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Introduction 

 Optimization can be defined as an art of searching the best 

alternative among a given set of options. Many problems can 

eventually be reduced to optimization in various disciplines such 

as engineering designs, agricultural sciences, manufacturing 

systems, economics, physical sciences, control engineering, 

pattern recognition and statistics etc. Optimization can thus be 

viewed as one of the major quantitative tools in network of 

decision making, in which decisions have to be taken to 

optimize one or more objectives in some prescribed set of 

circumstances.  The increasing practical utility of optimization 

problems in different fields put challenges before researchers to 

develop more efficient and robust computational algorithms 

which can numerically solve on computers the mathematical 

models of medium as well as large size optimization problem. 

During the past two decades, Population-based global 

optimization algorithms is becoming more attractive than others 

computing strategy. A common feature of all population-based 

algorithms is that the population consisting of possible solutions 

to the problem is modified by applying some operators on the 

solutions depending on the information of their fitness. Hence, 

the population is moved towards better solution areas of the 

search space. Two important classes of population-based 

optimization algorithms are evolutionary algorithms and swarm 

intelligence-based algorithms. Although Genetic Algorithm 

(GA), Genetic Programming (GP), Evolution Strategy (ES) and 

Evolutionary Programming (EP) are popular evolutionary 

algorithms, GA is the most widely used one in the literature. GA 

is based on genetic science and natural selection and it attempts 

to simulate the phenomenon of natural evolution at genotype 

level while ES and EP simulate the phenomenon of natural 

evolution at phenotype level. One of the evolutionary algorithms 

which have been introduced recently is Differential Evolution 

(DE) algorithm. In the basic GA, a selection operation is applied 

to the solutions evaluated by the evaluation unit. At this 

operation the chance of a solution being selected as a parent 

depends on the fitness value of that solution. One of the main 

differences between the GA and the DE algorithm is that, at the 

selection operation of the DE algorithm, all solutions have an 

equal chance of being selected as parents, i.e. the chance does 

not depend on their fitness values. In DE, each new solution 

produced competes with its parent and the better one wins the 

competition. In recent years, swarm intelligence has also 

attracted the interest of many research scientists of related fields. 

A swarm can be considered as any collection of interacting 

agents or individuals. An ant colony can be thought of as a 

swarm whose individual agents are ants; a flock of birds is a 

swarm of birds. An immune system can be considered as a 

swarm of cells and molecules as well as a crowd is a swarm of 

people. A popular swarm-intelligence-based algorithm is the 

Particle Swarm Optimization (PSO) algorithm which was 

introduced by Eberhart and Kennedy in 1995. PSO is also a 

population-based stochastic optimization technique and is well 

adapted to the optimization of nonlinear functions in 

multidimensional space. Empirical and theoretical studies have 

shown that the convergence behavior of PSO is strongly 

dependent on the values of the inertia weight and the 

acceleration coefficients. Wrong choices of values for these 

parameters may result in divergent or cyclic particle trajectories. 

By modulating the PSO parameters, convergence can be 
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speeded up and the ability to find the global optimal can be 

enhanced. But the main disadvantage of PSO is that it depends 

upon its local optima and the method is slow down at its global 

optimum.  Therefore, accelerating convergence speed and 

avoiding the local optima have become the two most important 

and appealing goals in PSO research. The performance of DE, 

on the other hand, is influenced mainly by the scale parameter 

and the probability of recombination. Although 

recommendations for values of these parameters have been 

made in the literature, these values are not universally 

applicable. The best values for DE control parameters remain 

problem dependent, and need to be fine tuned for each problem. 

DE algorithm has some advantages, such as its ability to 

maintain the diversity of population, and to explore local search, 

but it has no mechanism to memory the previous process and 

use the global information about the search space, so it results in 

a waste of computing power and may get trapped in local 

optima. The differential information can be helpful for the 

search ability, but it also leads to instability of some solutions. 

Although PSO converges quickly, easily gets stuck in local 

optima because of loss of diversity of swarm [1]. A number of 

variations of both PSO and DE have been developed in the past 

decade to improve the performance of these algorithms. One 

class of variations includes hybridization of PSO and DE, where 

the advantages of the two approaches are combined [2, 3, 6, 7, 

8]. 

