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Introduction 

Optimally determination of the turning parameters is very important to reduce turning time and cost and improve the quality of 

the machined surface. The basic turning parameters which affect the performance of machining operations are cutting speed (v), feed 

rate (f), and cutting depth (d). Optimization of these parameters leads to better utilization of tools and machines, improvement in the 

productivity of human resources and reduction in the final cost of finished goods. 

Traditional studies in the field of optimization of machining operations are limited to single-pass operations (Ermer and Morris, 

1969). The subsequent attempts in this field explored multi-pass operations to determine the optimal machining parameters (Shin and 

Joo, 1992). Classical methods used for optimizing machining parameters include geometric programming (Gopalakrishnan and Faiz, 

1991), dynamic programming (Shin and Joo, 1992), linear programming (Gupta et al, 1995), and linear programming and branch-and-

bound (Tan and Creese, 1995). To simplify the machining optimization problem, the earlier researches mainly do not consider all the 

cutting constraints. Thus, these techniques may only be useful for a specific problem and are likely to obtain a local optimal solution 

(Chen and Tsai, 1996). Consequently, approximation algorithms have been recently applied to solve various types of turning 

problems. Determination of optimal conditions for machining operations is a combinatorial optimization problem (Cus and Balic, 

2003), for which local search and meta-heuristic methods are of potential advantage. Some newly emerged meta-heuristics for solving 

this problem are simulated annealing (SA), neural networks, genetic algorithms (GA), and tabu search (TS), and ant systems (AS) 

(Baskar et al. 2005). A neural network-based approach has been developed in (Zuperl and Cus, 2003) which take into account such 

issues as technological, economic and organizational limitations to optimize cutting parameters. Chen and Tsai (Chen and Tsai, 1996) 

combined pattern search (PS) technique and simulated annealing to solve the turning optimization problem. They used the pattern 

search technique to generate an initial solution. The simulated annealing technique is then applied to guide the solution process 

towards the global optimum solution. They divided the machining operations into roughing and finishing stages. Alberti and Perrone 
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ABSTRACT 

Determination of optimum turning parameters in turning operations is one of the important 

tasks of process planners. The importance of this task is due to the fact that the values of 

turning parameters affect such objectives as turning time, turning cost and surface 

roughness. Thus, this problem is a multi-objective decision-making issue meaning that a 

parameter setting which satisfactorily achieves one of these objectives, it may not be good 

with respect to other objectives. Therefore, a rational compromise is to be made among these 

objectives. This paper determines the best cutting parameters considering relevant 

constraints in turning operations using a genetic algorithm coupled with an Analytic 

Hierarchy Process approach. The main stages of the proposed approach are two folds: (a) the 

non-dominated turning parameters being in the Pareto frontier are identified through a 

genetic algorithm, and (b) the AHP method is used to select the most suitable values for 

turning parameters from amongst the non-dominated solutions obtained in the first stage. 

Application of the proposed approach is demonstrated though an illustrative numerical 

example. 

                                                                                                   © 2013 Elixir All rights reserved 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. 

 

ARTICLE INFO    

Article  history:  

Received: 2 January 2013; 

Received in revised form: 

17 June 2013; 

Accepted: 27 June 2013;

 
Keywords  

Turning parameters,  

Machining optimization,  

Genetic algorithms,  

AHP. 

 

Elixir Elec. Engg. 60C (2013) 16105-16114 

Electrical Engineering 

Available online at www.elixirpublishers.com (Elixir International Journal) 

 

Tele: 

E-mail addresses: emamemostafa@gmail.com 

         © 2013 Elixir All rights reserved 



Salar Fathi
 
et al./ Elixir Elec. Engg. 60C (2013) 16105-16114 

 
16106 

(Alberti and Perrone, 1999) proposed a fuzzy possibilistic formulation of the classical multi-pass machining operations and optimized 

the resulting model using genetic algorithm. 

Optimization of the turning conditions is inherently a multi-objective problem. Three main objectives considered in the earlier 

studies for optimization of turning parameters are unit production time, unit production cost, and surface roughness. Therefore, the 

problem of interest is to obtain a turning condition which minimizes these objectives. However, due to the multiple objectives, it may 

not be possible to determine the values of turning parameters in such a way that all the objectives mentioned above are minimized, 

simultaneously. In other words, there could be conflict among these objectives meaning that a turning condition with minimum unit 

production time may result in a higher roughness and vice versa. Therefore, the optimum solution in the optimization of turning 

parameters is not unique but a frontier. This frontier is called Pareto frontier in the literature. To define this frontier, the concept of 

dominated solutions is briefly discussed in the following. 

