
K.Murugan et al./ Elixir Comp. Sci. & Engg. 61 (2013) 17203-17205

17203

Introduction

A temporal database is formed by compiling, storing

temporal data. The differentiation among temporal data and non-

temporal data is that a time period is appended to data

expressing when it was valid or stored in the database.[1][2] The

data stored by conventional databases reflect on data to be valid

at present time as in the time instance “now”. When data in such

a database is modified, removed or inserted, the condition of the

database is overwritten to form a new state. The state prior to any

changes to the database is no longer available.[3][4] Thus, by

associate time with data, it is possible to store the different

database states. In essence, temporal data is formed by time-

stamping ordinary data (type of data we associate and store in

conventional databases). In a relational data model, tuples are

time-stamped and in an object-oriented data model,

objects/attributes are time-stamped.[5] Each ordinary data has

two time values attached to it, a start time and an end time to

establish the time interval of the data. In a relational data model,

relations are extended to have two additional attributes, one for

start time and another for end time. Time can be interpreted as

valid time i.e. data occurred or is true in reality otherwise

transaction time (when data was entered into the database).[6] A

historical database stores data with respect to valid time. A

rollback database stores data with respect to transaction time. A

bi-temporal database stores data with respect to both valid and

transaction time. A database object is stored in a database at

some point in time. The transaction time of an object is the time

when the object is stored in the database [7], the time that it is

present in the database. For example, in a banking system, the

transaction time of a withdrawal would be form the time the clerk

entered the payment of withdrawal into the database to the time

that it was made invalid in the database.[8][9] Another example

would be, in a company situation, an employee receives a pay

rise but it comes into effect when the payroll clerk enters this

salary rise into the database. Transaction time values cannot be

after the current time. Valid time The valid time of a database

object is the time when the object is effective or holds (is true) in

reality [10][11]. The time when the event occurred, took place in

reality. For example, in a banking system, the payments and

withdrawals made by a customer have a valid time associated

with the time the customer performs the transaction at the bank.

System Architecture

The overall architecture of the Temporal Query Processing

and Access power structure is depicted in Fig. 1. It consists of

five basic elements as explained below:

User Interface: This part provides a Visual Query Builder for

SQL. The input for this is the query and the output is the result

set from the database. The User can interacts with the TDBMS

by User friendly graphical interface that permits the user to

compose requests to the TDBMS and present the results. This

user interface be supposed to trouble-free to use and also easy to

learn. The user interface is the only way the user can

communicate with the temporal database system.

Middleware: The central part that contains the functionality of

the system, which processes the request from the user through the

interface and get back the information from the primary

conventional relational database

Analyzer:

The input for this is the query. The given query is split into

tokens and assigned the respective types with the help of the

dictionary. The output of this analyzer is Lexical Tokens. Tokens

are defined for all operators that are used in form TRA

expressions, e.g. UNION, PRODUCT, JOIN, SINCE, UNTIL,

PAST, FUTURE etc. Tokens are defined for arguments or

variables given in TRA expressions, e.g. relation names,

Intelligent Query Manipulation and Retrieval in Temporal Database
K.Murugan

1,*
 and T. Ravichandran

2

1
Karpagam University, Coimbatore, Tamil Nadu, India.

2
Hindusthan Institute of Technology, Coimbatore, Tamil Nadu, India.

ABS TRACT

More and more organizations each day are now storing achieves of data to help them make

essential business resolutions. The Commercial Database Management Systems (DBMS)

that are available in the I.T. market do not afford any considerable and practical methods of

storing and manipulate such data. Time is ubiquitous in information systems. Almost every

enterprise faces the trouble of its data becoming out of date. However, such data is

frequently valuable, so it should be archived and some means of accessing it should be

afforded. Also, some data may be naturally historical, e.g., medical, cadastral, or judicial

records. Whilst there has been research into the subject of Temporal Databas es, there is a

lack of marketable tools. The Paper aims to design and develop a Temporal Database

Management System (TDBMS) that provides means to manipulate temporal data. The

TDBMS will provide a Temporal Relational Algebra (TRA) structured query languag e that

is based on and is an extension to Relational Algebra (RA) for extracting data from the

Temporal Database. The TRA is to contain most the common operators that are associated

with RA such as Cartesian Product, Natural Join, Union and many more. The TRA will

introduce new temporal operators, which are useful for querying Temporal Databases.

 © 2013 Elixir All rights reserved

.

ARTICLE INFO

Article his tory:

Received: 25 May 2013;

Received in revised form:

14 August 2013;

Accepted: 16 August 2013;

Keywor ds

System Architecture,

User Interface,

Query Processor,

Operators.

Elixir Comp. Sci. & Engg. 61 (2013) 17203-17205

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Tele: +91- 9443284308
E-mail addresses: dhuvash_2004@rediffmail.com

 © 2013 Elixir All rights reserved

K.Murugan et al./ Elixir Comp. Sci. & Engg. 61 (2013) 17203-17205

17204

attribute names, integers, real numbers, string values etc. If a

token cannot be found for a particular input then the system

returns a user friendly error message.

