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1.Introduction  

  Present decade is witnessing a tremendous improvement in the study of optical and electro-optical properties in 

the low dimensional semiconductor systems due to the invention of novel experimental techniques. Nano-semiconductors 

with the desired sizes are manufactured out of these techniques. Spherical semiconductor nanocrystals with the diameter 

ranging between 1nm and 5nm are synthesized using some simple experimental methods such as wet chemical approach. 

Moreover, these low dimensional semiconductor nanostructures depend on the energy spectrum of a confined exciton in 

order to bring out the exotic behaviour of the physical properties with the effect of quantum confinement. These unique 

properties are used for biological imaging and sensing and may replace the conventional fluorophores with the multiple 

fluorescence emission [1].  The quantized energies as well as the motion of the exciton will lead a widening band gap if 

the radius of the nanocrystal smaller than the exitonic Bohr radius [2,3].  The reports in this emerging field direct us to 

produce novel materials involving some potential applications especially in non-linear opto-electronic devices for 

controlling the optical signals in optical computers [4,5].  

            Semiconductor nanocrystals especially II-VI compound nanoparticles will have a large number of potential  

applications such as photovoltaic cells and luminescent materials [6,7] due to its tunable band gap if the impurities are 

introduced with the appropriate proportion.  The CdS/ZnxCd1-xS quantum dot has a large lattice mismatch between the 

well and barrier layers. So it is important to include the effect of biaxial strain induced by the lattice mismatch which 

eliminates the degeneracy of the top of valence band. Spontaneous and piezoelectric polarizations, generating built-in 

electrostatic field especially in wurtzite heterostructures, determine the quantum states of excitons in a quantum dot.  

ZnxCd1-xS is a direct band gap material, and its band gap varies with the range 2.5 eV- 3.5 eV, a promising candidate for 

light emitting diodes with visible emissions with the proper introduction of Cd content.  Hence it becomes more important 

to understand the excitonic recombination and the band alignment of CdS /ZnxCd1-xS compounds. A larger exciton
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binding energies than the thermal energy at room temperature can be applied for generating light in light emitting diodes 

if the excitons in the particular material are stable at the room temperature [8]. 

In the present work, we calculate the quantized energies of the ground state of heavy hole and light hole in a 

strained ZnxCd1-xS/ZnS quantum dot with various Zn alloy content and thereby we have computed the interband optical 

transition energy. We investigate the exciton binding energies for various confinement potentials by varying Zn 

composition in the ZnxCd1-xS/ZnS quantum dot and the interband emission energy due to heavy hole is computed. The 

interband transitions of ZnxCd1-xS/ZnS quantum dot, for various Zn alloy content, are discussed with the geometrical 

confinement and the strain effect. We also study the nonlinear optical absorption as a function of photon energy for a 

Zn0.2Cd0.8S/ZnS quantum dot of radius 60Å and 100Å.  After the introduction in Section 1, we present the computational 

method followed in our model in Section 2 while the results and discussion are presented in Section 3. Conclusions are 

summarized in the last Section.  

2.  CALCULATIONS AND METHODS 

              Here, the ZnxCd1-xS material with different Zn alloy content is taken as quantum dot inner material with ZnS as 

barrier material. The model consists of an electron and a hole which interact with the screened Coulomb potential. Within 

the framework of single band effective mass approximation, the Hamiltonian of the exciton considering a strained 

spherical ZnxCd1-xS/ZnS quantum dot is given as,  
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where 
)(, rV he is the strain induced confinement potential and    is the static dielectric constant. The origin of the co-

ordinate system is taken from the centre of the dot material in this problem. The band gap of the material is given by [9] 

                    ΔEg(ZnxCd1-xS) = 2.501+0.328x+0.921x
2
  (eV)                                         (2) 

The above expression of band gap has been obtained by varying Cd concentration in ZnS powders (Fig.(1)) by taking 

various concentration of Cd and thereby calculating optical energy band gap. Similar expression has been obtained by 

other investigators [9,10]. The quadratic term in Eq. 2 is correlated with the bowing of optical band gap [11]. This 

approximation directs us to distribute the band gap discontinuities between ZnxCd1-xS dot and ZnS barrier as 

gErV  7.0)(
. The confinement potentials for electrons, 

)(rVe , and holes,
)(rVh , are given as 
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where eV
, hhV

and lhV
are the confinements potentials of conduction band , heavy hole  and light hole band offsets taken 

as 1822 meV, 781 and 728 meV respectively. These values increase with x as the band gap between the inner and outer 

material increases. 