For a multi-objective minimization problem with n-objectives, solution u is said to be dominated by a solution v if: 

1. fi(u)  fi(v) i = 1, 2, …, n 

2. fj(u) fj(v) j = 1, 2, …, n 

Those solutions that are not dominated by any other solution in the solution space make the Pareto frontier. Thus, in the case of 

the problem of concern with three objectives, namely unit production time, unit production cost, and surface roughness, we want to 

find the Pareto frontier in a three-dimensional space. 

In this paper, a genetic algorithm (GA) is used to obtain the Pareto frontier. The basic feature of genetic algorithms is the multiple 

directional and global searches, in which a population of potential solutions is maintained from generation to generation (Solimanpur 

et al, 2004). This feature empowers the GA approach in leading the optimization process towards the Pareto frontier. 

Due to the multiple objectives, a challenging issue in the optimization of turning parameters is that the optimization process 

finally yields to a frontier instead of a unique solution. On the other hand, importance of the objectives considered in the optimization 

of turning conditions is different from a work piece to one another. For example, in some work-pieces surface smoothness is of higher 

interest than the machining time. On contrary, for example, in mass production systems where production volume is large, it would be 

desirable to process work-pieces in shorter times. Therefore, a process planner has to select the most appropriate turning condition 

amongst the solutions being in the Pareto frontier. Our studies in the current literature indicate that available methods leave this task to 

the process planner. An Analytic Hierarchy Process (AHP) approach is developed in this paper to systematically help the process 

planner to select the solution which suits his/her interests at most. It is notable that the AHP approach is applied for optimization of 

turning condition for the first time in this paper. 

This paper is organized as follows. The mathematical model of the attempted problem is presented in Section 2. In Section 3, the 

principles of methods VEGA and AHP are explored. Section 4 includes an illustrative example demonstrating the application of the 

proposed method. Conclusions and scope for future works are discussed in Section 5. 

Mathematical model 

Optimization of turning operations typically requires optimum determination of three parameters, namely cutting speed, feed rate 

and depth of cut. These parameters affect the time, cost and roughness of the turning operations. It is attempted in this paper to 

determine the optimal turning parameters to optimize unit turning time, unit turning cost, and surface roughness in overall. The 

mathematical formulation of the problem is presented in the following. 

▪ Unit turning time: Usually, unit turning time,
PT , is considered as the entire time necessary for performing turning operations. 

It is a function of metal removal rate (MRR) and tool life T (Zuperl and Cus, 2003): 

MRRTTVT CP )1(  ,      (1) 
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Where
CT , and V are the tool change time, and the volume of the metal to be removed, respectively. The parameters 

CT  and V are 

constant in the optimization of turning parameters, as are not affected by the turning parameters (Dereli et al, 2001). Hence, 
PT  is a 

function of MRR and T. 

▪ Metal removal rate (MRR): MRR can be expressed as the product of the cutting speed, feed rate and cutting depth (Cus and 

Balic, 2003): 

MRR=1000vfd.              (2) 

Where v, f, and d denote the cutting speed, feed rate and cutting depth, respectively. 

▪ Tool life (T): This parameter is measured as the average time between the tool changes. The relation between the tool life and 

the cutting parameters is expressed with the following formula (Zuperl and Cus, 2003): 

321 
dfvKT T .        (3) 

Where 
321  ,,,KT

 are positive parameters determined statistically ((Cus and Balic, 2003), (Zuperl and Cus, 2003)). 

▪ Unit turning cost: The unit turning cost can be expressed as follows (Cus and Balic, 2003), (Zuperl and Cus, 2003). 

 oltPP CCTCTC  .        (4) 

Where Ct, Cl and Co are the tool cost, the labor cost and the overhead cost, respectively. These parameters are independent of the 

cutting parameters. 

▪ Cutting quality: The most important criterion for the assessment of surface quality is the roughness of finished surface 

calculated as follows ((Cus and Balic, 2003), (Zuperl and Cus, 2003), (Fang and Safi, 1997)): 

dxfxvxRa  321
,         (5) 

Where x1, x2 and x3 are constants corresponding to the tool and work-piece combination. 

