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1. Introduction
The concept of fuzzy sets and fuzzy set operations were first introduced by zadeh [14] and subsequently several
authors have discussed various aspects of theory and applications of fuzzy sets. Bounded and convergent sequences of
fuzzy numbers was introduced by Matloka [6]. Nandha [8] has studied the space of all absolutely p-summable convergent
sequences of fuzzy numbers and shown that they are all complete metric spaces. Later on sequence of fuzzy numbers
have been discussed by Dutta [4]Murseleen [7], Nuray and savas [9] ,Talo and Basar[10] and many others.
Chandrasekhara Rao[2] introduced Hahn sequence space. It is defined as follows.

h= {x =(X.): ZK | X, —X,_, | converges and limx, = 0}
k

k—o0

The above space is a Banach space normed by

o8]
I X 1= X KIXk =Xk |
k=1

This space was further developed by chandrasekhara Rao and N.Subramanian[3].

Lindenstrauss and Tzafriri [5] investigated Orlicz sequence spaces in more detail. An Orlicz function is a function M :
[0, ] = [0, o] which is continuous, non-decreasing and convex with M(0) = 0, M(x) > 0, for x >0 and M(X) = o« as x
- . If the convexity of the Orlicz function is replaced by sub-additivity then this function is called modulus function.
An Orlicz function satisfies the inequality M(3.x) < M(X) for all ), with 0 <} < 1.

Sargent [12] introduced the space m (¢) and studied some properties of this space. Later on it was studied from

sequence point of view and some matrix classes were characterized by Rath and Tripathy [11] and others. In this article
we introduce the space h.(M, ¢, p) of sequences of fuzzy numbers defined by orlicz function.
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2. Definitions and preliminaries

We begin with giving some required definitions and statements of theorems, propositions and lemmas. A fuzzy
number is a fuzzy set on the real axis i.e. a mapping u:R — [0,1] which satisfies the following four conditions.

(1) uis normal i.e. there exists an x,eR such that u (x,) =1

ii) uis fuzzy convexie. u[ax+ (1-))y] > min{u(x),u(y)} forall x,y ¢ R and for all ),c [0,1]

ii) U is upper semi continuous

iv) The set [u], = {x cRUX) > 0} is compact (Zadeh [1] ) where {x cR:UX) > O} denotes the closure of the set

{x eR:u(t) > o} in the usual topology of R. We denote the set of all fuzzy numbers on R by E’ and called it as the
space of fuzzy numbers. The ), -level set [u], of u ¢ E’ is defined by u] fteR:ut)=1}, (0<A<1)
T lEeru®> 4, A=0
The set [u ], is a closed bounded and non-empty interval for each ). [ 0,1] which is defined by
[ul, =[u(),ur(M)]

R can be embedded in E’. Since each re IR can be regarded as a fuzzy number # defined by

F(x) ={1’ =)

0, (x=r)
Letu,v, we E’ and ke & .The operations addition , scalar multiplication and product defined on E’ by
Utv=we [w], =[u], +[v], forallxe[0,1]
o W) =[u(}h),v(A)] and w*(A) =[u*(A), v¢(A)] and forallpe[0,1]
[kul, =k [ u], forall 1[0, 1]
and
UV=Wes [W], =[u]l, [V], forallpe[0,1]
where it is immediate that ,
w(A) =min{u AV (2), U ANV (), uT(AV (), uT(ANV'(R) |
and
w'(2) =max{u (A (), u AV (A), u AV (A), u AV (L)}
for all ).¢[0, 1] .

v =w e [w], =M, for all @ €[0/]]

=[u-(a),u+(a)]{L L }

v (a) V()

