16260

K.Chandrasekhara Rao et al./ Elixir Appl. Math. 60 (2013) 16260-16265

Available online at www.elixirpublishers.com (Elixir International Journal)

Applied Mathematics

Elixir Appl. Math. 60 (2013) 16260-16265

Some special types of compactness

K.Chandrasekhara Rao¹ and P.Padma²

¹Department of Mathematics, SASTRA University, Kumbakonam, India. ²Department of Mathematics, PRIST University, Kumbakonam, India.

ARTICLE INFO

Article history: Received: 1 May 2013; Received in revised form: 24 June 2013;

ABSTRACT

The main focus of this paper is to introduce the properties of some special types of compact spaces.

© 2013 Elixir All rights reserved.

Keywords

 $\begin{array}{l} Nearly compact space \ , \\ \delta \ - \ continuous \ maps \ , \\ SC \ - \ compact \ space \ , \\ Anti \ compact \ space \ . \end{array}$

Accepted: 8 July 2013;

Introduction

In 1991 Chattopadhyay and Bandyopadhyay [1] introduced δ set . A subset A of a topological space X is called δ closed if int (cl (A)) \subset cl (int (A)).

G.L.Garg , D.Sivaraj introduced SC - compact space in 1984 .Levine introduced the notion of semi open sets in topological spaces .

The main focus of this paper is to introduce the properties of some special types of compact spaces .

1. Preliminaries

Throughout this paper X and Y always represent nonempty topological spaces (X, τ) and (Y, σ) ...The interior and the closure of a subset A of a topological space (X, τ) are denoted by int (A) and cl (A) respectively.Now we shall require the following known definitions are prerequisites

Definition 1.1 - A subset of A a topological space (X , τ) is called

(1) a regular open set if A = int [cl(A)]

(2) a regular closed set if A = cl [int(A)]

Definition 1.2 - A subset A of a topological space (X , τ) is called

(1) a semi - open set if A \subseteq cl [int(A)]

(2) a semi - closed set if int $[cl(A)] \subseteq A$.

Definition 1.3 - A topological space (X, τ) is called **compact**, if every open covering A of X contains a finite sub collection that also covers X.

Definition 1.4 :

Let $f : (X, \tau) \to (Y, \sigma)$ be a function. Then f is said to be δ - continuous if for each $x \in X$ and each open neighbourhood of f(x) there is an open neighbourhood U of x such that $f(\alpha \sigma) \subset \alpha V$.

2. Nearly Compact

In this section we introduce the properties of nearly compact spaces .

Definition 2.1 - (X, τ) is said to be nearly compact if (X, τ_S) is compact, where $\tau_S = \{$ all regular open sets $\}$.

Definition 2.2 - Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a function. Then f is said to be δ - continuous if $f: (X, \tau_S) \rightarrow (Y, \sigma_S)$ is continuous.

If f is

- i) δ continuous
- ii) f^{-1} is δ continuous
- iii) f is bijective

then f is called a δ - homeomorphism .

Note 2.1 :

1. f^{-1} is δ - continuous \Leftrightarrow f is a δ - open map .

2. f is δ - open if image of every regular open set is regular open.

Theorem 2.2 : Let X be a nearly compact and Y be a Almost Hausdorff . Let $f : X \to Y$ be a δ - continuous bijection . Then f is a δ - homeomorphism .

Proof : Let $A \subset X$ be regularly closed.

 \Rightarrow f (A) is regularly closed , because f is δ - continuous .

 \Rightarrow f (A) is regularly closed in the almost Hausdorff space .

 \Rightarrow f (A) is regularly closed .

Thus, f amps regularly closed sets.

 \Rightarrow f maps regularly open sets into regularly open sets .

 \Rightarrow f is a δ - open map .

 \Rightarrow f is a δ - homeomorphism .

Theorem 2.3 :Suppose that (X , τ) is nearly compact . Let A be a regularly closed subset of X . Then A is nearly compact .

Proof : Let \mathcal{C} be any regularly open over of A.

 $Put = \mathcal{C} \cup (X - A)$

Then \mathcal{D} is a regularly open cover of X.

But X is nearly compact .

16261

Hence there exists a finite sub cover \mathcal{D}' of \mathcal{D} of X.

This implies that $\mathcal{D}' - (X - A)$ is a finite sub cover of \mathcal{C} .

Hence A is nearly compact.

Theorem 2.4 : A nearly compact subset of an almost Hausdorff space is regularly closed .

Proof :Suppose that X is an almost Hausdorff space .

Let A be a nearly compact subset of X.

Take $x \in X - A$.