▪ Constraints: There are several technical factors limiting the cutting parameters. These limitations can be expressed through the 

following inequalities: 

maxminmaxminmaxmin     ;         ;   dddfffvvv        (6) 

▪ Cutting power and force: The consumption of the power can be expressed as a function of the cutting force and cutting speed 

((Shin and Joo, 1992), (Cus and Balic, 2003)): 

45.6122

.vF
P 

,                     (7) 

Where   is the mechanical efficiency of machine, since F and v are in terms of Kgf and m/min, the numeric value in the 

denominator of Equation (7) converts the dimension of P to KW. The cutting force F is given as follows ((Shin and Joo, 1992), (Cus 

and Balic, 2003)): 

32 
dfKF F

.          (8) 

Where 32, ,      KF  are constants related to cutting tool and work piece. The constraints on power and cutting force can now be 

expressed as 

maxmax ),,(     ),,( FdfvFPdfvP  .      (9) 

Where 
maxP and 

maxF are the maximum power and cutting force of the machine tool respectively. As seen above, the three 

objectives Tp, Cp, and Ra are functions of cutting parameters v, f and d. 

Proposed method 

The method proposed in this paper solves the problem in two sequential stages. In the first stage, the solutions aligned in the 

Pareto frontier is obtained using Vector Evaluated Genetic Algorithm (VEGA). Of solutions identified in the Pareto frontier, the 
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overall optimum solution is selected by AHP in the second stage. In sections 3.1 and 3.2, a general description is provided for genetic 

algorithms and VEGA, respectively. Section 3.3 presents the proposed genetic algorithm. The AHP approach used for selecting the 

final solution is then discussed in Section 3.4. 

Genetic Algorithms 

A Genetic Algorithm is an evolutionary optimization method used to solve, in theory “any” possible optimization problem. A GA 

(Man et. al., 1999) is based on the idea that a solution to a particular optimization problem can be viewed as an individual and that 

these individual characteristics can be coded into a finite set of parameters. These parameters are the genes or the genetic information 

that makes up the chromosome that represents the real world structure of the individual, which in this case is a solution to a particular 

optimization problem. Because the GA is an evolutionary method, this means that a repetitive loop or a series of generations are used 

in order to evolve a population S of p individuals to find the fittest individual to solve a particular problem. The fitness of each 

individual is determined by a given fitness function that evaluates the level of aptitude that a particular individual has to solve the 

given optimization problem. Each generation in the genetic search process produces a new set of individuals through genetic 

operations or genetic operators: Crossover and Mutation, operations that are governed by the crossover rate pc and the mutation rate 

pm, respectively. These operators produce new child chromosomes with the intention of improving the overall fitness of the population 

while maintaining a global search space. Individuals are selected for genetic operations using a Selection method that is intended to 

select the fittest individuals for the role of parent chromosomes in the Crossover and Mutation operations. Finally these newly 

generated child chromosomes are reinserted into the population using a Replacement method. This process is repeated a k number of 

generations. 

In general, a genetic algorithm has five basic components, as summarized bellow (Gen and Cheng; 2000): 

1. A genetic representation of solutions to the problem 

2. A way to create an initial population of solutions 

3. An evaluation function rating solutions in terms of their fitness 

4. Genetic operators that alert the genetic composition of children during reproduction 

5. Values for the parameters of genetic algorithm 

In Step 3 mentioned above, mainly the objective function of problem is used to establish the fitness of each solution. However, 

this is applicable when the optimization problem has only one objective function. In the case of multiple objectives, a crucial issue in 

the evaluation of solutions in step 3 is the way through which the fitness of each solution is calculated. One of the approaches 

available in the literature for tackling this issue is the vector evaluated genetic algorithm (VEGA). 

Vector evaluated genetic algorithm 

As mentioned in Section 3.1, one of the crucial difficulties in the use of genetic algorithms for solving multi-objective problems is 

the calculation of fitness value for an individual. The difficulty is due to the fact that each solution has different degree of optimality 

with respect to each objective function. Schaffer (1985) proposed a vector evaluated genetic algorithm (VEGA) for treating multiple 

objectives. The genetic algorithm proposed in this paper uses the VEGA approach in the selection stage. 

In the VEGA approach, the selection step in each generation becomes a loop. Each time an appropriate fraction of the next 

generation is selected on the basis of each objective. Specifically, suppose the population size in the genetic algorithm is pop_size and 

the number of objective functions is K. In VEGA, when selecting the solutions for the next generation, a number of pop_size/K 

solutions is selected with respect to each objective function. 

