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Introduction  

Adaptive sampling designs are designs in which additional 

units or sites for observation are selected depending on the 

interpretation of observations made during initial sampling. 

Additional sampling is driven by the observed results from an 

initial sample. Several designs may be considered adaptive 

sampling designs (Thompson 1990, 1997 and  Dryver, 1999, 

Adeleke et al 2007, Adeleke et al 2010). Adaptive cluster 

sampling design is implemented using the following basic 

algorithms: (1) Selecting the initial probability-based sample,  

(2) specifying a rule or criterion for performing additional 

sampling, and (3) defining the neighborhood of a sampling unit 

(Chambers, 2003). To draw an adaptive sample, a grid is placed 

over a geographical area of interest (target population) where 

each grid square is a potential (primary) sampling unit 

(Thompson et al, 1992). The final sample consists of clusters of 

selected (observed) units around the initial observed units. Each 

cluster is bounded by a set of observed units that do not exhibit 

the characteristic of interest. These are called edge units. A 

cluster without its edge units is called a network. Any observed 

unit, including an edge unit, that does not exhibit the 

characteristic of interest is a network of size one. Hence, the 

final sample can be partitioned into non-overlapping networks. 

These definitions are important in understanding the estimators 

for statistical parameters. 

A Horvitz-Thompson (HT) and Hansen-Hurwitz (HH)-type 

estimators of the mean and variance (of the sampled population) 

based on the final sample, as proposed by Thompson (1990) are 

typically used with adaptive cluster sampling.  A modified 

version of the HT-type and HH-type estimators using the Rao-

Blakwell theorem was proposed (Thompson 1991, 1992, 1997, 

2006) as a correction for the problems of selection probabilities 

that cannot be determined for all the units in the final sample. 

The usual unbiased estimators in adaptive cluster sampling are 

very simple but do not necessarily utilize all the information 

gathered. A more efficient estimator that utilizes this 

information of a repeat selection was discussed by Dryver 

(1999). Improvements have also been made in the case when an 

initial sample is taken without replacement. In particular, the 

values of edge units are utilized in the estimators only for edge 

units that were picked in the initial sample. Estimators that can 

incorporate this information can be obtained using the Rao-

Blackwell method conditioning on the minimal sufficient 

statistic (Thompson 1997, Philippi 2005).  

The Horvitz-Thompson (HT) estimator (Horvitz and 

Thompson, 1952) that was used to derive the estimators for 

adaptive sampling applies the idea of design based inference in a 

rather general sense but can have large variance (Adeleke, Esan 

and Okafor, 2007, Adeleke et al 2008,). For example, when an 

outlier in the sample has low selection probability, it receives a 

large weight. A general problem with all design unbiased 

estimators (which is the area researched thus far) is that they are 

dependent upon the design being carried out properly. When the 

sampling is not carried out according to the design, estimation of 

the parameter of interest can be affected greatly. In addition, 

these sampling problems may be correlated with the parameters 

of interest in a number of respects. For example, a researcher 

may not have enough fund to sample the entire network if it is 

too large, whereas design unbiased adaptive sampling estimators 

require the entire network to be observed. Model-assisted 

estimators for adaptive sampling designs and the use of auxiliary 

variables in adaptive sampling designs have not been explored. 

In this research we propose an approach that introduces models 

into design based estimation frame-work when adaptive 

sampling design is in use. 

Model-based-cum-Design-based inference 

In situations where the HT model is not reasonable (Little 

and Vartivarian, 2003), a model-assisted modification is to 

predict the non-sampled values using a more suitable model as 

proposed below, and then apply the HT estimator to the 

residuals from that model. Specifically, the generalized 

regression estimator of Ŷ takes the form:  
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where 
ŷ

 is the prediction from a linear regression model 

relating y to the covariates. The second term on the right side of 

(1) conveys it with the useful property of design consistency 

(Brewer 1979, Isaki and Fuller 1982), which means informally 

that the estimator converges to the population quantity being 

estimated as the sample size increases, in a manner that 

maintains the features of the sample design. Design-based 

statisticians usually weight cases by the design weights wi when 

computing this regression, but the estimator is also design 

consistent if the regression is variance weighted. For discussions 

of generalized regression estimator and alternatives, see for 

example Cassel, Särndal and Wretman (1977), Särndal, 

Swensson, and Wretman (1992). Another general approach to 

design-based inference incorporate models by basing inference 

on “pseudo- likelihoods” that reflect survey design features 

(Binder, 1983; Godambe and Thompson, 1986).  