               The strain-induced potential for the conduction band can be expressed as [12] 
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where ac is the deformation potential constant of conduction band,  
)(

)()(
)()( 0

xa

xaxa
xx yyxx


 

where a0  is the 

equilibrium lattice constant for the strained layer and a is the unstrained lattice constant and 
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the values of parameters  are given in Table 1. 

Table 1. Material parameters* used in the calculations (linearly interpolated from the data of ZnS and CdS) 

                    Parameter               CdS                  ZnS                    ZnxCd1-xS             

                          
*

em
                    0.21                  0.40                  0.21+0.19x 

                                       
1

                      3.158                2.721                 3.158-0.437x 

                                       
2

                                0.746                0.841                 0.746+0.095x 

               e31            -0.159               -0.16                -0.159-0.0001x 

                          e33       0.347                0.21                  0.347-0.137x 

                        C13(GPa)              39.4        74.6         39.4+35.19x 

                        C33(GPa)              93.8                 81.7                   93.8-12.09x 

                                                8.9                    8.5                     8.9-0.4x  

                           ac (eV)                     - 0.24                -4.09                 -0.24-3.846x 

                            av(eV)               0.56                 2.31                   0.56 +1.751               

                           a(nm)                 0.582               0.541                 0.582-0.041 

                           Eg (eV)                2.50                3.53                  2.50+1.031x 

*parameters taken from the Ref. [24-27] 

           The strain-induced potential for the valence band can then be written as [13] 
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            (4) 

where av(x)  and b(x) are the x dependent deformation potential constants of valence band. 

The strength of the built-in electric field F caused by the spontaneous and piezoelectric polarizations in the ZnxCd1-xS/ZnS 

strained quantum dot  expressed as [14] 
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  Here, 
CdS

e  is the electronic dielectric constant  of CdS and  
CdS

SP

CdS

PE PP ,
 and 

SCdZn

SP
xsP 1

 are the  piezoelectric 

polarizations and the spontaneous polarizations of CdS  and the spontaneous polarization of ZnxCd1-xS, respectively.  

The above values can be generally calculated by the polarity of the crystal and the strains of the quantum nanostructure. 

Since the wurtzite crystal lattice of CdS and  ZnS lack inversion symmetry, the heterostructure will have spontaneous 
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polarization (P
SP

) and the piezo electric polarization (P
PZ

) due to strain caused by the lattice mismatch between  CdS and 

ZnS material.  

The composition of Zn alloy dependent piezo electric polarization along the c-axis is given by 

                        
)()())()()(()( 3331 xxexxxexP zzyyxx
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                                           (6) 
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, the values of parameters  are given 

in Table 1. The piezo electric polarization is given by  
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Thus the total polarization is given by 
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  The electron effective mass 
*

jm
 is given by  
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)(* xmI  and )(* xmII  denote the x dependent reduced effective mass of the inside and outside the quantum dot. The 

material parameters are given in Table.1 and Table.2. 

The heavy and light hole effective masses are given by  
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where 0m
is the free electron mass.  We choose a trial wave function as follows 

    
)()()(),( rrrrr hehe 

                                                                           (12) 

The ground state wave function of the electron (hole) confined in the strained ZnxCd1-xS/ZnS  quantum dot can be written 

as  
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where   
),( m

lY
 are the complex spherical harmonics and   )(r  is the  radial wave function  and the corresponding 

confinement energy equation of the electron (hole) can be obtained by using the m-order Bessel function Jm and the 

modified Bessel function Km as 
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where N1 is the normalization constant,  

                 
2

*2



nlkj

nl

Em
r 

,                                                                  (15) 

and 

                 
2

* )(2



nlkj

nl

EVm
b




,                                                                                   (16) 

where rnl is the nth root satisfying the equation 
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And Enlk is the lowest binding energy calculated by solving the transcendental equation 
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,                   (18) 

This fixes the values of rnl and bnl for the lowest values of Enlk after matching the wave functions and their derivatives at 

boundaries of the quantum dot along with the normalization.         