Proposed genetic algorithm 

▪ Coding 

The optimization problem modeled in Section 2 has three objective functions (Tp, Cp and Ra) and three independent variables (v, 

f, d). These variables are represented with Nv, Nf and Nd genes in a binary mode. Hence, in the proposed algorithm the length of each 

chromosome representing a complete solution is N= Nv + Nf + Nd (Figure 1). In this figure, Nv is the number of required genes for the 
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representation of cutting speed in binary mode, Nf is the number of required genes for the representation of feed rate in binary mode, 

and Nd is the number of required genes for the representation of cutting depth in binary mode. 

▪ Calculation of Nv , Nf and Nd: 

We only discuss calculation of Nv, as Nf and Nd can be calculated in the same way. Let p denote the required precision (number of 

places after the decimal point) for parameter v. The parameter Nv equals to (Gen and Cheng, 2000): 

1]
2

[  LLogNv
 ,            (10) 

L = (vmax - vmin) p
10

.             (11) 

▪ Fitness functions 

As mentioned in Section 3.2, the VEGA considers each objective function at a time and selects Pop-size/K solutions based on this 

function. Since there are three objectives in the formulated problem, number of fitness functions in the proposed genetic algorithm is 

three. Thus,  

fit1(S) =Tp, fit2(S) =Cp, fit3(S) =Ra,           (12) 

in which fitk(S) is the kth fitness value of solution S. 

 

Figure 1: display the answer as a chromosome with N gene 

▪ Crossover 

The proposed genetic algorithm uses a simple crossover operator in which a random crossover point is determined and the second 

parts of the chromosomes are exchanged. The probability of selecting chromosome S for crossover is denoted by pc(S) and calculated 

by equation (13). 

  




u

kk

kk
c

ufitfit

Sfitfit
Sp

)(max

)(max
)(

.   (13) 

Where max fitk denotes maximum value of the fitness function k in the current population and u stands for the solutions in the 

current population. 

▪ Mutation 

Mutation brings unexpected features to the children that do not exist in parents. Each gene is chosen for mutation with a 

probability of pm which is a GA parameter. 

▪ Selection 

The proposed algorithm uses the mechanism of VEGA to select solutions for the next generation. The probability of selection of 

solution S for the next generation with respect to the objective function k is: 

  




u

kk

kk
k

)u(fitfitmax

)S(fitfitmax
)S(p

,             (14) 

in which max fitk denotes maximum value of the fitness function k in the current population. 

Decoding 

After crossover and mutation operations, the values obtained for v, f, d may not be necessarily in the favorable ranges. Let vmin 

and vmax denote the minimum and maximum cutting speed, respectively. Let v denote the cutting speed obtained after genetic 

operations. The following equation is used in this paper to make the obtained value feasible. 

12 


vNminmaxmin

v
)vv(vv

 .           (15) 
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Similar equations can be derived for variables f and d. This transformation guarantees that the solutions obtained by the genetic 

algorithm will satisfy the constraints (6). 

Analytic Hierarchy Process (AHP) 

AHP was first introduced in the middle of the 1970s by T.L. Saaty. AHP divides a sophisticated problem into elements, groups 

them in the light of a dominating relationship to form an orderly hierarchical structure, determines relative importance among 

elements in the structure through paired comparison, and then synthesizes human judgments to give a total order of decision elements 

(Liu et al., 1999). Generally, three steps are done in AHP. 

1. Establish the hierarchical decision structure of the problem. This hierarchy breaks the total goal down to sublevels like criterion 

level, sub criterion level and scheme level. 

2. Construct pairwise comparison judgment matrices to decide subordinate relationships between upper levels and lower levels and the 

relative importance among elements at the same level. Judgment matrices are critical to hierarchical analysis. Suppose the following 

factors B1, B2, . . . ,
nB  influence the general goal Z. By pair wise comparison, 

ija  is used to demonstrate the influential ratio of Bi 

vs. Bj. The judgment matrix is expressed as follows: 

A = (
ija ),      

ija  > 0 

                                                      
ija  = 1,        i=j                                                     (16) 

                       
jia = 1/

ija ,        i, j = 1, 2, …, n (i ≠ j) 

The following five grades are usually used to set the value of aij (Liu, et al, 1999). 

                
iB  vs. 

jB              Value of 
ija  

Equivalent                 1 

A little strong            3 

Strong                        5 

Very strong                7 

Absolutely strong       9 

3. Obtain weight of each scheme with respect to the main goal. This is computed by the inner product of the weights of criteria in the 

weights of schemes. The detailed description of the computational process in AHP is shown through an illustrative example in Section 

4. The scheme with a higher weight is finally selected as the optimum solution. 

Application of the method discussed above for the case of optimization of turning parameters will be demonstrated in Section 4 

through a numerical example. 

