
Ajeet A.Chikkamannur et al./ Elixir Comp. Sci. & Engg. 61 (2013) 16946-16949

16946

1.Introduction

In the design of relational database management system the

database schema is constructed through the grouping of related

attributes. Currently the designers are utilizing the diagrammatic

modeling techniques viz., ER or EER for the design but these

techniques completely depends on the designer skill, art,

interpretation and capability. Further, the complexity is

increasing when more number of designers is involved in the

design. One of the grounds is the lack of unanimous

understanding and viewing of the same application. Pragmatic

database design procedure employs either design by synthesis or

design by analysis, where the set functional dependencies

attributes are joined or set of attributes is decomposed to

constitute a relation(s).

The normalization is a process of crystallizing the database

in which the grouping of attributes is carried to eliminate the

modification anomalies and reduction of redundancy. This

layered approach reduces the redundancy by decomposing the

set of attributes in to subset(s) as it progresses from one layer to

another. To establish this, the set of attributes is decomposed in

to subset(s) of attributes based on the functional dependencies.

The process normalization yields the number of relations.

This process minimizes the redundancy and avoids the update

anomalies of database. We observed that this process is correct

but not a complete. The evidence is the design of three relations

from two functional dependencies in BCNF [5]. Further, the

designed relations must ensure the dependency preservation and

lossless join property on decomposition. To ensure manually,

this is a herculean task when the decomposition yields the large

number of relations. Is it possible to decompose the attributes set

to ensure these properties and the reduction of redundancy?

Many researchers [1, 2] have shown that there is a natural

correspondence between hypergraph and database schema.

Among the many properties, one of the properties is that “ the

join dependency and loss less join are equivalent to the a-

cyclicity of the hypergraph”.

This paper proposes an automated methodology for

identifying the cyclicity of the hypergraph. On the existence of

cyclicity, the hypergraph is ameliorated to acyclic through the

identification of functional

dependency causing the cyclicity. Then the functional

dependency is detached from the hypergraph, so that the

cyclicity is eliminated and redundancy is reduced by overriding

the functional dependency in the relation design.

2. Background

1. Hypergraph: A hypergraph H is a pair (N, E) [4, 9] where N

is the set of nodes and E is the set of hyper edges.

2. Cycle: The cycle A in a hypergraph H is a sequence of edges

and nodes i.e., E1, N1, E2, N2, ………………, Em, Nm, Em+1 such

that

1. N1, N2, ………………, Nm are distinct node.

2. E1, E2,………………, Em are distinct edges and Em+1 = E1.

3. m  3, that is, there are at least three edges are involved.

4. Ni is in Ei and Ei+1 (1  i m).

The size of cycle depends on the m distinct edges and the

least size of cycle is with three edges. This least and most

number of edges are resulting in two kinds of configuration

shown in the figure 1.

Automated methodology to reduce the redundancy in relational database
Ajeet A.Chikkamannur

1
 and Shivanand. M. Handigund

2

1
Department of Computer Science and Engineering, Sri Venkateshwara College of Engineering, Bangalore 562157, India.

2
Department of Computer Science and Engineering, Bangalore Institute of Technology, Bangalore 560004, India.

ABS TRACT

Normalization is a correct process for good relational database design of an application but

not a complete. To support this, in a Boyce-Codd normal form design, three relations are

designed from the two functional dependencies. Clearly, this is a setback in the basic aim of

normalization i.e. reduction in database redundancy. The indecision here is that can we

reduce the database redundancy further? Secondly, the database designers are creating the

relations from the set of attributes and functional dependencies existing among them. The

human work in the design process may lead to ambiguity and incorrect relations when the

set of attributes and functional dependencies are large. The design of automated process for

the human work overcomes this lacuna. The researchers have shown that there is a natural

correspondence between the hypergraph and relational database schema. Beeri .et .al

introduced a special class of hypergraphs known as „acyclic‟, where the properties of

relational database are equivalent to „ -acyclicity‟. Another researcher Fagin introduced

„  -acyclicity, which establishes the condition of unique relationship among the attributes.