Then there exist disjoint open sets U_x and V_x containing x and A respectively .

We have $x \in U_x \subset X - U_x \subset X - A$.

Therefore, X – A is regularly open.

Thus, A is regularly closed.

Theorem 2.5 : Suppose that (X, τ) is nearly compact. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a δ - continuous surjection. Then (Y, σ) is nearly compact.

Proof: Let

$$\mathcal{C} = \left\{ G_{\alpha} \colon \alpha \in \bigwedge \square \right\} \text{ be a regularly open cover of Y}.$$

$$\Rightarrow Y = \bigcup \left\{ G_{\alpha} \colon \alpha \in \bigwedge \square \right\}.$$

$$\Rightarrow X = \bigcup \left\{ f^{-1}(G_{\alpha}) \colon \alpha \in \bigwedge \square \right\}.$$

$$\Rightarrow \text{ The collection } \mathcal{D} = \left\{ f^{-1}(G_{\alpha}) \colon \alpha \in \bigwedge \square \right\} \text{ is a regularly open}$$

cover of X.

But X is nearly compact.

Hence \mathcal{D} has a finite sub cover $\mathcal{D}' = \{ f^{-1}(G_{\alpha_i}) : i = 1, 2, ..., n \}$ for X.

$$\Rightarrow \mathbf{X} = \mathbf{u} \left\{ f^{-1} \left(G_{\alpha_i} \right) : i = 1, 2, ..., n \right\}$$
$$\Rightarrow \mathbf{Y} = f \left\{ f^{-1} \left(G_{\alpha_1} \right) \mathbf{u} f^{-1} \left(G_{\alpha_2} \right) \cup \cdots \mathbf{u} f^{-1} \left(G_{\alpha_n} \right) \right\}$$
$$= \mathbf{f} f^{-1} \left(G_{\alpha_1} \right) \cup \cdots \cup \cdots \cup \mathbf{f} f^{-1} \left(G_{\alpha_n} \right)$$

 $= G_1(\alpha_1 1) (\dots \dots (G_1(\alpha_1 n))$

 $\Rightarrow \{G_{\alpha_1} (\dots \dots (G_{\alpha_n})\} \text{ is a finite regularly open sub cover of } \mathcal{C} \text{ for } Y\}$

 \Rightarrow Y is nearly compact .

Corollary 2.1 : Nearly compactness is a topological property .

Theorem 2.6 : Let X and Y be nonempty topological spaces . The product space $X \times Y$ is nearly compact $\Leftrightarrow X$ and Y are nearly compact .

Proof :

Step 1 : Suppose that $X \times Y$ is nearly compact .

The projection $p_1 : (X \times Y) \rightarrow X$ and $p_2 : (X \times Y) \rightarrow Y$ are δ - continuous .

Hence X ' = p_1 (X × Y) and Y ' = p_2 (X × Y) are nearly compact.

Step 2 : Suppose that X and Y are nearly compact .

Let \mathcal{C} be a cover consisting of basic regularly open sets of the form $U \times V$, where U is a regularly open set in X and V is a regularly open set in Y.

Let $x \in X$.

Then for each $y \in Y$, there exists a set $U_{y \times} V_{y}$ in \mathcal{C} containing (x, y).

The collection $\{ V_y : y \in Y \}$ is a regularly open cover of Y.

But Y is nearly compact.

Consequently, this collection has a finite sub cover $\{V_{y_1}, \dots, V_{y_n}\}$.

Let $\mathbf{U}_x = U_{y_1} \cap \dots \cap \dots \cap U_{y_n}$.

Then $\{x\} \times Y = \mathbf{U}_{\mathbf{x}} \times Y$

 $= \mathbf{U}_{x} \times \{ V_{y_1} \cup \dots \cup V_{y_n} \}$

 $= (\mathbf{U}_x (V_{y_1}) \cup (\mathbf{U}_x (V_{y_2}) \cup \dots \cup (\mathbf{U}_x (V_{y_n}) \subset (U_{y_1} (V_{y_1}) \cup \dots \cup (U_{y_n} (V_{y_n}))))$

Hence for each $x \in X$, there is a set $\{x\} \times Y \subset U_{\downarrow} x$ (Y and such that $U_{\downarrow} x$ (Y is contained in the union of a finite member of sets in \mathcal{C} .

But this collection $\{ \mathbf{U}_x : x \in X \}$ covers X.