Parser: The parser validates every or a collection of tokens as

they are produced, by matching them against the predefined

grammar integrated into the system. While parsing tokens, if the

parser is unable to recognize any part of the input, an error is

returned back to the user by means of interface highlighting the

problem and the reason why the input has been rejected. For

example, if the user has mistyped an operator name, then the

analyzer stops translating and validating any further input and

returns an error message with this mistyped name.

Fig 1.

Query Processor: The Query Processor takes in the key words

as input and separates the fields that have to be retrieved. The

main purpose is to obtain the meaning of the query. Initially, the

given input is scanned for domain specific phrases. For example,

customer identification number is identified by cust id in the

database. So, the transformation becomes important. Similarly,

the temporal operators and relational operators equal to, greater

than etc., are replaced by appropriate symbols. From the

transformed list of words, the relational operators and other

keywords such as „between‟, „in‟, „like‟ etc., are located as these

specifies the required condition. The conditions are separated

out and have to be transformed to fit into the SQL query

directly. In this system, the keywords are the ones that represent

the field name in the database and also the table name if it is

explicitly specified. The keywords are of type noun. The words

that are noun alone are taken out. This will contain the field

names and the table name. A separate table is maintained where

in we have the list of fields and the respective table name and

the kind of data that it represents whether it is a string, number

or date is maintained. The entire field names should point to one

table. A key identifier helps to identify every table. Even if the

table name is not directlyspecified, the table name can be

obtained from the key identifier. For example, SB account refers

to sb master table. The table from which the data has to be

obtained is identified from the fields. All the fields have to point

to the same table. The SQL query is formed with the field name,

table name and the condition that is separated out.

Operators

The semantics of the usual relational operators have been

extended to temporal tables, while new ones have been designed

to cope with specific problems of temporal data [11]. This

model includes four extraction operators, namely selection,

projection, join, aggregation, and normalization transformations .

Temporal projection. This operator returns, for any correct

source entity table S and for any subset A of its columns, a

temporal table in which only the values of the columns in A are

kept. If the set of the projection columns includes the entity

identifier, the result is a normalized entity table. Conceptually,

the temporal projection can be perceived as a standard

projection followed by the merging (or coalescing) of the rows

that have the same values of the non-temporal columns, and that

either overlap or are consecutive.

Temporal selection: This operator returns the rows that meet

some selection predicate in a correct source table. The selection

can involve the temporal columns, the other columns, or both.

Temporal join: Considering two correct temporal source tables

S1 and S2, and a predicate P, this operator returns, for each

couple of rows (s1, s2) from S1xS2 such that P is true and the

temporal interval i1 of s1 and i2 of s2 overlap, a row made up of

the column values of both source rows and whose temporal

interval is the intersection of i1 and i2. The result is a correct

temporal table.

Temporal aggregation: Due to the great variety of aggregation

queries, the process has been decomposed into four steps that

are easy to encapsulate. Let us consider a correct entity table T

with one time dimension. The query class coped with has the

general form : select A, f(B) from T group by A, where f is any

aggregation function. First, a normalized state table minT is

derived by collecting, for each value of A, the smallest intervals

during which this value appears in T10. This table is joined with

T to augment it with the value s of B, giving the correct table

minTval. Then, the aggregation is computed through the query

select select A, f(B) from T group by A. Finally the result is

coalesce d. In particular, this technique provides an easy way to

compute temporal series (in this case, minT is a mere calendar).

Temporal Normal Form

A particular and well-organized technique for makeing temporal

relational databases is by way of use of time intervals that are

correlated with the tuples. In short, it is planned to facilitate

tuples will have the subsequent structure: (a1,….,an) [start, end]

in a relation R where start and end are the temporal time

attributes and describe the time period for when the tuple exists.

This temporal formation is applied and stored in a relational

database as R(a1,….,an,start,end), a set of attributes . All

intervals that are stored in the relational database are and should

be maximal . That is to state, for any tuple R(a1,….,an,start,end)

there must be no other matching tuple R(a1,….,an,start‟,end‟)

where the non-temporal attributes a1,….,an are identical and the

temporal attributes, the intervals overlap by confirming to start ≤

end‟+1 and end ≥ start-1. Thus, adding the constraint that all

such intervals are maximal gives the temporal normal form

(TNF).