_ minH[u](a) U] (@) [u]'(@) [u]+(a)},max {[u](a) [u] (@) [U]'(@) [u]*(a)H

V" (@) 'VI (@) ' [V]" (@) '[V] (@) V" (@) VI (@) ' [V]" (@) '[V] (@)
Let W be the set of all closed and bounded intervals A of real numbers with endpoints A and p ie)
A=[4 4]
Define the relation d on W by
d(A B)=max{a—B|.[A-B| |
Then it can be observed that d is a metric on W and (W, d ) is a complete metric space (Nanda [8]) . Now we can
define the metric D on E’ by means of a Hausdroff metric d as
D (u,v)= supd([u],[V],) = sup max Hu ) —v- @), [ur ) —v* )| |
(E’, D) is a complete metric space .One can extend the natural order relation on the real line to intervals as follows .
A<B ifandonly if A<B and aA<B
The partial order relation on E’ is defined as follows.
UsvVe [u], <|v], @u () <v (A1) and u*(A)<vi(r) for allae[0,1]
An absolute value |u]| of a fuzzy number u is defined by
max {u(t),u(-t)}, (t>0)
i) =
0, (t<0)
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) -level set Uu” of the absolute value of ucE’ is in the form Uu”
A A

where
U (2) = max{0,u” (4),~u* (A)}
() = max{ju ()], u* ()] |
The absolute value |uv| of u,v ¢ E satisfies the inequalities (Talo [8])
i () <" () < max{u () v (), @) M) @ @) @@ e BB e
non-negative fuzzy number if and only if u(x)=0 for all x<0. It is immediate that u>0 if u is a non negative fuzzy number.
One can see that
D(u,0) =sup {ne[% {‘u‘(k)‘ :

u* ()] J= max{lu G Ju* ()] |-

Proposition 2.1 LetuvweE’ and keR. Then

(1 (E’, D) Is a complete Metric space

(i) D(ku,kv)=[|D(u,v)

(iii) D(u+v,w+v)=D(u,w)

(iv) D(utvw+z) <D(uw)+D(v,z)

) ID(u,0) — D(v,0)| < D(u, v) < D(u,0) + D(v,0) -

Lemma 2.2 The following statements hold (Talo [10])

(D D(uv,f))g D(u,(_))D(v,f)) forall u,veE

(i) If u, > u as ksoothenD (u,p) > D (u,0) ask—soo where (u,) e w(F).

In the sequel, we require the following Definitions and lemmas.
Definition 2.3 A sequence u = (u, ) of fuzzy numbers is a function u from the set N into the set E’ .The fuzzy

number u, denotes the value of the function at ke B and is called the k" term of the sequence. Let w(F) denote the set of

all sequences of fuzzy numbers.
Definition 2.4 A sequence (u, ) e o(F) is called convergent with limit ucE’ if and only if for every ¢ >0 there

existsann, =n, (¢) e Nsuchthat D (u, ,u)<g forall k> n,.
Theorem 2.5 [7]. Let (u, ),(v,) e W (F) with u, —a,v, »>bas k — co-Then,

L u +v, >a+bask—>o

iy —v, >a—bask —>o
iii. y v, —>abask—oo
V. u, u./v, —>a/bask —oowhere0g[v,], forall ke Nand 0 ¢[b], -
Definition 2.6 A sequence (u, ) e W(F) is called bounded if and only if the set of all fuzzy numbers consisting of

the terms of the sequence (u,) is a bounded set.
That is to say that a sequences (u, ) ew(F) is said to be bounded if and only if there exist two fuzzy numbers m and

M such that m< u, <M forallkeN .
Definition 2.7 Let u = (u,) be a sequence then s(u) denotes the set of all permutations of the elements of (u,).
i.e. s(U) = {(Ury): = is a permutation of N }. A sequence space E is said to be symmetric if s(u) < E for allucE
A sequence space E is said to be monotone if E contains the canonical pre-images of all its step-spaces

Lemma 1. A sequence space E is monotone whenever it is solid.
Let ¢, be the class of all subsets of N those do not contain more than s number of elements. Throughout {¢ .} 5 a

non-decreasing sequence of positive real numbers such that ng ., < (n+1)¢,, for all neN.
The space m (¢) introduced by sargent [12] is defined as,