               The variation trial wave function 
)(r

describing the internal motion between the electron and the hole in the 

system, taken to be the lowest state of the exciton energy is given by  

)exp()( 2rr  
                                                                        (19) 

where   is the variational parameter. We calculate the ground state energy excE
by finding out the expectation value of 

the energy of the Hamiltonian, Eq.(1), as  
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           The exciton binding energy is calculated as 

               excheb EEEE 
                                                                                    (21) 

            And the optical transition energy is computed by subtracting the heavy-hole exciton binding energy from the 

effective heavy-hole bandgap energy and the lowest binding energies of electron and hole.  Thus, the interband emission 

energy Eph associated with the exciton is calculated using the following equation 

               excgheph EEEEE 
                                                                          (22) 

where Ee and Eh are  the confinement energies of electron and hole respectively. Eg is the band gap energy of CdZnS 

material. 

                 For the excited states, the Eq.(1) may be written as 
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     (23)             

where l  denotes the quantum numbers associated with the operator L. The wave function  )(r  is considered to be zero 

at the centre of the nanosphere. For the excited states, 0l , Eq.(23) may be solved by using the Bessel functions as an 

orthonormal basis set as done earlier. 

                The dipole transition matrix element between the initial state and  final state  is given by            
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           For any electronic system transitions, these calculations are imperative to compute the different optical properties. 

However, the dipole transition transitions are allowed using the  selection rules 1l  where l is the angular momentum 

quantum number. In addition to that the oscillator strength which is related to the dipole transition, expressed as 
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where iffi EEE 
 refers the difference of the energy between the lower and upper states. 

iRfM fi


2

 is the 

electric dipole moment of the transition from i state to f state in the quantum dot.  The observation of oscillator strength is 

imperative especially in the study of optical properties and they are related to the electronic dipole allowed absorptions. 

Moreover, the outcome of the results will viewed on the fine structure of the optical absorption.  

The Schrödinger equation is solved variationally by finding min
H

 and the binding energy of the exciton in the spherical 

quantum dot is given by the difference between the energy with and without Coulomb term. First, we concentrate on the 

calculation of the electronic structure of the ZnxCd1-xS/ZnS quantum dot system by calculating its subband energy (E) and 

subsequently the exciton binding energy. Then, by using the density matrix approach, within a two-level system approach, 

the explicit expression for the optical absorption is computed in saturation limit.  

The linear optical absorption coefficient is given by [16]  
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and the third order nonlinear optical absorption coefficient is expresses as 
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where the dipole matrix element between the initial and final states as defined earlier ,  0  is the permeability of the 

system, rn is the refractive index of the dot material,    is electron density of the quantum dot,    is the incident 
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photon energy, 0  is the dielectric permittivity of the vacuum,  E1(E2)  is the initial (final) state energy, E21 = E2 -E1 is the 

energy difference between the final and initial states, 
/112 

 is the relaxation rate for states 1 and 2 here    is the 

relaxation time.    the angular frequency of the incident photon energy, c is the speed of light in the free space, 0 is the 

electrical permittivity of the vacuum. E1 and E2 denote the confinement energy levels for the ground and the first excited 

state, respectively.  

 The total optical absorption coefficient is given by 

                  ),(),(),( 31 III                                                                              (28)                                                                                 

where I is the optical intensity taken as 1MW/cm
2
.  

3. Results and discussion 

  Numerical calculations have been carried out to compute the exciton binding energy with and without inclusion of 

built-in internal field in the ZnxCd1-xS dot over ZnS quantum barrier material with the heavy hole mass. The interband 

emission energies are computed as a function of dot radius for three different Zn content of the host material. Some 

nonlinear optical properties with the photon energy are discussed for two different dot radii in a Zn0.2Cd0.8S/ZnS quantum 

dot. The atomic units are used in the determination of electronic energies in which the electron charge, Planck’s constant 

are assumed to be unit.  All the values of the parameters are given in Table.1. The values with different Zn content have 

been obtained using linear interpolation with the available data of binary elements. 

0 50 100 150 200 250 300

0

200

400

600

800

1000

0.0 0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

120

140

160

C
on

fin
em

en
t E

ne
rg

y 
(m

eV
)

Zn composition x

lh-1s

hh-2s

hh-1s

100 Å

C
o
n
fi
n
e
m

e
n
t 

E
n
e
rg

y
 (

m
e
V

)

Dot Radius (Å)

hh-1s

hh-2s

lh-1s

x = 0.2

 
Fig.1 The subband energies of  hh-1s, hh-2s and lh-1s in a Zn0.2Cd0.8S /ZnS finite quantum dot as a function of  dot 

radius and the insert figure shows the confinement energies of hh-1s, hh-2s and lh-1s states with the Zn 

composition for a 100 Å dot radius of Zn0.2Cd0.8S /ZnS quantum dot. 