MMiiddddlleewwaarree

User Interface

Analyser

Parser

Query Processor

Temporal

Database

K.Murugan et al./ Elixir Comp. Sci. & Engg. 61 (2013) 17203-17205

17205

Temporal Relational Algebra – TRA

TRA is a set of operators that consists of the entire RA

operators and with the addition of new temporal explicit

operators. The evaluation of a query in TRA using the

information of presently a snapshot of the historic database

would indicate that the traditional relational operators have their

regular significance, are reliable. To project data during

manipulation and connecting of tuples from other databases Dt‟

with the tuples from the present database Dt (where t‟ t), we

can initiate new temporal operators . There is the beginning of

two new temporal operators that can only be applied to

historical temporal databases, which are known as Until and

Since. These operators and their logical interpretation, US logic

(Until and Since logic) are first order complete for a distinct

historic database, they are a simple expansion of classical logic.

Research into temporal logic and their properties has resulted in

the formation of US logic that has been shown to be

mathematically sound . They have verified semantics, which

makes them popular temporal operators to be used for querying

temporal relational databases.

Results

Temporal table stores both valid and transaction time.

Consider a table Employee(EmpNo, EName Dept,Salary) with

validtime and transaction attributes.

Emp.

No.
Ename Dept

Salar

y
From To

Time

Stamp

CS11 Rama CS 9000 01/06/13 01/06/15
15/06/13

10:10

CS12 Seetha CS 8000 01/06/13 01/06/15
15/06/13

10:10

EC21 Aswin EC 8500 01/06/13 01/07/16
15/06/13

10:20

EC22 Joes EC 9000 01/06/13 01/07/16
15/06/13

10:23

EE31 Dhuvash EE 8600 01/04/13 01/04/14
15/06/13

10:30

EE32 Gopi EE 9000 01/06/13 01/04/14
15/06/13

12:10

IT41 Edwin IT 9000 01/06/13 12/03/16
15/06/13

12:20

IT42 Abdul IT 8800 12/03/13 12/03/16
15/06/13

03:25

M51 Ashok MC 8300 18/02/13 18/02/15
15/06/13

05:45

M52 Hamsi MC 9000 20/02/13 20/02/15
15/06/13

05:53

SQL Query:

SELECT * from Employee during salary Change

(5000,9000,01/06/2010)

Procedure::

salaryChange(int v1,int v2,day d)

{

setTableAs(employee);

setEventDomain(true);

moveCursorToPreviousDay(d);

match(salary,v1);

moveCursorTo(d);

match(salary,v2);

}

Results:

Empno Ename

CS101 Rama

EC202 Joes

EE303 Gopi

IT401 Edwin

M502 Hamsi

Conclusion

This paper mainly focuses on and concerns the extraction and

manipulation of temporal data. The system developed has

revised and implemented the RA operators common to most

commercial relational database systems that now evaluate

temporal data. The system has introduced new and specific

operators that can only perform over temporal data. The overall

system is an independent software tool, more specific, a

temporal relational database management system that allows

itself to be attached to a temporal database, which has been

modeled on a standard relational database system. This tool is

appealing to organizations that store archives of data but find it

difficult to extract required information.

References

[1].John F. Roddick “Schema Vacuuming in Temporal

Databases” IEEE Transactions On Knowledge And Data

Engineering, Vol. 21, No. 5, May 2009

[2].G. Antoniol, V. F. Rollo, and G. Venturi, “Linear predictive

coding and Cepstrum coefficients for mining time variant

information from software repositories,” ACM SIGSOFT

Software Engineering Notes, vol. 30, no. 4, pp. 1–5, 2005.

[3].Vijayalakshmi Atluri and Avigdor Gal. An authorization

model for temporal and derived data: Securing information

portals. ACM Transactions on Information and System Security,

5(1):62–94, 2002.

[4].Advanced Databases 2001 (Imperial Course Notes), by

P.J.McBrien and J.McCann.

[5]. Rios Viqueira J. and Lorentzos N.A. Spatio-temporal SQL

Extension. roceedings of the 8th Panhellenic Conference on

Informatics, Nicosia, Cyprus, Vol. 1, 264-273 (2001).

[6]. Piero Andrea Bonatti Elisa Bertino and Elena Ferrari. Trbac:

A temporal role-basedaccess control model. ACM Transactions

on Information and System Security, 4(3):191–223, 2001.

[7].Snodgrass R. Developing Time-Oriented Database

Applications in SQL. Morgan Kaufmann Publishers (2000).

[8].Garani G. Temporal Database Models: A Critical Approach.

University of London Publications, ISBN: 0718716396 (2000).

[9].Jensen C.S. Temporal Database Management. Dr. Techn.

Thesis, Aalborg University, Denmark (2000).

[10].Gadia S.K. and Nair S.S. Algebraic Identities and Query

Optimisation in a Parametric Model for Relational Temporal

Databases. IEEE ransactions on Knowledge and Data

Engineering, 10 (5), 793-807 (1998).

[11].Tansel, Cli_ord, Shashi Gadia, and Richard Snodgrass.

Temporal Databases: Theory, Design and Implementation.

Database Systems and Applications Series. Benjamin/

Cummings, Redwood City, CA, second edition, 1993.