In this paper a simple hybrid version of DEPSO has 

proposed. Initial population set is the parent vector for both DE 

and PSO. For each individual a new position is obtained using 

Particle Swarm’s velocity and position update equations and a 

mutant vector is created using mutation operator of DE. Then a 

trial vector is created applying crossover on PSO updated 

position and mutant vector.  Comparing the fitness values of 

trial vector with the original vector, a candidate solution set is 

obtained either from parent or trial vector and accordingly the 

pbest and gbest position of the particles are updated. The 

method is repeated iteratively till the optimum value is reached. 

The inclusion of PSO phase creates a perturbation in the 

population, which in turn helps in maintaining diversity of the 

population and producing an optimal solution.  

Although the algorithm takes the advantage of both DE and 

PSO still its performance is dependent on parameter setting. 

Choosing suitable parameter values is a problem dependant task 

and generally requires time-consuming trial-and error parameter 

tuning process. This approach is not appropriate if the global 

optimization is required in an automated environment or if the 

user has no experience in the fine art of the control parameter 

tuning. Thus, to obtain optimal performance, time decreasing 

parameter tuning is necessary [4]. The inertia weight is designed 

as a tradeoff between the global and local search. Larger inertia 

weight facilitates global exploration while lower values 

encourage a local search. Similarly a bigger value of the 

differential factor may accelerate the convergence rate and 

increase more chances for the algorithm to converge a local 

optimum, while a smaller differential factor could have a slow 

convergence rate and more opportunities to obtain the global 

solution. The crossover probability has much influence on the 

population diversity and the convergence rate. As the mutation 

operator is a crucial idea in DE for generating mutant vectors 

while the crossover was claimed to be unimportant hence in this 

paper, a dynamic adjustment approach for differential factor and 

inertia weight has been proposed to accelerate the convergence 

rate. Performances are presented through the tests of four 

complex benchmark functions with three different 

dimensionalities. The experimental results show that the 

convergence rates and qualities of solutions are greatly 

improved. 

Particle Swarm Optimization Algorithm (PSO) 

PSO is a robust stochastic optimization technique based on 

the movement and intelligence of swarms. PSO applies the 

concept of social interaction to problem solving. It was 

developed in 1995 by James Kennedy (social-psychologist) and 

Russell Eberhart (electrical engineer). It uses a number of agents 

(particles) that constitute a swarm moving around in the search 

space looking for the best solution.  Each particle is treated as a 

point in an N-dimensional space which adjusts its “flying” 

according to its own flying experience as well as the flying 

experience of other particles.  PSO uses a population of 

individuals, to search feasible region of the function space. In 

this context, the population is called swarm and the individuals 

are called particles. Every single solution (called a particle) 

“flies” over the solution space with a velocity, which is adjusted 

at each time step in search for the optimal solution. The particles 

are evaluated using a fitness function to see how close they are 

to the optimal solution. The particle flies towards a position, 

which depends on its own past best position and the position of 

the best of its neighbours. The quality of a particle position 

depends on a problem specific objective function. Particles are 

initialized randomly and updated afterwards according to: 
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Where w, c1, c2 are inertia, cognitive and social acceleration 

constants respectively, r1 and r2 are random numbers within [0, 

1]. W is set within (0.1) and c1 and c2 within (0.2]. The best 

solution of the particle achieved so far is represented by lbest , 

which indicates the tendency of the individual particles to 

replicate their corresponding past behaviors that have been 

successful. The global best solution so far is represented by 

gbest, which indicates the tendency of the particles to follow the 

success of others. A large inertia weight (w) facilitates a global 

search while a small inertia weight facilitates a local search. By 

linearly decreasing the inertia weight from a relatively large 

value to a small value through the course of the PSO run gives 

the best PSO performance compared with fixed inertia weight 

settings [9]. 

