Awakening to reality Available online at www.elixirpublishers.com (Elixir International Journal)

Control Engineering

Fault diagnosis in benchmark process control system using quantitative process history based statistical techniques

Tarun Chopra

Department of Electrical Engineering, Govt. Engineering College Bikaner, India-334004.

ARTICLE INFO	ABSTRACT
Article history:	Fault diagnosis research deals with real world problems in terms of plant efficiency,
Received: 11 June 2013;	maintainability and reliability. Fault in process and manufacturing industries are crucial in
Received in revised form:	order to improve production efficiency, quality of the product and the cost of production.
24 July 2013;	This work is focused on the development of a fault diagnosis method for application to an
Accepted: 6 August 2013;	actuator benchmark specifically designed for industrial fault diagnosis. The performance of

© 2013 Elixir All rights reserved

Keywor ds

Fault Diagnosis, Benchmark study, Control Valves.

Introduction

With the increased complexity of industrial systems and the high level of process quality, reliability and safety requirements the automation of diagnostics is warranted in order to make it possible to determine the location, reason and time of the fault precisely; whereas earlier in the case of simple technical systems, human inspection was enough[1].

Real processes are usually dynamic, non-linear and stochastic. In such cases, prompt fault diagnosis requires accurate models of processes and for this interrelations between process parameters should be apparent.

Statistical measures like Correlation and principal factor analysis, Clustering and Discriminant analysis are examples of unsupervised learning. These measures aid in looking for patterns, groupings or other ways to characterize the data that may lead to understanding of the way the data interrelates in Complex Systems [2].

In this paper ,the above mentioned Statistical techniques have been chosen as tool for analyzing the information related to fault diagnosis in DAMADICS Benchmark Process Control System .This Benchmark is concerned with applications of diagnosis methods on chosen actuators in 5-stage evaporisation plant used in the Lublin sugar factory, Poland [3].

State of Art

Correlation and principal factor analysis is used for exploratory analysis where the nature and relationship between variables is to be understood. Correlation is a measure of the association between two variables. The purpose of Factor Analysis is to identify a set of underlying factors that explain the relationships between correlated variables [4]. K-Means clustering, one of the older predictive modeling methods, was developed during 1975 - 1977 by Hartigan and Wong [5]. The basic idea of K-Means clustering is that clusters of items with the same target category are identified, and predictions for new data items are made by assuming they are of the same type as the nearest cluster center. Discriminant Analysis was originally developed in 1936 by R.A. Fisher [6].

This analysis finds a linear transformation ("discriminant function") of the predictors, which yields a new set of transformed values that provides a more accurate discrimination than either predictor alone.

Methodol ogy

During the dynamic sugar production process, there is a possibility that there will occur faults in the actuator valve block, with different types of strength i.e. abrupt {small, medium, big} and incipient. The early diagnosis (detection and isolation) of those faults minimize damages in the industrial line.

The dataset used for this case study have been generated in this study by employing the MATLAB-SIMULINK model of the actuator as shown in Fig 1.

In accordance with the scope of the defined objective for this work, only the data related to fault categories F7 (medium evaporation or critical flow), F12 (electro-pneumatic transducer fault), F13 (stem displacement sensor fault), F15 (positioner spring fault) have been considered.

Results

The results after applying the above mentioned three techniques have been summarized as follows:-

Correlation and Principal Factor Analysis

The summary of variables has been presented in Table 1 and results have been tabulated in Tables 2-5.

Project Parameters

Target variable: Type of Fault

Number of predictor variables: 6

Input Data

Number of variables (data columns): 7

Data subsetting: Use all data rows

Number of data rows: 80

Total weight for all rows: 80

Rows with missing target or weight values: 0

Rows with missing predictor values: 0

Tele: E-mail addresses: tarun_ecb@rediffmail.com

Took Heb 3 軸 亀 | ユ ヒ | 🕨 = 100 | Nomal 🖃 男番 🛛 🖗 西 🕇 😵 0 🖌 🖬 🚳 ଯ⊢ୁ • ĉ ē • 80 õ •Ö 0 🖞 start 🛛 🗋 📖 📱 Link: untitle... 📲 New Mor 📱 untities 📔 Link: unitile. RESI

Fig 1: MATLAB- Simulink Model

Table 1: Summary of Variables

S.No.	Var	Class	Туре	Missing	Category
				rows	
1	CV	Predictor	Continuous	0	20
2	P1	Predictor	Continuous	0	20
3	P2	Predictor	Continuous	0	20
4	Т	Predictor	Continuous	0	77
5	Х	Predictor	Continuous	0	63
6	F	Predictor	Continuous	0	32
7	Туре	Target	Categorical	0	4
	of				
	fault				