Proposed Model-Assisted Estimators 

The design-based approach to survey inference has a 

number of strengths that makes it popular among its 

practitioners: it automatically takes into account features of the 

survey design, and it provides reliable inferences in large 

samples, without the need for strong modeling assumptions. On 

the other hand, it is essentially asymptotic, and yields limited 

guidance for small-sample adjustments. It lacks a theory for 

optimal estimation (Godambe 1955) and estimates from the 

approach are potentially inefficient. The Horvitz-Thompson 

(HT) estimator (Horvitz and Thompson 1952) that was used to 

derive the estimators for adaptive sampling applies this idea of 

design based inference more generally.  

On the other hand, model-assisted survey estimation 

(Särndal et al. 1992) is a well-known approach for incorporating 

auxiliary information in design-based survey estimation. It 

assumes the existence of a “super-population model” between 

the auxiliary variables and the variable of interest for the 

population to be sampled (Opsomer et al, 2007). The estimation 

of population quantities of interest is then performed in such a 

way that the design properties of the estimators can be 

established. This is in contrast to purely model-based estimation, 

for which no design-based inference is possible. While model-

assisted estimation has the potential to improve the precision of 

survey estimators when appropriate auxiliary information is 

available, it typically requires that these models be linear or at 

least have a known parametric shape. Breidt et al (2005) 

introduced local polynomial regression. 

Consider inference about the population total: 

nyyyY  21  
and any sample design with positive inclusion probability 
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The unbiasedness of equation (2) under mild conditions 

conveys robustness of modeling assumptions, and makes it a 

mainstay of the design-based approach but has a major 

deficiency as an outlier with small selection probability receives 

a large weight Basu’s (1971).  In the light of this problem, we 

propose a model-assisted modification to the HT estimator to 

predict the non-sampled values using a more suitable model as 

proposed below, and then apply the HT estimator to the 

residuals from that model. Specifically, the generalized 

regression estimator of Ŷ takes the form:  
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where 
ŷ

 is the prediction from a linear regression model 

relating y to the covariates. The second term on the right side of 

equation (3) conveys it with the useful property of design 

consistency (Brewer 1979, Fuller 2002, Breidt et al 2005, Kim, 

2004), which means informally that the estimator converges to 

the population quantity being estimated as the sample size 

increases, in a manner that maintains the features of the sample 

design.  

Model Assumptions 

i. The population consists of N units made up of N  inside the 

networks and  N- N   outside the networks 

ii. There are Yi , i = 1, 2, 3, . . . , n observations in the sample. 

There are n  observations in the networks and (n- n ) 

observations outside the networks. 

iii. Initial observations are randomly selected. Subsequent 

observations in each network are not randomly selected. They 

are dependent on the initial selection in the network 

iv. yi in “inside the network” is distributed as multivariate 

),
~

( 2 AN 
 while yi from “outside the network” is i.i.d 

),( 2N
  

Implementation Procedure 

The analysis is conceived in the context of two sub-

samples: 

Units inside the networks (IN) 

Units outside the networks (ON) 

We estimate separately in each of these networks and 

combine the estimates. This is done because estimation in ON is 

fairly easy due to random selection of sample units there. 

Inside the network (IN)  

In this phase, there is the real possibility of spatial 

correlation among the yi in the network, especially those close to 

each other and hence the need to consider a variance-covariance 

structure.  

Thus, total of Y inside the networks is estimated as 
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Outside the networks (ON) 

The procedure is to use ordinary least squares to estimate 

ONŶ
since sampling is random. If there is evidence of 

heteroscedacity (assuming normality and independence 

assumptions hold), then use generalized least squares. 

Thus,  
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Eventually, ONIN YandY ˆˆ
 are combined thus, 

 ONIN YwYwT ˆˆˆ
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   (6) 

where 21 wandw
 are weights that minimize the variance of 

T̂ .  

The expectations and variance of the estimators are derived 

to give: 
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Weights 1w
 and 2w

 that minimize the variance of the 

estimator 
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where ONNI YY ˆˆ
 is the covariance between  ONIN YandY ˆˆ
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The estimates 1ŵ
 and 2ŵ

 of the weights 1w
 and 2w

are 

valid only if 11  r . Where r  is the correlation 

coefficient between ONIN YandY ˆˆ
. That is, T̂ is invalid if 

1r . 