Hence, the amelioration of hypergraph from cyclic to acyclic satisfies the properties of

relational database. Our paper proposes a methodology that takes the functional

dependencies, attributes set as an input, and identifies the candidate key attributes. From the

candidate key attributes, the hypergraph is redefined for the „acyclicity‟ by th e isolation of

functional dependency (ies) framed by the candidate key attributes.

 © 2013 Elixir All rights reserved

.

ARTICLE INFO

Article his tory:

Received: 31 May 2013;

Received in revised form:

24 July 2013;

Accepted: 3 August 2013;

Keywor ds

Hypergraph,

Functional Dependency,

Incidence matrix,

Cyclic,

Acyclic.

Elixir Comp. Sci. & Engg. 61 (2013) 16946-16949

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Tele:
E-mail addresses: ac.ajeet@gmail.com

 © 2013 Elixir All rights reserved

Ajeet A.Chikkamannur et al./ Elixir Comp. Sci. & Engg. 61 (2013) 16946-16949

16947

Figure 1. Forbidden Configurations

3. FD graph definition: A functional dependency graph (FD-

graph) [3, 9] is a labeled graph with two kinds of nodes and

edges and the definition is : For a hypergraph H = (N, E), let SM

= {Z | there exists a hyper arc (Z, i)  H and | Z | > 1}. The FD-

graph of H is the labeled graph G (H) = (Ns  Nc, Ef  Ed),

where:

Ns  N is the set of simple nodes;

Nc is the set of compound nodes, which is in bijective

relationship with SM. If Z  SM is a source set then z will denote

the corresponding compound node, and any simple node zi in the

source set Z will be called a compound node of the compound

node z;

Ef  (Nc  Ns)  (Ns  Ns) = {(z, x) | (Z, x)  H} is the set

edges referred to as full edges in bijective relationship with H;

Ed  Nc  Ns = {(zi, z) | z  Nc and zi  Z} is the set of

edges referred to as dotted edges connecting any compound

node to its components.

4. Model of Hypergraph: A set of functional dependencies

represented by hypergraph [7, 8] H = (N, E) over an attribute set

A with number of vertices N = A, and edge with following:

 E = {(X, Y): F (X, Y)  F and Y  X} (1)

Where F (X, Y), with X and Y are subsets of A, uniquely

defines the value of attributes in Y if attribute value of X is

given.

5. Dependency Matrix: The hypergraph contains the directed

hyper edges [7, 8]. The directed hyperedge represented as E = (T

(E), H (E)), where T (E) is set of tail vertices and H (E) is set of

head vertices. From the equation 1, the set of tail vertices T (E)

= X and the set of head vertices H (E) = Y. The dependency

matrix of hypergraph H is V  E matrix and aij defined as

follows

 -1 if vi  T (E)

aij = 1 if vi  H (E) (2)

 0 otherwise

3. Methodology

Our design utilizes the methodology designed and

developed by the researcher [6] to extract the attributes and

functional dependencies from an application. The systematic

approach to renovate the hypergraph that is in the form of

dependency matrix constructed by a set of functional

dependencies and attributes is given below:

Input: Matrix of Minimal Covered Functional

 Dependencies [7, 8]

Output: a-cyclic Matrix of Hypergraph

Step1: Create the additional row at the bottom of the matrix

with all columns‟ value as 0. This row is called as a “key row”.

Step 2: For each column of the matrix, readthrough the entire

column element‟s value for with the value of -1. On a true

condition, the key row column value corresponding to the

readthrough column is stored as -1.

Step 3: The columns‟ attributes having -1 in column of key row

together forms a candidate key. Then count the number of -1 in

the row. This count is termed as “keycount”

Step 4: for a row and each column, if there is a (-1, -1) or (-1, 1)

values corresponding to row, keycount row respectively then

count such values. This count is termed as “row count”

Step 5: If row count is equal to the keycount then separate that

row.

Step 6: Repeat step 4 and 5 until all rows of incidence matrix

are traced.

5.0 Case Study

5.1 Employee System

To illustrate the methodology consider the data items and

functional dependencies for the Employee Information Database

[5]. The data items are emp_id (A), dept_name (B), skill_id (C),

emp_name (D), dept_phone (E), skill_name (F), emp_phone

(G), dept_mgrname (H), skill_date (I), skill_lvl (J). The

functional dependencies are 1) A BDG, 2) B  EH, 3) C 

F, 4) AC  IJ. The systematic procedure to illustrate our

designed methodology is given below.

