem 4.3: If f+9 € H:rﬁ I then
Proof: By using (2.2), we have

o d’ _ . -
’r;rff (har,.i? (f#g})= SSHEF gAwi(s] (s 15) 5261 ha,,ﬁ' (f#g) (s]].

Now using (4.2), we obtain

) Lk
s d

f (hag 700) =Sup (2 (71T ) %7572 (g £) © (hag 9) ).

One of the appllcatlons of Leibnitz theorem gives

n5f (hep F)) < Z( )it Prngh_, @ < o

r=n

. ff g
Thus Ra.g F#9) € Hy" (D Aghap s an automorphism of H? (0, therefore
This completes the proof.
. (Hf‘:“lﬁr ) :
5. Hankel type convolution on \""w
o . (H‘I"B )
In this section we study Hankel type convolution on "W
: afy

Definition 5.1 < For @ € He’ @ ang F € (") the convolution of £ and & is defined by

(f#) (x) = {f (), (T, @) V), xel (5.1)
HEP (1)

w

| a.p o ()
Since forevery ¥ € Hy"  generates an ultradistribution belonging to , we have
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W 9V = [ 0 @ ) 0)dy;
o
so that the classical Hankel type convolution is the special case of the generalized Hankel type convolution (5.1).
The following lemma will be useful in the sequel. Moreover f € E' ), (5.1) holds.
Lemma5.2: If f € E' @), thent™ " hag f € Tm-
Proof: Let f € E' (). Choose P (x) € D{I} gych that p &) = 1.

on a neighbourhood % of the support f- Then
(hra:,ﬁ' f) & = {fix) P (X} jq_g ()},
so that

m m
(rl%) [£2F-2 ("rm,e f) @)= fe, (t*%) [t o) jo_g E))-
We then have
d\™ d\"
(%) [ p g @] = o) (722 [ et)™F o]

= (-1)™ ,D(x}:tr.':a_'-:m (tx}—{a—,t?+m]fa_£+m (tx),
so that

dy\™ :
(2 2)" [+ () ]
= {flx), 0" pl) trlaFem) praramy ta-famly o X))

Asf € E (I} there exists a positive constant ¥ and non-negative integer * such that
|{f{.’1’}, (—1)™ o(x) t—[ﬁr—,ﬁ'-l-’m] y IO+IM x_[a_ﬁ+m]fﬁf—ﬁ+m {tx}}l

—lo— S+m) k za+am . —{a—F+m)
< tla-f+m) y Ungleflécr.ﬁup |Dx [p'[x]' x x @+ Ja—gem (tx]']l
xek

= tla—f+m) py max Sup
0=k=r

J{E;CZUI:_.?_:ID;‘ [_};_' a—B+m |Jrl:r_'|3‘-'_??'z itx |]I
G) Sup
K|fi[.}:t]_' a—f+m Ijﬂa—'@+m+f { I..k':l|
T
(;)

T
<M Z
i=o
T
EM"Z =M@+ ;
i=o
so that
d m
|e P“*”(t lﬁ) £ (hyp F) ®

Hence, £3h-1 (”m.@ f]‘:ﬂ € Tm- Thus proof is completed.

B '
Theorem 5.3: Forany 9 € Hy" () and f € E' () we have

M7 e WO (1 4+ 5" < oo,

and
[hep Fog)] )= 352 (hyp F)® (hap g) @
Proof: Letf € E'U)and g € HyF . Then as in [11, p. 1341],
we have
[hopFE)] @ = (FO),  [Rep (tyg)] @)
An application of (4.1) yields
[Rop (FED)] )= (FO),  t3F 1), g &) (Rhepg) (O
= {f O, ju_p &) t7F2 (Rypg) )
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= %71 (hy 5 F) @ (hgp9) .
20— " a”f_;"
Now by Lemma 5.2, t2h- (h.:r,;? f) ) € Tm oy that Pap FH) @) € HT (D.

. h . . H:I,,!'.?
Since "a.# is an automorphism of #w - therefore
Thus proof is completed.
L,

By .

Definition 5.4: For [ € (Hw ) and 9 € E . the Hankel type convolution is defined by

< fi#y, h==<f,ghd =, forall ¢ € Hw'(a. 5) -

@py .
Theorem 5.5: If f € (Hw ) and g € E . thenand
[hep (FE)] (©) = 1252 (h of) @ (kg 9) (©.
Proof: Let {&+} be a sequence of functions in Hi’ﬁthat converges to zero in Hﬁ-‘ﬁ. Then by Definition 5.4,

< fi#g, pwE===<f, g8l L v =.

As9 € E andbv € HiyP, therefore by Theorem 5.3 we have

and
k
e.lu,-{.x} (x—li) I=|B_1 (g & q5 )
I'ix 1E

= oo,

L, o,
Since #r = 0 in pr - therefore in Hwﬁ' so that

. . 8 L
That is is continuous on " - Similarly we can prove linearity. Hence
Moreover,

(o F#] @ hop o @)= (FH#g) ), GLI) = (f(x), (G#P)x))

= (h pf) ®©,  hyp (g#0) @)
= A(hypf) ®©, %7 (hyp g) ©(hy 0 ¢) ©)
(£F2 (hy 5f) © (hyp 9) @, (Rep @) ©).

so that

[k 5 Ftg)] © = 252 (hy pf) © (k5 0) ©.
Thus the proof is completed.
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