Steps of PSO based learning is: 

Step 1: Initializing D-dimensional N particles, together called a 

swarm, where each particle position represents a trial solution 

to the optimization problem. Initialize local best position and 

global best position of all particles. 

Step 2: Evaluating the desired optimization fitness function in d 

variables, for each particle. 

Step 3: Comparing particle’s fitness evaluation with particle’s 

lbest. If current value is better than lbest, then set lbest value 

equal to the current value and the lbest location equal to the 

current location in d-dimensional space. 

Step 4: Comparing fitness evaluation with the population’s 

overall previous best. If the current value is better than gbest, 

then reset gbest to the current particle’s value. 

Step 5: Changing the velocity and position of the particle 

according to the equations (1) and (2), respectively: 

(1) 

 

(2) 
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Step 6: Loop to step 2 until the criterion is met, usually a 

sufficiently good fitness or a maximum number of iterations. 

Differential Evolution Algorithm (DE) 

Differential Evolution (DE) is a population-based stochastic 

function optimizer, which uses a rather greedy and less 

stochastic approach for problem solving in comparison to 

classical evolutionary algorithms, such as genetic algorithms, 

evolutionary programming, and PSO. DE combines simple 

arithmetical operators with the classical operators of 

recombination, mutation, and selection to evolve from a 

randomly generated starting population to a final solution. DE 

also incorporates an efficient way of self-adapting mutation 

using small populations. It is able to reproduce the same results 

consistently over many trials unlike PSO which is more 

dependent on the randomized initialization of individuals. DE 

algorithm is like genetic algorithm using similar operators; 

crossover, mutation and selection. The main difference in 

constructing better solutions is that genetic algorithms rely on 

crossover while DE relies on mutation operation [5, 10]. The 

optimization process is conducted by means of three main 

operations: mutation, crossover and selection. In each 

generation, individuals of the current population become target 

vectors. For each target vector, the mutation operation produces 

a mutant vector, by adding the weighted difference between two 

randomly chosen vectors to a third vector. The crossover 

operation generates a new vector, called trial vector, by mixing 

the parameters of the mutant vector with those of the target 

vector. If the trial vector obtains a better fitness value than the 

target vector, then the trial vector replaces the target vector in 

the next generation. The mutant vector can be generated using 

any one of the following strategies: 
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The random numbers used in mutation are mutually 

exclusive integers generated in the range [1, np) and F is the 

scaling factor. 

Steps of DE based learning are: 

Step 1: Initialize the position of each individual according 

to the population size. 

Step 2: Find the fitness function value of each individual. 

Step 3: Create a mutated individual vi for each individual 

target vector xi using a suitable    mutation equation. 

Step 4: Create a new vector called trial by mixing the 

parameters of the mutant vector with those of the target vector 

by using the following crossover operation:  

 

ij

randijij

xelse

jjorcrrandifvu  ]1,0[  

Step 5: Compare the fitness value of the trial and target 

vector to select a vector having less fitness value in the next 

generation. 

If fv (ui) <fv (xi)  

then xi(t+1)=ui(t+1) 

Else xi (t+1) =xi (t) 

Step 6:  Repeat steps 3, 4, 5 until some termination 

condition is reached, such as predefined number of iterations is 

reached. 

Proposed Improved DEPSO 

In PSO every single solution (i.e. particle) flies over the 

solution space with a velocity, which is adjusted at each time 

step in search for the optimal solution. The particle flies towards 

a position, which depends on its own past best position and the 

position of the best of its neighbours. Although PSO converges 

quickly, easily gets stuck in local optima because of loss of 

diversity of swarm. DE algorithm has some advantages, such as 

its ability to maintain the diversity of population, and to explore 

local search, but it has no mechanism to memory the previous 

process and use the global information about the search space, 

so it results in a waste of computing power and may get trapped 

in local optima. The differential information can be helpful for 

the search ability, but it also leads to instability of some 

solutions. So to take the advantage of the evolutionary operators 

of DE and memory information about the past best position and 

global best position used in PSO a simple hybrid version of 

DEPSO has proposed. Initial population set is the parent vector 

for both DE and PSO. For each individual a new position is 

obtained using Particle Swarm’s velocity and position update 

equations and a mutant vector is created using mutation of DE. 