Comparison with Existing Methods 

In this section we show several numerical examples of how 

the components of the Horvitz-Thompson estimators are 

calculated in adaptive cluster sampling and the computation of 

various components of the proposed model-assisted estimators. 

A comparison of the two types of estimators are made. We 

chose to compare with Horvitz-Thompson’s since Thompson, 

(1992) has shown empirically that it is generally more efficient 

than the Hansen-Hurwitz type estimators.  

 

Table 1 illustrates the computation of the proposed 

estimators for a given sample and shows for a small population, 

the relative properties of the different types of estimators 

(proposed and existing). The population consists of N=8 units. 

The initial sample is a simple random sample of n = 2 units. 

Neighbouring (adjacent) units are added whenever the condition 

yi≥10 is satisfied.  

Table 1: An illustrative Computation 

Units 1 2 3 4 5 6 7 8 

 iy
 2 15 16 14 9 8 1 4 

 ix
 3 31 32 29 17 17 1 9 

 im  1 2 2 2 1 1 1 1 

 iw
 2 15.5 15.5 15 9 8 1 4 

 Network  k 1 2 2 2 3 4 5 6 

 
*

ky  2 31 31 30 9 8 1 4 

 k   1/4 13/28  13/28  13/28  1/4  1/4  1/4  ¼  

The first row is the unit labels; the second row their 

associated values while the third row is the associated 

covariates. The subsequent rows of Table 1 are necessary 

components for calculating various estimators in adaptive cluster 

sampling, with n =2 and a condition yi≥10 (Recall: mi being the 

number of units in network i, wi represents the average value of 

a unit in that network which contains unit i, 
*

ky
 being the sum of 

units in network i, and k are the inclusion probabilities)  

Table 2: Computation of means of possible samples using 

various estimators 

The sample  xy̂
 HT̂

   HT
̂

 

2,15; 16,14,9 13.153 13.1154 14.8654 

2,16;15,14,9 13.153 13.1154 14.8654 

2,14;16,9 7.893 9.0769 10.8269 

2,9 5.5 5.5 5.5 

2,8 5 5 5 

2,1 1.5 1.5 1.5 

2,4 3 3 3 

15,16;14,9,2 14.393 15.5769 12.4103 

15,14;16,9,2 14.393 15.5769 12.4103 
15,9;16,14,8,2 16.653 16.6154 15.4487 

15,8;16,14,9,2 16.153 16.1154 15.2821 

15,1;16,14,9,2 12.653 12.6154 14.1154 

15,4;16,14,9,2 14.153 14.1154 14.6154 

16,14;15,2,9 15.743 15.3462 12.5128 

16,9;15,2 13.243 12.8462 11.0962 

16,8;15,2 12.743 12.3462 10.8462 

16,1;15,2 9.243 8.8462 9.0962 

16,4;15,2 10.743 10.3462 9.8462 
14,9;16,15,2 16.653 16.6154 14.8654 

14,8;16,15,2 16.153 16.1154 14.6154 

14,1;16,15,2 12.653 12.6254 12.8654 
14,4;16,15,2 14.153 14.1154 13.6254 

9,8 8.5 8.5 8.5 

9,1 5 5 5 
9,4 6.5 6.5 6.5 

8,1 4.5 4.5 4.5 

8,4 6 6 6 

MEAN 10.71941 8.625 8.625 
BIAS  2.09441  0.0000 0.0000  

MEAN SQUARE ERROR  28.13806  50.72843 48.79968  
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This table consists of all possible initial samples and a few 

possible associated estimates of the population mean µ. In the 

first column, the number immediately preceding the semi-colon 

represents the initial sample and numbers after the semi-colon 

represent adaptively added units, where xy̂
  is the proposed 

estimator of the population mean µ, HT̂
 the Horvitz-

Thompson estimator and HT
̂

, the improved estimator 

proposed by Dryver and Thompson (2003, 2005) 