Step 1. The dependency matrix is constructed from the data

items i.e. attributes and the functional dependencies, which is

shown below

 A B C D E F G H I J

1 -1 1 0 1 0 0 1 0 0 0

2 0 -1 0 0 1 0 0 1 0 0

3 0 0 -1 0 0 1 0 0 0 0

4 -1 0 -1 0 0 0 0 0 1 1

Step 2. The candidate key attributes are identified by the

presence of -1 in the column. The attributes A, B and C have the

-1 value in their respective columns. Hence they are taken as

candidate key attributes. They are shown as -1 value in the last

row.

 A B C D E F G H I J

1 -1 1 0 1 0 0 1 0 0 0

2 0 -1 0 0 1 0 0 1 0 0

3 0 0 -1 0 0 1 0 0 0 0

4 -1 0 -1 0 0 0 0 0 1 1

 -1 -1 -1 0 0 0 0 0 0 0

Step 3. The number of -1‟s in last is 3. Hence the row count

value is taken as 3. The row 1 have the row count value as 2

because of the attributes A, B columns have the value (-1, -1),

(1, -1) with respect to key attribute row respectively. The value

of key count 3 is not equal to the row 1 count value 2. Hence,

the row is not discarded. The rows 2, 3, and 4 are retained since

their row count values are 1, 1, 2 respectively. The resulting

matrix is shown below

 A B C D E F G H I J

1 -1 1 0 1 0 0 1 0 0 0 2

2 0 -1 0 0 1 0 0 1 0 0 1

3 0 0 -1 0 0 1 0 0 0 0 1

4 -1 0 -1 0 0 0 0 0 1 1 2

 -1 -1 -1 0 0 0 0 0 0 0 3

Step 4. Group the attributes present in the each row for a

relation.

5.2 Project Part Supplier System

Let us consider six attributes SUPPLIER (A), PART (B),

PROJECT (C), COUNT (D), DATE (E) and COST (F). The

functional dependencies are BCD, ACE, AB F and AC

B [2].

The systematic procedure of eliminating cyclicity is as

follows

Ajeet A.Chikkamannur et al./ Elixir Comp. Sci. & Engg. 61 (2013) 16946-16949

16948

Step 1. The attributes and functional dependencies are

represented as incidence matrix, which is shown below

 A B C D E F

1 0 -1 -1 1 0 0

2 -1 0 -1 0 1 0

3 -1 -1 0 0 0 1

4 -1 1 -1 0 0 0

Step 2. The attributes A, B and C have the elements value as -1

in their respective columns. Hence the attributes A, B and C

becomes the candidate key attributes which are depicted as -1

value in last row of respective column. Further the key count is

3 since the last row consist of three -1 element‟s value. The

matrix is shown below.

 A B C D E F

1 0 -1 -1 1 0 0

2 -1 0 -1 0 1 0

3 -1 -1 0 0 0 1

4 -1 1 -1 0 0 0

 -1 -1 -1 0 0 0

Step 3. The row 1 have the -1 value corresponding to columns

B, C respectively. Hence, the row 1 count have the value of 2.

Similarly, the rows 2, 3 have the row count values 2, 2

respectively. The row 4 have the count value as 3 because of the

A, B, C columns have the values (-1, -1), (-1, 1), (-1, -1) in

correspondence with (key row, row). Hence, the row count

value results as a 3. The matrix with count values is shown

below

 A B C D E F

1 0 -1 -1 1 0 0 2

2 -1 0 -1 0 1 0 2

3 -1 -1 0 0 0 1 2

4 -1 1 -1 0 0 0 3

 -1 -1 -1 0 0 0 3

Step 4. The row 4 count and the key count values are same.

Hence, the row 4 is detached from the matrix and resulting

matrix is shown below.