Then a trial vector is created applying crossover on PSO 

updated position and mutant vector.  Comparing the fitness 

values of trial vector with the original vector, a candidate 

solution set is obtained either from parent or trial vector and 

accordingly the pbest and gbest position of the particles are 

updated. The method is repeated iteratively till the optimum 

value is reached.  

Although the algorithm takes the advantage of both DE and 

PSO still its performance is dependent on parameter setting. 

Inertia weight and differential factor are the two important 

parameters of DEPSO that affects the convergence rate by 

providing a tradeoff between global and local search in the 

solution space. Larger inertia weight facilitates global 

exploration while lower values encourage a local search. 

Similarly at the beginning of the evolutionary process, a large 

differential factor F is required to make sure the algorithm has a 

(3) 

 (4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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strong global search capability while at the later stage, a small F 

is needed for a better local search. Hence it has been proposed to 

adapt different values for the differential factor and inertia 

weight in different iterations without keeping it fixed.  

Steps of Improved DEPSO based learning is: 

Step 1: Initialize the position of each particle according to the 

population size. 

Step 2: Find the fitness function value of each particle. 

Step 3: Compare particle’s fitness evaluation with particle’s 

lbest. If current value is better than lbest, then set lbest value 

equal to the current value and the lbest location equal to the 

current location in d-dimensional space. 

Step 4: Compare fitness evaluation with the population’s overall 

previous best. If the current value is better than gbest, then reset 

gbest to the current particle’s value. 

Step 5: Find a new velocity and position ppi of the particle xi 

according to the equations (1) and (2), respectively: 

Step 6: Create a mutated individual vi for each individual target 

vector xi using a suitable    mutation equation. 

Step 7: Create a new vector called trial by mixing the 

parameters of the mutant vector with those of the target vector 

by using the following crossover operation:  

      

ij

randijij

pp

else

jjorcrrandifvu



 ]1,0[  

Step 8: Compare the fitness value of the trial and target vector 

to select a vector having less fitness value in the next 

generation. 

If fv (ui) <fv (xi)  

then xi(t+1)=ui(t+1) 

Else xi (t+1) =xi (t) 

Step 9:   update the differential factor as follows  

f= f - (it/itmax) * (uf-lf) 

Step 10:   update the inertia weight as follows  

w= w - (it/itmax) * (uf-lf) 

Step 11:  Repeat steps 3 to 10 until some termination condition 

is reached, such as predefined number of iterations (itmax) is 

reached. 

Experimental Result Analysis 

In order to verify the validity of improved algorithms, a test 

suit consisting of four unconstrained benchmark functions is 

applied to conduct the experiments. Table 1 lists the names, 

types, dimensionalities, ranges of each variable of the 

optimization problems. All these functions are minimization 

problems with minimum value zero.  

The proposed algorithm has been compared with traditional 

DEPSO, DE, PSO method. Initially the performance of DE with 

different mutation strategies has been compared and the best one 

has used in improved DEPSO algorithm. Each algorithm runs 

for 100 generations with population size 20 for three different 

dimensions of the functions. The crossover probability, 

cognitive and social acceleration constants are fixed with 0.9, 

1.9 and 1.9 respectively for the experiment. At the beginning of 

the evolutionary process, a large mutation factor F i.e. 0.6 has 

chosen for accelerating the global search capability while at the 

later stage, a small F i.e. 0.3 has chosen for a better local search. 

Consequently, a dynamic adjustment method for differential 

factor F has been considered. Similarly the inertia weight w has 

been linearly decreased from 0.9 to 0.4. The performance 

comparison of DE with different mutation strategy in terms of 

the mean and best fitness value has shown in table 2 and the 

corresponding outputs has shown in figure 1 to 12. In the figures 

DE/Rand1, DE/Rand2, DE/Best1, DE/Best2, DE/Current to Best 

DE/(Centroid mutation) are labeled as De, De4, DE2, DE3, DE1 

and DE5 respectively. In most of the cases DE/Best2 provides 

best result compare to other mutation strategies. Hence it has 

used in the adaptive DEPSO algorithm. The performance 

comparison of Adaptive DEPSO (labeled as DEPSO1), 

traditional DEPSO, DE and PSO in terms of the mean and best 

fitness value has shown in table 3 and the corresponding outputs 

has shown in figure 13 to 24. 

