Advances in Pure Mathematics

Example for the stability of reciprocal type functional equation controlled by product of different powers in singular case
 K. Ravi' , J.M. Rassias ${ }^{2}$ and B.V. Senthil Kumar ${ }^{3}$
 ${ }^{1}$ Department of Mathematics, Sacred Heart College, Tirupattur - 635 601, TamilNadu, India.
 ${ }^{2}$ Pedagogical Department E.E., Section of Mathematics and Informatics, National and Capodistrian University of Athens, 4, Agamemnonos Str., Aghia Paraskevi, Athens, Attikis 15342, GREECE.
 ${ }^{3}$ Department of Mathematics, C. Abdul Hakeem College of Engineering and Technology, Melvisharam - 632 509, TamilNadu, India.

ARTICLE INFO

Article history:

Received: 20 June 2013;
Received in revised form:
24 July 2013;
Accepted: 2 August 2013;

Keywords

Reciprocal function,
Reciprocal type functional equation, UGR stability.

ABSTRACT
 In this paper, we present a counter-example for the stability of reciprocal type functional equation controlled by product of different powers in singular case.

© 2013 Elixir All rights reserved

1. Introduction

An inquisitive question that was given a serious thought by S.M. Ulam [12] concerning the stability of group homomorphisms gave rise to the stability problem of functional equations. The laborious intellectual strivings of D.H. Hyers [4] did not go in vain because he was the first to come out with a partial answer to solve the question posed by Ulam on Banach spaces. In course of time, the theorem formulated by Hyers was generalized by T. Aoki [1] for additive mappings and by Th.M. Rassias [11] for linear mappings by taking into consideration an unbounded Cauchy difference. The findings of Th.M. Rassias have exercised a delectable influence on the development of what is addressed as the generalized Hyers-Ulam-Rassias stability of functional equations. A generalized and modified form of the theorem evolved by Th.M. Rassias was advocated by P. Gavruta [3] who replaced the unbounded Cauchy difference by driving into study a general control function within the viable approach designed by Th.M. Rassias. In 1982, a generalization of the result of D.H. Hyers was proved by J.M. Rassias using weaker conditions controlled by a product of different powers of norms [6]. The above stability involving a product of different powers of normed is called as Ulam-Gavruta-Rassias (or UGR) stability by Bouikhalene and Elqorachi [2], Sibaha et.al. [10], Nakmahachalasint [5], K. Ravi and M. Arunkumar [8], K. Ravi and B.V. Senthil Kumar [9]. In [7], J.M. Rassias proved the following result.
Theorem 1.1. Let X be a normed space with the norm $\mathbb{\mathbb { Z }}\|\cdot\| \mathbb{I}_{\mathbf{1}} \mathbf{1}$ and let Y be a Banach space with the norm $\square \|\left||\cdot| \square_{\mathbf{1}} \mathbf{2}\right.$. Assume in addition that $f: X \rightarrow Y$ is a mapping such that $f(t x)$ is continuous in ${ }^{t}$ for each fixed ${ }^{x}$. If there exist $a, b, \leq a+b<1$, and $c_{\mathbf{2}} \geq \mathbf{0}$ such that

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq c_{2}\|x\|_{1}^{a}\|y\|_{1}^{b} \tag{1.1}
\end{equation*}
$$

for all $x, y \in X$ for which the second member of(1.1) is defined, then there exists a unique linear mapping $L: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-L(x)\| \leq c\|x\|_{1}^{a+b} \tag{1.2}
\end{equation*}
$$

Tele:

E-mail addresses: bvssree@yahoo.co.in
for all $x \in X$, where $c=\frac{c_{\mathbf{2}}}{2-2^{a+b}}$.
In the same paper, J.M. Rassias posed the following question:
What is the situation in the above Theorem 1.1 in the case $a+b=1$?
A clever counter-example has been given by P. Gavruta [3] by proving the following theorem.
Theorem 1.2. Let be $0<a<1$. Then there is a function $f: \mathbb{R} \rightarrow \mathbf{R}$ and a constant $c_{\mathbf{2}}>\mathbf{0}$ such that

$$
\begin{equation*}
|f(x+y)-f(x)-f(y)| \leq c_{\mathbf{2}}|x|^{a}|y|^{1-a} \tag{1.3}
\end{equation*}
$$

