
 Lipika Jha et al./ Elixir Comp. Sci. & Engg. 60 (2013) 16225-16227

16225

1. Introduction

 Program slicing is one of the techniques of program

analysis. It is an alternative approach to develop reusable

components from existing software. To extract reusable

functions from ill-structured programs we need a decomposition

method which is able to group non sequential sets of statement.

Program is decomposed based on program analysis. The

decomposed program is called slice which is obtained by

iteratively solving data flow equations based on a program flow

graph. Program analysis uses program statement dependence

information (i.e. data and control dependence) to identify parts

of a program that influence or are influenced by a variable at

particular point of interest is called the slicing criteria.

Slicing Criterion:

 C = (n , V)

where n is a statement in program P and V is a variable in P .A

slice S consists of all statements in program P that may affect

the value of variable V at some point n.

 This paper gives the overall knowledge of the program

slicing. However, the emphasis of this paper is primarily of a

theoretical rather than of a practical. The goal of this paper is to

have the thorough knowledge of the program slicing.

 The rest of the paper is organized as follows. Section 2

defines some common slicing techniques. Section 3 defines

types and traversal of slicing. Section 4 defines slicing of object

orient programs. In section 5 the different application of

program slicing is explained. Finally section 6 includes

references.

2. Slicing Technique

 The original concept of a program slice was introduced by

Weiser. He claims that a slice corresponds to the mental

abstractions that people make when they are debugging a

program. A slice S consists of all statements in program P that

may affect the value of variable V at some point n.

Variables V at statements n can be affected by statements

because:

– Statements which control the execution of n(Control

Dependence)

– Statements which uses the V at n (Data Dependence)

 The goal of slicing is to create a subprogram of the program

(by eliminating some statements), such that the projection and

the original program compute the same values for all variables

in V at point n.

2.1 Data dependence and control dependence: Data

dependence and control dependence are defined in terms of the

CFG of a program.

Data Dependence: A statement j is data dependent on statement

i if a value computed at (i) is used at j in some program

execution.

(i) x ε DEF(i) and x ε USE(j)

or x ε DEF(i) and x ε DEF(j)

(ii) There exists a path from i to j without intervening definitions

of x.

Control dependence information identifies the conditionals node

that may affect execution of a node in the slice. In a CFG, a

node j post-dominates a node i if and only if j is a member of

any path from i to Stop.

2.2 Data Flow Equation: According to Weiser the slicing is

computed by iteratively solving data flow equation.

The set of relevant variable (i) with respect to slicing criteria

C=(p,V) is:

1. (i)=V when i=p

2. (i)=((j)-DEF(i))U

(USE(i) if (j)∩DEF(i)≠ø)

The set of relevant statements to C denoted S
0

C, is defined as:

 S
0

C={i | Def(i) ∩ (j) ≠ ø ,i →
CFG

 j}

={b| i є Infl(b),i є }

The set of indirectly relevant statement

 (n)= (n) (n)

2.3 Program dependence graph: Program dependence graph

is defined in terms of a program‟s control flow graph .The PDG

includes the same set of vertices as the CFG, excluding the

Program slicing: A Review
Lipika Jha

1
 and K.S. Patnaik

2

1
Birla Institute of Technology Extension Center Noida, A7 Sector-1,Noida, Uttar Pradesh, India.

2
Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.

ABSTRACT

Program Slicing is a method for automatically decomposing programs by analyzing their

data flow and control flow. Slicing reduces the program to a minimal form called “slice”

which still produces that behavior. Program slice singles out all statements that may have

affected the value of a given variable at a specific program point. Slicing is useful in

program debugging, program maintenance and other applications that involve understanding

program behavior. This paper is a review paper on program slicing.

 © 2013 Elixir All rights reserved.

.

ARTICLE INFO

Article history:

Received: 4 May 2013;

Received in revised form:

17 June 2013;

Accepted: 5 July 2013;

Keywords

Slicing techniques,

Data dependence,

Control dependence,

Data flow equation,

Control flow graph.

Elixir Comp. Sci. & Engg. 60 (2013) 16225-16227

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Tele:

E-mail addresses: lipika_192@yahoo.co.in, ktosri@gmail.com

 © 2013 Elixir All rights reserved

 Lipika Jha et al./ Elixir Comp. Sci. & Engg. 60 (2013) 16225-16227

16226

EXIT vertex. The edges of the PDG represent the control and

flow dependence induced by the CFG. A program dependence

graph contains a flow dependence edge from vertex ,to vertex

 iff all of the following hold:

(1) is a vertex that defines variable x.

(2) is a vertex that uses x.

(3) Control can reach after via an execution path along

which there is no intervening definition of x. That is, there is a

path in the standard control flow graph for the program by

which the definition of x at reaches the use of x at .