Conclusion 

In this paper an improved DEPSO algorithm integrating the 

advantages of both DE and PSO with adaptive parameter tuning 

has been presented for solving various global optimization 

problems. Different optimization problems require different 

mutation strategies with different parameter values depending 

on the nature of problem and available computation resources. 

So initially the performance of DEPSO has compared with six 

different mutation strategies to adapt the best one. Again instead 

of using fixed parameter values, a dynamic adjustment method 

for the parameters like differential factor and inertia weight to 

accelerate the convergence rate of DEPSO has been proposed 

with the best mutation strategy. Evaluating the performance of 

improved DEPSO on a set of benchmark functions, more 

accurate results are obtained compared to DE, PSO and 

traditional DEPSO with faster convergence rate.  
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Table 1 Details of Benchmark functions used for experiment 

Function Name Function Type Range Dim 

Sphere 
2( ) ( )if x x  

Unimodal 

[-5.12, 

5.12] 

[5,10,

20] 

Rosenbrock 
1

2 2 2

2 1

1

( ) [100( ) ( 1) ]
n

i i i

i

f x x x x






   
Multimodal 

[-2.048, 

2.048] 

[5,10,

20] 

Rastriging 

2

3

1

( ) [ 10cos(2 ) 10]
n

i i

i

f x x x


    

Multimodal 

[-5.12, 

5.12] 

[5,10,

20] 

Griewank 

2

4

1 1

( ) 1/ 4000 cos( / ) 1
nn

i i

i i

f x x x i
 

     

Multimodal 

[-300, 

300] 

[5,10,

20] 

Table 2 Performance comparison of DE with different mutation strategy 

 

Function 

 