Since X is nearly compact, y this collection had a finite sub cover $\{U_{x_1}, \dots, U_{x_m}\}$ then

$$\mathbf{X} \times \mathbf{Y} = \left(\bigcup_{i=1}^{m} U_{x_i}\right) \times \mathbf{Y}$$
$$= \left(\bigcup_{i=1}^{m} U_{x_i} \times \mathbf{Y}\right)$$

Since for each i with $1 \le i \le m$, $U_{x_i} \times Y$ is contained in the union of a finite number of sets in C. It follows that $X \times Y$ is equal to union of a finite number of sets in .

Hence $X \times Y$ is nearly compact.

3.SC - Compact Spaces

In this section we discuss the SC compactness of subsets .

.

Definition 3.1 [3] -A topological space (X, τ) is said to be SC - Compact if for each closed subset A of X and τ - semi open over u of A \exists a finite subfamily of elements of u, say V₁, V₂, ..., V_n such that

$$A \subset \bigcup_{i=1}^n cl V_i$$
.

Theorem 3.1 : Every SC - Compact subset of a Hausdorff space is closed .

Proof : Suppose that A is an SC - Compact subset of a Hausdorff space X .

Since X is Hausdorff, A is Hausdorff.

Thus, A is Hausdorff SC - Compact subset of X.

For each $a \in A$ and $x \in X - A$ there exists disjoint open neighborhoods U_a of a and V_a of x respectively.

The collection $\{\mathbf{U}_a : a \in A\}$ is an open cover of A.

But A is SC - Compact.

Consequently there exists a finite sub over $\{U_{a_1}, \dots, U_{a_n}\}$ for A.

Put U = $\{U_{a_1} \cup \cdots \cup U_{a_n}\}$.

Then $A \subset U$ and U is open.

Take the corresponding sets V_{a_1}, \ldots, V_{a_n} and put $V = V_{a_1} \cap \cdots \cap V_{a_n}$.

Then V is an open subset and $x \in V$.

Also U_{a_i} ($V_{a_i} = \phi$ for $i = 1, 2, \dots, n$.

Accordingly, $U \cap V = \phi$.

 $\Rightarrow x \in U \subset X - V \subset X - A \; .$

 \Rightarrow X – A is an open set.

 \Rightarrow A s a closed set in X.

4.Anti Compact spaces

In this section we prove some results for anti compact spaces .

Definition 4.1: (X, τ) is said to be anti compact if every compact subset K of X is finite . **Theorem 4.1 :**Let f : $X \rightarrow Y$ be a homeomorphism . If X is anti compact then Y is anti compact . Consequently , anti compactness is a topological property .

Proof : Suppose that X is anti compact .

Let K be any compact subset of Y.

 \Rightarrow f⁻¹(K) is compact in X because f⁻¹ is continuous.

 \Rightarrow f⁻¹(K) is a finite set, because f is anti compact.

 \Rightarrow f (f⁻¹(K)) is a finite set.

 \Rightarrow K is a finite set in Y.

 \Rightarrow Y is anti compact .

Theorem 4.2 : Every closed subset F of an anti compact space X is anti compact .

Proof : Suppose that X is anti compact .

Let F be a closed subspace of X .

Let K be a compact subset of F .

 \Rightarrow K is a compact subset of F.

 \Rightarrow K is finite .

 \Rightarrow F is anti compact .

Definition 4.3 : X is relatively anti compact if for every compact set K in X its closure \overline{K} is finite **Theorem 4.3** : If X is anti compact and Hausdorff, X is relatively anti compact.

Proof : Suppose that X be anti compact and Hausdorff .

Let K is compact subset of X.

But X is Hausdorff.

 \Rightarrow K is closed

$\Rightarrow \mathbf{K} = \overline{\mathbf{K}}$			(1)
Also K is a finite set , because X is anti compact			(2)
$\Rightarrow \overline{K}$ is finite	[by (1) & (2)]		

Reference :

- [1] Chattopadhyay , Chandan and Bandyopadhyay , Chandan (1991) , Introduced on structure of δ sets , Bull Cal .Math., Soc., 83 , 281 - 290 .
- [2] S.Gene Crossley and S.K. Hildebrand, Semi closed sets and semi continuity in topological spaces, Texas J. Sci. 22 (1971), 123 - 126.
- [3] G.L.Garg , D.Sivaraj , On SC Compact and S closed Spaces , Bollettino U.M.I. (6) 3 B (1984), 321 332.
- [4] O.Njastad, On Some Classes of Nearly open sets, Pacific J. Math. Soc 43., (1974), 416 420.
- [5] Norman Levine, Semi open sets and semi continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36 41, MR 29 # 4025.
- [6] G.B.Navalagi, "Definition Bank in General Topology ", Department of math., G.H.college, Haveri-581110, Karanataka, India.