A flow dependence that exists from vertex to vertex is

denoted by f .

Flow dependences can be further classified as loop carried or

loop independent.

A flow dependence f is carried by loop L, denoted by

lc(L) , if in addition to (l), (2), and (3) above, the

following also hold:

(4) There is an execution path that both satisfies the conditions

of (3) above and includes a backedge to the predicate of loop L.

(5) Both and are enclosed in loop L.

A program dependence graph contains a def-order dependence

edge from vertex l to vertex iff all of the following hold:

(1) and both define the same variable.

(2) and are in the same branch of any conditional

statement that encloses both of them.

(3) There exists a program component such that f

and f .

(4) occurs to the left of in the program‟s abstract syntax

tree.

The extraction of slices is based on data dependence and control

dependence. A slice is directly obtained by a linear time walk

backwards from some point in the graph, visiting all

predecessors.

3. Types of Slicing

3.1 Static Slicing

 The slice which is computed for a general set of variables

are called static slices i.e., static slices are the slices for the

whole range of values of the variables involved in the program.

3.2 Dynamic Slicing

 It includes all statements that affect the value of the variable

occurrence for the given program inputs, not all statements that

did affect its value. Dynamic slicing criterion consist of a triple

(n, V, I) where I is an input to the program.

3.3 Quasi Slicing

 It is a hybrid of Static and Dynamic Slicing. Static slicing is

examined during compile time, using no information about the

input variables of the program. In Quasi slicing the value of

some variables are fixed and the program is analyzed while the

value of other variables vary. The behavior of the original

program is not changed with respect to the slicing criterion.

3.4 Conditioned Slicing

 The conditioned slicing criterion includes the set of states in

which the program is to executed, allowing the programmer to

specify, not only the variables of interests, but also the initial

conditions of interest. Any statements, which we know it will

not execute, may be omitted afterwards. This not only shows the

initial awareness of knowledge about the condition in which the

program is to be executed, but also has the advantage that it

allows for additional simplification during slice construction.

This characteristics is practically used in a tool-assisted form of

analysis a program by cases (one per condition), and makes it

attractive as a supporting technique for program comprehension.

3.5 Backward Slicing

 It includes all parts of the program that might have

influenced the variable at the statement under consideration. The

backward approach can be used in locating the bug by

examining all previously executed statements with respect to a

variable v at statement n, where output of v is found incorrect at

that point.

3.6 Forward Slicing

Contains all those statements of P which might be influenced by

the variable.

3.7 Amorphous slice

 All approaches to slicing discussed so far have been „syntax

preserving‟, That is, they are constructed by the sole

transformation of statement deletion. The statements which

remain in the slice are therefore a syntactic subset of the original

program from which the slice was constructed. Amorphous

slices are constructed using any program transformation which

simplifies the program and which preserves the effect of the

program with respect to the slicing criteria.

3.8 Inter-procedural Slicing

 Interprocedural slicing is used to slice the program which

contains more than one procedure. Slicing across procedures

complicates the situation due to the necessity of translating and

passing the criteria into and out of calling and called procedures.

When procedure P calls procedure Q at statement i, the active

criteria must first be translated into the context of Q and then

recovered once Q has been sliced.

 Weiser‟s approach for interprocedural static slicing involves

three separate tasks.

 First, interprocedural summary information is computed, . For

each procedure P, a set MOD(P) and USE(P) is computed. In

both cases, the effects of procedures transitively called by P are

taken into account.

 The effect of call-statements on the sets of relevant variables

and statements are computed using the summary information. A

call to procedure P is treated as a conditional assignment

statement „if <SomePredicate> then MOD(P) := USE(P) where

actual parameters are substituted for formal parameters.

 The third part is to generate new slicing criteria with respect

to which intraprocedural slices are computed in step (ii). For

each procedure P, new criteria are generated for

(i) procedures Q called by P-the criteria consists of all pairs

(), where is the last statement of Q and is the set

of relevant variables in P in the scope of Q (formals are

substituted for actuals).It is denoted by DOWN().

(ii) procedures R that call P-the new criteria consist of all pairs

() such that is a call to P in R, and is the set of

relevant variables at the first statement of P that is in the scope

of R (actuals are substituted for formals).It is denoted by

UP().

4. Slicing of Object-Oriented Programs

 Larson and Harrold extended the SDG of Horwitz et al. to

compute slicing of object-oriented programs. They have used

Class Dependence Graphs (ClDG) for each class in an object-

oriented program. A ClDG captures the control and data

dependence relationships that can be determined about a class

without knowledge of calling environments. Each method in a

ClDG is represented by a procedure dependence graph. Each

method has a method entry vertex that represents the entry into

the method. A ClDG also contains a class entry vertex that is

connected to the method entry vertex for each method in the

class by a class member edge.