 A B C D E F

1 0 -1 -1 1 0 0 2

2 -1 0 -1 0 1 0 2

3 -1 -1 0 0 0 1 2

 -1 -1 -1 0 0 0 3

6. Results

In this section, we are illustrating the correctness of our

methodology by considering the data corresponding to the

relations designed by the project, part supplied system utilized

in the previous section. Without the application of our

methodology, the following relations are designed by the

pragmatic design methodologies [5]. The example data, which is

stored in each relation, is shown below. For simplicity the

example data is not entered in the first three relations

Part Project Count

Supplier Part Cost

Supplier Project Date

Supplier Project Part

Dell 1 Monitor

The process of updating is straight forward for existence of

a table. We encounter the challenge that How the tuple „dell‟,

„1‟, „monitor‟ is inserted and retrieved on the non-existence of

table in a schema. Presuming that the INSERT operation is

updating the number of relations‟ primarily key attributes the

value is inserted in the database. To evidence this, the following

relations with example tuple are considered.

 Part Project Count

Monitor 1 NULL

Supplier Part Cost

Dell Monitor NULL

Supplier Project Date

Dell 1 NULL

We have proven that instead of designing an exclusive

relation for supplier, project, part attributes, the tuple is inserted

in the other relations corresponding with these attributes as key

attributes. Since, non-key attribute‟s values of relations are

unknown; currently their values are stored as NULL. When the

relations are updated depending on the primary key value, the

NULL value can be ameliorated to the fact value.

On storage of the tuple „Dell‟, „1‟, „Monitor‟ in relations,

the application of relationally complete operators on these three

relations retrieves the tuple i.e. apply the join and project on

attributes Supplier, Project and Part. Hence, it is proved that any

functional dependency constituted by the candidate key

attributes becomes the redundant functional dependency. This

functional dependency is isolated from the relation design to

reduce the redundancy.

7. Conclusion

This paper attempts to provide an automated methodology

to identify the candidate key attributes from the given set of the

attributes and functional dependencies. Then functional

dependencies constituted by the candidate key attributes are

identified by the designed automated methodology. i.e. the

attributes causing the cyclicity is determined. The isolation of

this functional dependency (framed by the candidate key

attributes) eliminates the cyclicity of the hypergraph. Hence, the

reduction of number of functional dependency (ies) avoids the

redundant relation(s) design. This is shown by the two case

studies and discussion in result section.

In feature, the work is to be extended for identification and

elimination of redundancy completely so that the basic aim of

normalization i.e. elimination of complete redundancy is to be

fulfilled. On other way, the isolated functional dependencies can

be studied for the super class design in the Object Technology.

The iterative application may yield the super-sub class

hierarchy.

References

[1] Beeri. C, Fagin. R, Maier, Yannakakis, “On the desirability of

the database schemes” ACM, vol 30, No. 3, 1983

[2] Fagin R. “Degrees of acyclicity for hypergraphs and

relational database schemes” ACM Vol 30, No 3 1983

[3] G. Ausiello, G. Italiano, U. Nanni, “ Optimal traversal of

directed hypergraphs” TR-92-073, September 1992.

[4] Yun-zhou Zhu “Line graph of gamma-acyclic database

sechemes and its recognition algorithm”, VLDB, Singapore,

August 1984.

[5] Patric O‟Neil, Elizabeth O‟Neil, “Database principles,

programming and performance” second edition, Harcourt Asia

Pte Limited, 2001.

Ajeet A.Chikkamannur et al./ Elixir Comp. Sci. & Engg. 61 (2013) 16946-16949

16949

[6] S M. Handigund, “Reverse Engineering of Legacy COBOL

systems”, Ph. D. thesis Indian Institute of Technology Bombay,

2001

[7] Chikkamannur A. A. Handigund S. M. “Categorization of

Functional Dependencies for a Minimal Cover”, ICSTC, San

Diego USA. page 213-217, 2008.

[8] Chikkamannur A. A. Handigund S. M. “An efficient

Methodology for Determining a Minimal Cover of Functional

Dependencies”, ICISTM 2008, Dubai. 2008. Unpublished

[9] Chikkamannur A. A. Handigund S. M. “A methodology for

renovation of -acyclicity” VTU and ISTE sponsored, National

Conference on Information Technology, BIT Bellary, 2010