Table 3: Computation of variances of possible samples using 

various estimators 

 The sample  
)ˆr(âv HT

  
)ˆr(âv

yx
  

)ˆr(âv HT
 

2,15; 16,14,9 77.36428 60.47542 74.30178 

2,16;15,14,9 77.36428 60.47542 74.30178 

2,14;16,9 33.57701 2.319527 30.51451 

2,9 24.5 24.5 24.5 

2,8 18 18 18 

2,1 0.5 0.5 0.5 

2,4 2 2 2 

15,16;14,9,2 87.953 9.278107 77.92522 

15,14;16,9,2 87.953 9.278107 77.92522 

15,9;16,14,8,2 84.73447 60.47542 83.37336 

15,8;16,14,9,2 82.55658 60.47542 81.86214 

15,1;16,14,9,2 77.81139 60.47542 75.56139 

15,4;16,14,9,2 77.59504 60.47542 77.34504 

16,14;15,2,9 82.03 2.319527 74.00222 

16,9;15,2 42.6408 2.319527 39.5783 

16,8;15,2 40.54926 2.319527 38.29926 

16,1;15,2 36.40805 2.319527 36.34555 

16,4;15,2 35.9331 2.319527 35.6831 

14,9;16,15,2 84.73447 60.47542 82.48447 

14,8;16,15,2 82.55658 60.47542 82.49408 

14,1;16,15,2 77.81139 60.47542 75.56139 

14,4;16,15,2 77.59504 60.47542 77.53254 

9,8 0.5 0.5 0.5 

9,1 32 32 32 

9,4 12.5 12.5 12.5 

8,1 24.5 24.5 24.5 

8,4 8 8 8 

MEAN = MSE 50.72843 28.13806 48.79968 

This table consists of all possible initial samples and their 

variances. In the first column, numbers before the semi-colon 

represent the initial sample and numbers after the semi-colon 

represent adaptively added units, where 
)ˆr(âv

yx
 is the 

variance of the proposed estimator and 
)ˆr(âv HT

 is the 

improved Horvitz-Thompson estimator. 

Simulation 

Various estimates were obtained using the Horvitz-

Thompson type estimators and the proposed model-assisted 

estimators on simulated data from bivariate normal distribution 

with parameters stated below: 

μX = 3, σX = 2, μY = 2, σY = 3, ρ = 0.9  

 

Varying initial sample sizes were used. The simulated 

values satisfying the condition for further sample selection are 

used to calculate the estimates of the various types of estimators.  

Table 4: Horvitz – Thompson estimator results for mean and 

variance for the simulations from the bivariate normal 

distribution. Condition is yi ≥ 5 for the simulated data 

  Horvitz-Thompson estimator 

n Mean Variance 

5 887.47 244213.9 

     

     

10 4260.05 14087071 

     

     

15 10964.84 19665113 

     

     

20 8010.61 8081247 

     

     

30 5010.63 13041992 

Table 5: Proposed estimator of mean based on simulated 

data from the bivariate normal distribution. Condition is yi 

≥ 5 for the simulated data 

    Mean Weight 

proposed 

estimator 

n   Inside Outside Inside outside mean 

5  -3.34 25.92 0.88 0.12 22.38 

10  137.74 153.51 0.21 0.79 141.01 

15  589.99 606.19 0.57 0.43 599.25 

20  451.76 740.73 0.36 0.64 555.92 

30  50.50 640.71 0.00 1.00 51.96 

Table 6: Proposed estimator results for variance based on 

simulated data from the bivariate normal distribution. 

Condition is yi ≥ 5 for the simulated data 

  Variance Weights proposed estimator 

n Inside  Outside inside outside Variance 

5 593.51 4314.41 0.88 0.12 521.74 

10 3188.48 834.08 0.21 0.79 661.13 

15 11332.07 15125.21 0.57 0.43 6478.37 

20 14175.83 7990.43 0.36 0.64 5110.06 

30 14269.73 35.42 0.00 1.00 35.42 

Conclusion 

This study has investigated the model-assisted modification 

of the Horvitz-Thompson estimators to correct for the problems 

of a prescribed adaptive sampling plan that may result in very 

small selection probabilities for some units and thereby 

receiving large weights in estimation.  This model-assisted 

modification to the HT estimator is to predict the non-sampled 

values using a more suitable model as proposed and then apply 

the Horvitz-Thompson estimator to the residuals from that 

model. Model-assisted estimation in adaptive sampling has 

shown some useful properties. Firstly, the estimates are close to 

Horvitz-Thompson estimates. Secondly, the gain in precision 

was remarkable as the estimated variances of model assisted 

estimators are uniformly smaller than the estimated variances of 

Horvitz-Thompson estimators. The results from this study 

demonstrate that the existing Horvitz-Thompson estimator for 

adaptive cluster sampling can be improved using model 

assistance. 
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