 Table 2: Correlation Matrix

	CV	P1	P2	Х	F	Т
CV	1.0000	-0.3719	-0.0419	0.4973	-0.5184	0.0004
P1	-0.3719	1.0000	-0.0518	-0.2102	0.2624	0.0006
P2	-0.0419	-0.0518	1.0000	-0.0001	-0.0096	-0.0006
Х	0.4973	-0.2102	-0.0001	1.0000	-0.8584	-0.6589
F	-0.5184	0.2624	-0.0096	-0.8584	1.0000	0.4314
Т	0.0004	0.0006	0006	-0.6589	0.4314	1.0000

Table 3: Factor Importance

Factor extraction method: Principal Factor Analysis

value % % 1 2.37766 83.156 83.156 2 0.46142 16.137 99.293 *** 3 0.02020 0.707 100.000 *** 4 -0.00057 . . 5 5 -0.16852 . . .	Factor	Eigen	Variance	Cumulative	Scree Plot
1 2.37766 83.156 83.156 ************************************		value	%	%	
2 0.46142 16.137 99.293 *** 3 0.02020 0.707 100.000 *** 4 -0.00057 . . . 5 -0.16852 . . . 6 -0.33434 . . .	1	2.37766	83.156	83.156	* * * * * * * * * * * * * * * * * * * *
3 0.02020 0.707 100.000 4 -0.00057 . . 5 -0.16852 . . 6 -0.33434 . .	2	0.46142	16.137	99.293	***
4 -0.00057 . . 5 -0.16852 . . 6 -0.33434 . .	3	0.02020	0.707	100.000	
5 -0.16852 . . 6 -0.33434 . .	4	-0.00057			
6 -0.33434	5	-0.16852			
	6	-0.33434			

Stopped at cumulative explained variance = 80% Minimum allowed eigenvalue = 0.50000 Number of factors retained = 1

Table 4: Communalities							
	Initial Final Common Var. % Unique V						
				%			
CV	0.4784	0.2506	25.065	74.935			
P1	0.1529	0.0753	7.535	92.465			
P2	0.0083	0.0000	0.000	100.000			
Х	0.8655	1.0000	100.000	0.000			
F	0.7715	0.7887	78.871	21.129			
Т	0.6127	0.2411	24.114	75.886			

Communalities converged after 13 iterations

 Table 5: Rotated Factor Loading Matrix

 Rotation method: Varimax

	Fac1
CV	0.5006
P1	-0.2745
P2	0.0008
Х	1.0108 *
F	-0.8881 *
Т	-0.4911

Eigen value: - 2.378 Variance : - 83.156 Cum. Var. : - 83.156

Fig 2: Scree Plot

K-Means Clustering

The results after applying K-Means Clustering have been tabulated in Tables 6-9.

Project Parameters

Target variable: Type of Fault

Number of predictor variables: 6

Type of analysis: Classification

Category weights (priors): Data file distribution

Misclassification costs: Equal (unitary)

Validation method: Cross validation

Number of cross-validation folds: 10

K-Means Clustering Parameters

The model was created with 3 clusters per target category. Predictions were made by using the closest cluster. **Misclassification Tables**

Table	6٠	Training	Data
Tane	υ.	11 ammg	Data

Actual			Misclassified		
Category	Count	Wt.	Count	Wt.	%
F12	20	20	1	1	5.00
F13	20	20	0	0	0.00
F15	20	20	1	1	5.00
F7	20	20	0	0	0.000
Total	80	80	2	2	2.500

Table 7: Validation Data

Actual			Miscla	ssified	L
Category	Count	Wt.	Count	Wt.	%
F12	20	20	2	2	10.00
F13	20	20	0	0	0.00
F15	20	20	3	3	15.00
F7	20	20	0	0	0.000
Total	80	80	5	5	6.250

Model Size Summary Report

_____ ____

Model evaluation was performed using 4-fold cross-validation. Clusters Misclassification % Probability error %