 

  Fig.1 shows the  subband energies of  1s and 2s for heavy holes and 1s for light hole  in a Zn0.2Cd0.8S quantum dot 

as a function of  dot radius and the insert figure shows the confinement energies of hh-1s, hh-2s and lh-1s states with the 
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Zn composition for a 100 Å dot radius of CdZnS. The lowest binding energy is calculated using Eq.(14) and the boundary 

condition of the heterostructure.  It is inferred from the figure that the confined energies of electronic levels increase as the 

dot radius is decreased due to the spatial confinement. When the dot radius is large the confined electronic energies 

approach a value equal to the energy of the free space hydrogen. The electron confinement energy shows a significant 

increase with the Zn molar fraction. It is also observed that the subbands energies shift up as Zn incorporation increases 

adding from CdS to ZnS. 

  Fig.2 presents the transition energies of e-hh states and e-lh states as a function of dot radius for x = 0.2. It is seen 

form the figure that the transition energies increase when the dot radius of ZnxCd1-xS quantum dot is decreased in all the 

cases. The variation of transition energies has more influence for smaller dots. It is noted that energy difference between 

e- hh and e-lh is particularly higher for Zn in corporation ranging from 0.2 to 1.0. The resemblance of this observation 

agrees with the earlier investigation [17] in which an increase of the conduction barrier height for higher Zn composition 

has been reported. The trend of the lowest binding energy seems to be similar but the heavy hole exciton is found to be 

higher than the light hole exciton. It is because the exciton Bohr radius of the heavy-hole exciton is larger than the light-

hole exciton [8]. The band of inner dot (ZnxCd1-xS) and splitting of heavy and light hole excitons depend on the 

concentration of Zn alloy content and the geometrical confinement. 
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Fig.2 The transition energies of e-hh states and e-lh states as a function of dot radius in a Zn0.2Cd0.8S /ZnS  

quantum dot. 

  Since the oscillator strength gives useful information on electronic structure and optical properties of quantum 

dots, we present the variation of oscillator strength for various transitions as a function of dot radius in a ZnxCd1-xS/ZnS 

quantum dot in Fig.3. The behaviour of oscillator strength of heavy and light hole excitons with the dot radius is 

fundamentally same. Dipole matrix element and the difference between the energies are two important parameters 

involved in calculating the oscillator strength. It is observed from the figure that the oscillator strength increases when the 

dot radius is decreased and then reaches the maximum value for all the transitions. The oscillator strength depends on the 
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geometrical confinement, electron and hole wave functions and the interaction between them. The effect of quantum 

confinement on the heavy hole exciton over light hole exciton is brought out here. 
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Fig.3 Variation of oscillator strength for e-hh and e-lh states as a function of dot radius in a 

Zn0.2Cd0.8S /ZnS quantum dot 
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Fig.4 Variation of exciton binding energy as a function of dot radius in a ZnxCd1-xS/ZnS quantum dot with and 

without the inclusion of strain effects for three different concentration of Zn alloy content;  the insert figure shows 

the shift in transition energy for Zn concentration for two different dot radii. 
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  Variation of exciton binding energy as a function of dot radius of three different concentration of Zn alloy content 

in a ZnxCd1-xS/ZnS quantum dot with and without strain is shown in Fig.4 and the insert figure shows the shift in 

transition energy for Zn concentration for two different dot radii. The heavy hole exciton binding energy with without the 

strain effect is computed in order to observe the quantum confinement effects. In all the cases, the exciton binding energy 

increases with a decrease of dot radius, reaching a maximum value and then decreases when the dot radius still decreases. 

The Coulomb interaction between the electron and hole is increased which ultimately causes the decrease in binding 

energy when the dot radius decreases.  As the dot radius approaches strong confinement the tunnelling effect dominates, 

the wave function squeezes out in the barrier material and this effect reduces the exciton binding energy.  From the insert 

figure, we find the binding energy increases with the Zn alloy content as the barrier height increases as Zn alloy content 

increases. Further, we find that the exciton binding energy is higher when the dot radius becomes smaller due to the 

confinement. Further, we observe that the band gap increases as the Zn alloy content increases and it can be estimated by 

the expression Eq.(2). Red shift in emission energy is observed while including the strain effect induced by the 

spontaneous and piezoelectric effect.  
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Fig.5 Variation of interband emission energy due to heavy hole as a function of dot radius in a  ZnxCd1-xS/ CdS  

quantum dot with different content of Zn with and without strain. 