Illustrative example 

An example has been adopted from (Cus and Balic, 2003) to show the application of the proposed method. In this problem, cast 

steel has to be machined on a CNC lathe through a tool made from HSS. Values of different factors are as follows. 

min26.0cT   

$.Ct 5513 , min$.Cl 310  

min$.Co 080  

K=1.001,    KT = 1575134.21,   KF =1.38 

x1 = 0.0088,    x2 = 0.3232,      x3 = 0.3144 

7.11  , 55.12  , 22.13  , 

01  , 18.12   , 26.13     

3231376mmV 
, %36    
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min70min mv  , min90max mv   revmmf 1.0min  , revmmf 2max   

mm.dmin 10 ,   mmd 5max  ,   NF 230max  ,    KWP 5max   

By substituting these values, the mathematical model is summarized as follows: 

MRRTMinTP )26.01(231376   

PP TTMinC )39.055.13(   

dfvMinRa 3144.03232.00088.0   

Subject to: 

)(21.1575134 22.155.17.1  dfvT
 

MRR=1000vfd 

9070  v  

21.0  f  

51.0  d  

5)(000626.0 26.118.1 dvf
 

230)(38.1 26.118.1 df
 

Based on the computational experiences, the values of parameters pop_size and pm are considered as 105 and 0.005, respectively. 

The cutting conditions are generated at random inside the specified limits in the first generation. Application of the proposed 

genetic algorithm resulted in 17 non-dominated solutions along the Pareto frontier as shown in Table 1. The AHP method is used in 

the following to determine the optimum solution among the 17 solutions reported in Table 1. Since the problem of interest in this 

paper is the determination of turning parameters, each non-dominated solution in Table 1 is called a setting. 

Table 1: non-dominated solutions obtained by the proposed genetic algorithm 

Setting V F D T C R 

1 79.6774 2.000 1.5000 0.9693 0.4464 1.8192 

2 82.9032 0.7333 0.8000 4.7579 1.8908 1.2181 

3 88.7079 2.000 3.6000 0.3640 0.2316 2.5589 

4 72.5806 1.3667 1.5000 1.5560 0.6588 1.5520 

5 72.5806 2.000 3.6000 0.4442 0.2510 2.4169 

6 75.1613 1.3667 1.5000 1.0250 0.4576 1.7948 

7 88.0645 0.7333 3.6000 2.3893 0.9740 1.4836 

8 86.1290 2.000 2.2000 0.6120 0.3173 2.0960 

9 74.5161 1.3667 1.5000 1.5157 0.6440 1.5690 

10 70.0000 2.0000 3.6000 0.4605 0.2554 2.3942 

11 77.0968 1.3667 2.2000 0.9993 0.4486 1.8118 

12 73.2258 1.3667 2.9000 0.7984 0.3718 1.9979 

13 71.2903 1.3667 2.2000 1.0805 0.4772 1.7607 

14 85.4893 1.3667 0.8000 2.4766 1.0165 1.4455 

15 71.2903 2.000 3.6000 0.4522 0.2532 2.4056 

16 74.5161 1.3667 2.2000 1.0338 0.4607 1.7891 

17 89.3548 0.7333 0.8000 4.4145 1.7587 1.2745 

With respect to the stepwise procedure of the AHP method described in Section 3.4, this method is applied for the illustrative example 

as follows. 

(1) Figure 2 shows the decision hierarchy of the problem in which S1, S2, …, S17 denote the non-dominated settings shown in Table 1. 