2	0.75000	1604142
2	8.75000	16.04143
3	3.75000	15.82462 < Lowest
		misclassification
4	6.25000	15.73564
5	6.25000	15.71177
6	6.25000	15.66267
7	5.00000	15.64611
8	5.00000	15.62520
9	5.00000	15.58750
10	5.00000	15.57692
11	5.00000	15.57289
12	5.00000	15.56973
13	5.00000	15.56492
14	5.00000	15.54949
15	5.00000	15.54591
16	5.00000	15.54120
17	5,00000	15 54120
18	5,00000	15 54120
19	5,00000	15 54120
20	5,00000	15 54120
20	5,00000	15 54120
21	5,00000	15 54120
22	5.00000	15.54120
23	5.00000	15.54120
24 25	5.00000	15.54120
25	5.00000	15.54120
26	5.00000	15.54120
27	5.00000	15.54120
28	5.00000	15.54120
29	5.00000	15.54120
30	5.00000	15.54120
31	5.00000	15.54120
32	5.00000	15.54120
33	5.00000	15.54120
34	5.00000	15.54120
35	5.00000	15.54120
36	5.00000	15.54120
37	5.00000	15.54120
38	5.00000	15.54120
39	5.00000	15.54120
40	5.00000	15.54120
41	5.00000	15.54120
42	5.00000	15.54120
43	5.00000	15.54120
44	5.00000	15.54120
45	5.00000	15.54120
46	5.00000	15.54120
47	5.00000	15.54120
48	5.00000	15.54120
49	5.00000	15.54120
50	5 00000	15 54120
51	5.00000	15 54120
52	5,00000	15.54120
52	5.00000	15.54120
55	5.00000	13.34120

The model has been built using 3 clusters.

Confusion Matrix

Table 8: Training Data							
Actual Category	Predicted Category						
	F12	F13	F15	F7			
F12	19	0	1	0			
F13	0	20	0	0			
F15	1	0	19	0			
E'7	Δ	Δ	Δ	20			

Table 9: Validation Data

Actual Category	Predicted Category						
	F12 F13 F15 F7						
F12	18	0	2	0			
F13	0	20	0	0			
F15	3	0	17	0			
F7	0	0	0	20			

Fig 3:- Model Size and Error Rate Linear Discriminant Analysis (LDA)

The results obtained after application of LDA have been presented in Tables 10-15.

Project Parameters

Target variable: Type of Fault

Number of predictor variables: 6

Type of analysis: Classification

Category weights (priors): Data file distribution

Misclassification costs: Equal (unitary)

Validation method: Cross validation

Number of cross-validation folds: 10

LDA Parameters

Table 10: Category weights (prior probabilities)

Category	Probability
F7	0.25
F12	0.25
F13	0.25
F15	0.25

Table	11: Standardized	Coefficients	of Linear	Discriminant
		Functions		

i uneuono					
Predictor	DF1	DF2	DF3		
CV	1.883818	-20.814485	11.179469		
P1	8.480973	7.945867	1.952741		
P2	-33.424995	-15.639614	2.985998		
Х	-0.262934	-1.102951	-14.299424		
F	-0.612769	-9.254251	-5.827017		
Т	-912.376894	3.552316	-4.458468		
% Var.	99.995	0.004	0.001		

Misclassification Tables

Table 12: Training Data					
Actual			Misclassif	ïed	
Category	Count	Wt.	Count	Wt.	%
F12	20	20	0	0	0.00
F13	20	20	0	0	0.00
F15	20	20	1	1	5.00
F7	20	20	0	0	0.00
Total	80	80	1	1	1.25

Table 13: Validation Data

Actual			Misclassified		
Category	Count	Wt.	Count	Wt.	%
F12	20	20	0	0	0.00
F13	20	20	0	0	0.00
F15	20	20	1	1	5.00
F7	20	20	0	0	0.00
Total	80	80	1	1	1.25

Confusion Matrix

Table 14: Training Data

Actual Category	Predicted Category			
	F12	F13	F15	F7
F12	20	0	0	0
F13	0	20	0	0
F15	1	0	19	0
F7	0	0	0	20

Table	15:	Validation	Data
-------	-----	------------	------

Actual	Predicted Category				
Category					
	F12 F13 F15 F7				
F12	20	0	0	0	
F13	0	20	0	0	
F15	1	0	19	0	
F7	0	0	0	20	

Discussions

The strength of above approach lies in the accuracy manifested in handling the classification (discrimination) task of faults inside overlapping areas with fine precision.

Future research needs to focus on further improvement of fault diagnosis results on DAMADICS benchmark in other categories of overlapping faults by using perception based decision making.

References

[1] Isermann, R., Fault Diagnosis Systems. An Introduction from Fault Detection to Fault Tolerance. Springer, Berlin, 2005.

[2] Phillip H. Sherrod, "DTREG Predictive Modeling Software", 2003

[3] Michal Bartys et al, "Introduction to the DAMADICS actuator FDI benchmark study" Control Engineering Practice 14, 577–596, 2006.

[4] Gorsuch, Richard L. Factor Analysis. W. B. Saunders Co. 1974

[5] Hartigan, J.A. and Wong, M.A. A K-Means Clustering Algorithm. Applied Statistics 28. 1979.

[6] Fisher, R.A ,The use of multiple measures in taxonomic problems, Ann. Eugenics, 7:179–188, 1936.