Dimension 

DE DE1 DE2 DE3 DE4 DE5 

Mean 
Min 

Mean 
Min 

Mean 
Min 

Mean 
Min 

Mean 
Min 

Mean 
Min 

Sphere 

5 
1.0882e-008 

1.2143e-009 

4.6754e -016 

3.5101e-016 

3.8918e-007 

3.8918e-007 

8.2552e-012 

1.1849e-012 

7.9503e-005 

2.3076e-005 

0.0529 

0.0515 

10 
0.0032 
0.0022 

0.1426 
0.1426 

3.3114 
3.3114 

7.3671e-004 
5.6700e-004 

0.3039 
0.1464 

2.3526 
2.1226 

20 
0.7931 

0.5613 

7.3695 

7.3694 

5.3274 

5.3274 

0.0582 

0.0488 

9.9241 

7.0252 

5.4648 

5.4324 

Rosenbrock 

5 
0.0601 
0.0543 

2.7273 
2.7273 

2.0905 
2.0905 

3.8279e-005 
1.2166e-005 

0.4836 
0.4115 

4.4151 
3.4112 

10 
7.1669 

7.0618 

8.8757 

8.8757 

21.0789 

21.0789 

6.5251 

6.4874 

37.47992 

56.5950 

22.7399 

21.4393 

20 
61.6185 
57.5648 

111.5156 
111.5136 

362.7766 
362.7766 

20.1524 
20.0460 

679.2695 
374.1176 

223.2574 
221.2564 

Rastringin 

5 
14.6634 

5.8606 

7.5695 

1.6390 

5.9709 

5.9709 

14.0046 

7.3956 

20.348 

6.9166 

1.0651 

1.0441 

10 
59.2737 
37.7343 

58.7590 
40.5695 

15.7275 
15.7275 

63.9586 
44.0976 

83.1306 
85.5810 

26.9391 
24.9323 

20 
160.0167 

115.7832 

129.5826 

92.9804 

72.2531 

72.2531 

154.3311 

115.7274 

240.2773 

194.2356 

80.6025 

78.6215 

Griewank 

5 
0.4359 
0.2012 

0.3515 
0.0848 

0.4229 
0.4229 

0.6174 
0.4329 

0.7054 
0.3475 

0.9087 
0.9026 

10 
0.9043 

0.4951 

0.3127 

0.2252 

4.4585 

4.4585 

0.8479 

0.6158 

1.2763 

1.1212 

2.4709 

2.4312 

20 
1.5005 
1.3387 

4.4722 
4.4720 

8.2468 
8.2468 

1.1217 
1.0848 

20.7550 
13.4865 

11.5962 
9.5662 

Table 3 Performance comparison of DE with different mutation strategy 

Function Dimension 

ADAPTIVE DEPSO DEPSO DE3 PSO 

Mean 

Min 

Mean 

Min 

Mean 

Min 

Mean 

Min 

 

 
 

 

SPHERE 

 

5 

1.0033e-029 

5.2160e-032 

7.0217e-026 

4.2129e-029 

2.8572e-013 

5.1864e-014 

.0053 

.0033 

 

10 

1.4867e-015 

6.3248e-020 

3.9866e-016 

1.9912e-019 

6.6435e-007 

4.6741e-007 

0.5846 

0.3816 

 

20 

8.0499e-006 

1.4192e-009 

9.1221e-005 

2.2588e-008 

1.2421 

1.1883 

7.3313 

6.2313 

 

 

 
 

ROSENBROCK 

 

5 

1.5985e-028 

0 

1.7557e-023 

1.0615e-025 

0.0325 

0.0186 

2.1837 

2.0037 

 

10 

1.8000e-015 

1.1614e-019 

6.1322e-012 

5.7857e-015 

3.3686 

3.3398 

9.6963 

8.6963 

 

20 

0.0039 

4.6278e-006 

0.1086 

5.4861e-005 

67.2985 

66.4350 

173.4763 

170.4563 

 

 

 
 

RASRINGIN 

 

5 

0 

0 

0 

0 

11.6974 

4.0160 

3.3916 

3.1416 

 

10 

2.6645e-015 

0 

1.9540e-14 

0 

60.1054 

41.0296 

30.6940 

29.6344 

 

20 

7.1932e-005 

1.0407e-007 

2.5815e-004 

7.0160e-007 

161.3604 

137.4773 

55.4377 

52.4107 

 

 

 
 

GRIEWANK 

 

5 

0 

0 

0 

0 

0.6254 

0.4644 

0.0492 

0.0472 

 
10 

1.5377e-015 
0 

1.9531e-011 
5.4956e-014 

0.9121 
0.6731 

0.7738 
0.7438 

 

20 

5.1159e-006 

6.1544e-010 

6.4799e-004 

4.2116e-010 

1.1259 

1.1009 

2.1015 

2.0995 
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Fig1 Sphere with dimension 5                            Fig 2 Sphere with dimension 10                             Fig 3 Sphere with dimension 20 
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Fig4 Rosenbrock  with dimension 5               Fig 5 Rosenbrock  with dimension 10              Fig 6 Rosenbrock  with dimension 20 
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Fig 7  Rastrigin with dimension 5                   Fig 8 Rastrigin with dimension 10                     Fig 9 Rastrigin with dimension 20 
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Fig 10 Griewank with dimension 5                  Fig 11 Griewank with dimension 10                 Fig 12 Griewank with dimension 20 
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Fig 13 Sphere with dimension 5                        Fig 14 Sphere with dimension 10                     Fig 15 Sphere with dimension 20 
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Fig 16 Rosenbrock with dimension 5         Fig 17 Rosenbrock  with dimension 10             Fig 18 Rosenbrock with dimension 20 
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Fig 19Rastrigin with dimension 5                Fig 20 Rastrigin with dimension 10            Fig 21 Rastrigin with dimension 20 
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Fig 22 Griewank with dimension 5                Fig 22 Griewank with dimension 10                  Fig 23 Griewank with dimension 20 

 

 [Performance comparison of Improved DEPSO with DEPSO, DE, PSO] 
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