1
m(¢)={(xk)ew:||x||m(¢): sup — Z|Xk |<°O}

szl,oeps @ keo

Lindenstrauss and Tzafrir [5] used the notion of Olicz function and introduced the sequence space

y :{(xk) eWZZm(mj<oo for some p >0 }
k=L P
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The space o becomes a Banachspace with the norm defined by

0l = inf {p>o ; im(wjgl}

Yo
which is called an Orlicz sequence space. The space o is closely related to the space ‘, which is an Orlicz

sequence space with m(x) = xP, 1<p<eo In [1]T.Balasubramanian and A.Pandiarani introduced Hahn sequence space of
fuzzy numbers.It was defined as follows

Let A denote the matrix A = (a,, ) defined by

X = n(-1)"*, n-1<k<n
h 0 1<k<n-1 ork>n

Define the sequence y = ('y,) which will be frequently used as the A—transform of a sequence x = ( x, )

ie) Y = (AX) =k (X —X ) k>1

We introduce the sequence spaces h (F) as the set of all sequences such that the A — transforms of themare ing (F)
that is

h(F) = {u =(uk)ew(F):iD[(Au)k,(_)]<ooand lim D[uk,(_)]zo}

In this article we introduce the following sequence space.

he (M, ¢,p) = Ju=(u)ew(F): sup 1 Z{M(MH <o

s21, oeps S keo p

forsome p>0and | jim D [u, 0] <0} 1< p <=

3. Main Results
Therorem 3.1 The set h. (M, ¢, p) is a complete metric space with the metric

s2l,oeps s keo P

g (u, v)= supD(u,,v,)+infip>0: sup L Z{M(wﬂ <1

for some p >0, O<p< % andu,ve h. (M, ¢, p)

Proof It is easy to show that h.(M, ¢, p) is a metric space with the metric g Let (u®) be a Cauchy sequence in h. (M,
¢, P) such that u®= (),

Let ¢ > 0 be given. For a fixed x,>0, choose r > 0 such that M(%jzl. Then there exists a positive integer n (g) such

that g(u®, u®) < _¢_foralli, j >n,
r(%)

By the definition of g, we get

0] O ]”
sup D(UP,v?) +inf{ p>0: Sup 1 Z{M[D[(Au)k(Au)K]H <ly<egforalli, j=n, (3.1

s>l oeps P  keo P

Which implies that syp Du(,v")<e foralli, j > n, and we get

DU® v <g foralli,j>n,n=1,2,3,............ (3.2

= oo

Hence sup (u®)is a Cauchy sequence in E'. So it is convergent in E'

Let limk® =u,, forn=1,2,3, ............

i—o0

Now  sup — Z{M[

s21, oeps Py keo

D[(Au)y, (Au)"]
yol
For s =1and g varying over g, we get

Z[M(D[(Au)s%(Au)ﬁ")]H <4 foralli,j>n

g@u®, u®)

H <1 foralli, j>n, (3.3)

keo
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(i) (0 N
Which implies M | 2LAWC (AUT ¢ <m[ Do foralijn,
g(u('),u“)) 2
using the continuity of M, we get
DAL, (Au)] < [%) g (ud, u®) foralli,j > n,
- DL(AW)P, (Au)(’] < 2. o= % foralli, j > n,

Which implies that (AuS’) is a Cauchy sequence in E' .Since E' is complete, it is convergent.Let
lim AU = Au, g for each keN. We have to prove lim u’ =u and ueh.(M, ¢, p)

Using the continuity of M, we get from (3.3)

s21, oep, P keo P
For some p >0andi>n,.
Now taking the infinum of such psand using (3.1)

@ ORYk .
Inf {p ~0: sup — Z{M(DAW'AWH 31} <& foralli>n, Hence we get.
szl oeps Py keo Pr

Sl:pD(ug”,un)qLinf {pw;jggui zﬂ;[m[wﬂﬂ}

<g +¢ =2¢ forallix>n, which implies that
p(U®,u) <2¢ foralli>n, = |imu' =u.
i

Now, p(u,0) < p (UD,u) + p(UD,0) <g+Mforalln>n, ()

1.e. p (u, 0) is finite which implies that uehg (M, ¢, p)

Hence the space h. (M, ¢, p) is a complete metric space.