 Lipika Jha et al./ Elixir Comp. Sci. & Engg. 60 (2013) 16225-16227

16227

5. Applications of slicing

 The main application of slicing was debugging, if a

program computes an erroneous value for some variable x at

some program point, the bug is likely to be found in the slice

with respect to x at that point. A number of other applications

are parallelization, program differencing and integration,

software maintenance, testing, reverse engineering, and

compiler tuning.

5.1 Debugging

 Debugging can be a difficult task when one is confronted

with a large program, and few clues regarding the location of a

bug. Program slicing is useful for debugging, because it reduces

the size of search program .If a program computes an erroneous

value for a variable x at statement n ,then it assumes that error

will be in any one of the statement above it which affect the

value of the variable x that is the backward slicing. In this case,

it is likely that the error occurs in the one of the statements in

the slice. However, it need not always be the case. Forward

slices are also useful for debugging. A forward slice show how a

value computed at x is being used subsequently, and can help

the programmer ensure that x establishes the invariants assumed

by the later statement.

5.2 Testing

 Slicing helps to decompose programs which in testing, it

makes test work faster and more efficient. Slicing based on

particular slice criteria. Through this the inter-related modules

can be identified, which then can be tested separately without

disturbing the rest of the program. Because program slicing

helps in understanding programs by dividing it into slices, the

task of testing can be allocated to a various testers.

5.3 Regression Testing

 The aim of regression testing is to ensure that a change to a

software system does not introduce new errors in the unchanged

part of the program. Testing effort can be reduced if fewer tests

cases are run on a simpler program. Program slicing can be used

to partition test cases into those that need to be re-run, as they

may have been affected by a change , and those that can be

ignored ,as their behavior can be guaranteed to be unaffected by

the change. A partition is formed by finding all affected

statements: those statements whose backward slice includes a

new or edited statement .This set can be efficiently computed as

the forward slice taken with respect to the new and edited

statements.

5.4 Software maintenance

 Maintaining a large software system is a challenging task.

Most programs spend 70% or more of their life time in the

software maintenance phase where they are corrected and

enhanced. Slicing, in the form of decomposition Slicing, reduces

the effort required to maintain software. The decomposition

slice, taken with respect to variable v from function f, is the

union of the slices taken with respect to v at each definition of v

and at the end of f.

5.5 Differencing

 Program differencing is the task of analyzing an old and a

new version of a program in order to determine the set of

program components of the new version that represent syntactic

and semantic changes. There are two related programs

differencing problems:

1. Find all the components of two programs that have different

behavior.

2. Produce a program that captures the semantic differences

between two programs.

 Similar components in both the old and new programs can

be obtained by comparing the backward slices of the vertices in

old and new‟s dependence graphs Gold and Gnew. Components

whose vertices in Gold and Gnew have isomorphic slices have the

same behavior in old and new; thus the set of vertices from Gnew

for which there is no vertex in Gold with an isomorphic slice

safely approximates the set of components with different

behavior. This set is a safe as it is guaranteed to contain all the

components with different behavior. Second differencing

problem is obtained by taking the backward slice with respect to

the set of affected points.

5.7 Reverse Engineering

 Reverse engineering concerns the problem of

comprehending the current design of a program and the way this

design differs from the original design. This involves abstracting

out of the source code the design decision and rationale from the

initial development and understanding the algorithms chosen.

 Program slicing provides a toolset for this type of re-

abstraction .For example, a program can be displayed as a lattice

of slice s ordered by the is-a-slice-of relation. Comparing the

original lattice and the lattice after maintenance can guide an

engineer towards places where reverse engineering energy

should be spent.

6. References

[1] M. Weiser, “Program Slicing,” IEEE Transactions on

Software Engineering, Vol. 16, No. 5, 1984, pp. 498-509.

[2] F. Tip, “A Survey of Program Slicing Techniques,” Journal

of Programming Languages, Vol. 3, No. 3, 1995, pp. 121-189.

[3] D. Binkley and K. B. Gallagher, “Program Slicing,” Ad-

vances in Computers, Vol. 43, 1996, pp. 1-50.

[4] M. Weiser. Programmers use slices when debugging.

Communications of the ACM, 25(7):446–452, 1982.

[5] B. Korel and J. Laski. Dynamic program slicing. Information

Processing Letters, 29(3):155–163, 1988.

[6] K.B. Gallagher and J.R. Lyle. Using program slicing in

software maintenance. IEEE Transactions on Software

Engineering, 17(8):751–761, 1991.