  In Fig.5, we present the variation of optical band gap as a function of dot radius of ZnxCd1-xS/ZnS quantum dot 

with different content of Cd. It is observed that the interband emission energy increases as the dot radius is decreased. 

This is due to the confinement of electron-hole when the dot radius is increased. Also it is observed that as concentration 

of Zn increases the optical band gap increases due to the enhancement of barrier height. Moreover it is clearly shown that 

the effect of bound exciton has influence on the interband emission energy. This representation clearly brings out the 

quantum size effect. We observe 2.77 eV, interband emission energy for 30 Å Cd0.2 Zn0.8S/ZnS quantum dot with the 

inclusion of strain effect. This value resembles with the interband emission energy of 2.61 eV for 25 Å Cd0.2Zn0.8S  
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quantum dot observed by Kunets [18]. It is also observed that the exciton transition energy lowers for all the quantum dot 

sizes if the strain effect due to the built-in electrostatic field is included, it is due to the decrease in the conduction band 

energy with the inclusion of biaxial strain. So it is important to include the stain influence of spontaneous and 

piezoelectric polarization. This result closely agrees with the previous investigator [19].   
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Fig.6 Exciton radiative life time of a confined heavy hole exciton as a function of dot radius in a Zn0.2Cd0.8S /ZnS  

quantum dot. 
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Fig.7 Variation of absorption coefficients for e-hh and e-lh states for two different dot radii (60Å and 100 Å)  as a 

function of photon energy in a  Zn0.2Cd0.8S /ZnS quantum dot. 
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We display the radiative life time of a confined exciton as a function of dot radius for Zn0.2Cd0.8S/ZnS in Fig.6. In any 

absorption spectra, the intensity of an exciton binding energy and the envelope wave function is characterized by the 

oscillator strength. The radiative life time can be calculated as [20,21] 

                                      
fEe

hcm

exc

22

23

002




 

                                                   (29) 

where f is the oscillator strength, Eexc is the exciton binding energy and all the other parameters are universal physical 

constants. It is found that the radiative life time of exciton decreases with the dot radius. The values of radiative life time 

are almost constant beyond the dot radius 100Å.   The results are in good agreement with the recent investigations 

reported by Mohanta et al., [22] who have calculated the radiative life time of Cd0.25Zn0.75S nanocrystals as 1.64 ns and 

Wang  et al.,[23] too have reported the same values. 

Fig.7 displays the variation of linear optical absorption coefficients for heavy hole and light hole states for two different 

dot radii (60Å and 100 Å) as a function of incident photon energy for Zn0.2Cd0.8S/ZnS quantum dot. It is inferred from the 

figure that the maximum absorption coefficient occurs at the corresponding value of the threshold photon energy 

(
fiE

) in all the two cases. The energy which is higher denotes the 1s exciton associated with the highest heavy hole 

valence band whereas the lower peak energy refers light hole band. The trend of this absorption coefficient for 77Å 

Cd0.25Zn0.75S nanocrystals [22] exactly coincides with our results. We notice that the nonlinear optical absorption 

coefficient shows larger values for smaller dots than for larger dots due to the confinement. Further, it shows the stronger 

behaviour for smaller quantum dots since the absorption spectrum depends on the quantum dot volume. We also notice 

that the electronic dipolar transition matrix elements are found to be high for the transitions between the higher levels of 

the intensity of the total absorption coefficient which increases for the transitions between higher excited levels.  

            In conclusion, we have calculated the exciton binding energies and the interband emission energy in the strained 

ZnxCd1-xS/ZnS quantum dot for different barrier heights taking into account the geometrical effects.  In all our 

calculations, we have included the contributions of built-in strained field induced by spontaneous and piezoelectric 

polarizations in the ZnxCd1-xS/ZnS quantum dot.  The confined electron (hole) energies of ground state have been 

computed for various values of Zn alloy content and thereby interband transition energy has been calculated with the 

geometrical confinement. In all the computations, we have considered the spatial confinement on nonlinear optical 

properties in a Zn0.2Cd0.8S/ZnS with the inclusion of built-in electrostatic field. The theoretical computation has been 

carried out using variational technique within the single band effective mass approximation.  The values of the absorption 

edge are found to shift towards the shorter wave length region and hence the direct band gap energy varies from 2.5 eV 

for CdS  to 3.5 eV for ZnS material. And we believe that our investigations can stimulate further research activities in 

device applications of Zn based CdS materials in future.  
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