(2) The weight (importance) of each setting with respect to another setting is calculated considering each objective function. These 

weights are computed using the equations (17). Therefore, three matrices, namely A, B and C associated with objectives Tp, Cp and Ra 

are calculated. The entry aij indicates the relative importance of setting i over setting j with respect to Tp. Similarly, the entry bij and cij 

in matrices B and C indicate the importance of setting i over setting j with respect to objectives Cp and Ra, respectively. In the 

illustrative example, the size of matrices A, B and C is 1717. 
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i

j
ij

ip

jp

ij

ip

jp

ij
Ra

Ra
c

C

C
b

T

T
a                       

.             (17) 

Then these matrices should be normalized. To do so, each entry is divided into the summation of the entries being in the 

corresponding column. Mathematically, the following formulas are used to normalize the entries aij, bij and cij in matrices A, B and C, 

respectively. Let A , B and C  denote the normalized matrices of A, B and C, respectively. 





17

1j

ij

ij

ij

a

a
a

 





17

1j

ij

ij

ij

b

b
b

 





17

1j

ij

ij

ij

c

c
c

.    (18) 

 

Figure 2: Decision hierarchy of the illustrative example 

Due to the consistency of matrix A, all the columns of matrix A  will be the same. Figure 4 shows one of the columns of matrix 

A  for instance. This would be the case in matrices B and C   as well. The columns of matrices A , B and C  are put in a 17×3 

matrix denoted by D. In other words, the first, second and third columns of matrix D are the column of matrices A , B and C  , 

respectively. Consequently, the values in the first row of matrix D indicate the weight of setting 1 with respect to objectives Tp, Cp and 

Ra, respectively. 































































0813.00145.00115.0

0579.00555.00490.0

0431.01010.01121.0

0717.00252.00205.0

0588.00536.00469.0

0518.00688.00635.0

0572.00570.00507.0

0433.01001.01101.0

0660.00397.00334.0

0494.00806.00828.0

0698.00263.00212.0

0577.00559.00495.0

0429.01019.01141.0

0667.00388.00326.0

0405.01104.01393.0

0850.00135.00107.0

0569.00573.00523.0

D

 

A pairwise judgment is to be made among the objectives Tp, Cp and Ra to capture the relative importance of each objective with 

respect to the main goal. Here, the judgment of one process planner may be different to that of one another. Even pairwise importance 
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of objectives depends upon the work-piece to be machined. This means that a process planner may judge the importance of one 

objective function over another objective different from one work-piece to another.  

A typical pairwise matrix indicating the importance of objectives for the illustrative example is shown in Table 2. For example, 

the number 3 in the cell (T,C) indicates that the turning time is three times important than turning cost for in the illustrative example.   

Table 2. Pairwise comparison matrix for T, C and R 

 T C R 

T 1 3 2 

C 1/3 1 2/3 

R 0.5 1.5 1 

 

A similar normalization procedure is to be done for the matrix shown in Table 2. As mentioned so far, all the columns of the 

normalized matrix will be the same as shown by vector E. 



















2727.0

1818.0

5455.0

E

 

For example, the number 0.5455 in vector E indicates the weight of Tp with respect to the main goal. 

(3) To obtain the weight of each setting with respect to main goal, we compute vector F as the inner product of matrix D and vector E 

as follows. 
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Each value in the row i of vector F indicates the total weight of setting i. According to the weights computed in vector F, setting 3 

with v=88.7079 m/min, f=2.000 mm/rev and d=3.6000 mm has the highest weight and thus serves the objectives of interest at most. 

The corresponding turning time, cost and roughness for this setting is Tp=0.3640 min, Cp=0.2316 $ and Ra=2.5589 m . 

Conclusion and discussion 

Advantages of the proposed method can be outlined as follows. 

(1) The proposed method explores the solution space and finds non-dominated settings being in the Pareto frontier. 

(2) Although the AHP approach is a well known multi-criteria decision-making technique, it is applied to the determination of cutting 

parameters for the first time in this paper. The AHP method helps a process planner to systematically select a solution from Pareto 

frontier which fits to his/her interests at most. 

(3) Although the AHP method discussed in this paper considers three objectives to select the optimum cutting condition, it is still 

open to take other criteria into account. If a process planner intends to consider other criteria in addition to Tp, Cp and Ra in 

determining turning conditions, he/she can simply add these criteria to the first level of the hierarchy shown in Figure 2.  
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One of the limitations of the proposed AHP is that the pairwise comparison between Tp, Cp and Ra are done in a crisp way. 

However, the relative importance of an objective over one another can be better captured by fuzzy logic. This logic provides process 

planner with a flexible tool to judge the relative importance of objectives. This issue can be attempted in subsequent researches. 
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