Proposition 3.2 h. (M, ¢, p) < h. (M, \p, p) if and only if sup (%j <o
for 1 < p <o and for the sequences (¢,) and (¥;) of real numbers.

Proof. First, suppose that sup [.%j =k<w

s=1

Then we have ¢ <k
Now if (u,) eh: (M, ¢, p) then

sup i Z{M(D(A—uk’a)]} < o0

s21, oep, P 1%

P

Le., (u) e h(M, , p). Hence h(M, ¢,p) < h(M, P, p) conversely, suppose that h (M, ¢, p) & h(M, ¥, p) .

We should prove that Sup[gj = sup (17,) < oo where ,75:% suppose that sup (z7.)=<c . Then there exists a
s=1 \ Wy s=1 s s=1

subsequence (7,) of () suchthat lim (7, )=c. Then for (u) e he (M, ¢, p) we have,

SUp i ZI:M(D(AUk’O)J:| < 00

s>1, cep, ¢s keo P

> sup I Z{M(D(A“k'o)ﬂpm

s21, oeps Qi keo P

i.e. Sup i Z|:M(D(AUK’O)J:| < o0

sxloep, YWy keo P

sp = %

s21, oepg l//s keo

Which implies that (u,) ¢ h- (M, ¢, p), a contradiction. This completes the proof.
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Corollary 1. he (M, ¢, p) =h. (M, , p) if and only if sup (,) <o and sup (7)<
s>1 s>1

Where , _¢ ,for1l<p <c.
(pS

s

Theorem 3.3 ¥ (M, ¢) = h.(m, 4, p) = (5. (M, F)

Proof. Take M(x) =x,pfor 1l <p<ewand ¢, =1foralln e N
We get that h. (M, ¢, p) = 17 (M) . So the first inclusion is proved. Next, suppose that, (u,) € he (M, ¢, p) -
This implies that

— ap)
sup i Z{M[M}} =k<w

521, oepg (g keo p

Fors =1, M[D(Aukﬁ)} < k¢, ke s which implies that
£

sup M{D(AUK,O)} <o
k=1 P

Thus we have u, ¢ |7 (M) . This completes the proof.

Proposition 3.4 h: (M, ¢, p) = 17 (M) if and only if
sup (g,) <o, sup (¢~ <o
s>1 s>1

The proof can be obtained by putting y,, = 1 for all neN in corollaryl
Corollary 2 hz (M, ¢, p) = I7(M) I i (ﬁ}o, forl1<p<oo
S S

Theorem 3.5 The sequence space h, (M, ¢, p) is not solid.
Proof The proof follows from the following example.
Example: Letp=2. and ¢, =s foralls ¢ N

Let M(x) =| x| for all x e (0, o) and define.
_ Jkfork<n
%= 15 otherwise
Then D(Au,,0) =0
And ., D> [M[D(ATUEH - forsome p >0

s=1, o=, pped

Therefore (u,) e h: (M, ¢, p)
Now consider the sequence of fuzzy numbers.

1 for k even

vw= <—1 for k odd
0 otherwise
— NP
Then ). {M(MH —o forsomep>0
e,

Hence (v,) ¢ h: (M, ¢, p)
Also D (v,,0) <D (u,,0)
Thus h. (M, ¢, F) is not holid.

Theorem 3.6 The sequence space he (M, ¢, p) is not symmetric.
Proof The proof is given by the following example. Consider the sequence of fuzzy numbers given by
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B 1 fork<n
% =19 otherwise

Then D(Au,,0) =0.
Letp=1, M(x) =|x]|and ¢, =s forall seN.

—, p
Then s — 3 {M[D (AUK'O)H <@
s2Loep, @5 keo P
Therefore (uk) e h. (M, ¢, p)
Let (v,) be the re-arrangement of (u,) such that
v, =u,
v, =1 for kodd
= O otherwise.

> D(A, 0)=w

Thus (v,) ¢ he(M, ¢, p).
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