for all $x, y \in \mathbf{R}$ and

$$
\begin{equation*}
\sup _{x \neq 0} \frac{(f(x)-T(x))}{|x|}=+\infty \tag{1.4}
\end{equation*}
$$

for every additive mapping $T: \mathbb{R} \rightarrow \mathbb{R}$.
In 2010, K. Ravi and B.V. Senthil Kumar [9] investigated the well-known Ulam-Gavruta-Rassias stability for the 2dimensional Rassias reciprocal functional equation

$$
\begin{equation*}
r(x+y)=\frac{r(x) r(y)}{r(x)+r(y)} \tag{1.5}
\end{equation*}
$$

by proving the following theorem.

Theorem 1.3. Let X be the space of non-zero real numbers. Let $f: X \rightarrow \mathbf{R}$ be a mapping and there exist $a, b: \rho=a+b \neq-\mathbf{1}$ and $c_{\mathbf{2}} \geq \mathbf{0}$ such that

$$
\begin{equation*}
\left|f(x+y)-\frac{f(x) f(y)}{f(x)+f(y)}\right| \leq c_{\mathbf{2}}|x|^{a}|y|^{b} \tag{1.6}
\end{equation*}
$$

for all $x, y \in X$, then there exists a unique reciprocal mapping $r: X \rightarrow \mathbf{R}$ such that

$$
\begin{equation*}
|f(x)-r(x)| \leq \frac{2 c_{2}}{\left|1-2^{p+1}\right|}|x|^{\rho} \tag{1.7}
\end{equation*}
$$

for all $x \in X$.
Inspired by the brilliant counter-example constructed by P. Gavruta in Theorem 1.2 to the question of J.M. Rassias, in this paper, we present a counter-example to the singular case $\rho=a+b=-\mathbf{1}$ in Theorem 1.3.

2. A COUNTER-EXAMPLE TO THE SINGULAR CASE IN THEOREM 1.3

We present here a counter-example to the singular case $\rho=a+b=-\mathbf{1}$ in Theorem 1.3 by proving the following theorem.
Theorem 2.1. Let ${ }^{a}$ be such that $-1<a<0$. Then there is a function $f:[2,4] \rightarrow \mathbf{R}$ and a constant $c_{\mathbf{2}}>\mathbf{0}$ such that

$$
\begin{equation*}
|D g(x, y)| \leq c_{2} x^{a} y^{-1-a} \tag{2.1}
\end{equation*}
$$

for all $x, y \in[2,4]$ and

$$
\begin{equation*}
\max _{x \in[2,4]} \frac{|g(x)-r(x)|}{\frac{1}{x}}=\varepsilon \tag{2.2}
\end{equation*}
$$

for a reciprocal mapping $r:[2,4] \rightarrow \mathbf{R}$ with $r(x)=\frac{\mathbf{1}}{x}$ and a small positive quantity $\quad \varepsilon\left(=\left|\frac{\mathbf{1}}{\ln \mathbf{2}}-\mathbf{1}\right|\right)$. Proof. Let us define $f:[2,4] \rightarrow \mathbf{R}$ by
$f(x)=\frac{1}{x \ln x}$, for all $x \in[2,4]$.
Then
$\max _{x \in[2,4]} \frac{|g(x)-r(x)|}{\frac{1}{x}}=\max _{x \in[2,4]} \frac{\left|\frac{1}{x \ln x}-\frac{1}{x}\right|}{\frac{1}{x}}$

$$
\begin{aligned}
& =\max _{x \in[2,4]}\left|\frac{1}{\ln x}-\mathbf{1}\right| \\
& =\left|\frac{1}{\ln 2}-\mathbf{1}\right|=\varepsilon
\end{aligned}
$$

Hence the relation (2.2) follows. We have to prove (2.1) is true.

$$
\left.\begin{aligned}
|D g(x, y)| & =\left\lvert\, \frac{1}{(x+y) \ln (x+y)}-\frac{\frac{1}{x \ln x} \frac{1}{y \ln y}}{x \ln x}+\frac{1}{y \ln y}\right.
\end{aligned} \right\rvert\,
$$

We have to prove that there exists a constant $c_{2}>0$ such that

$$
\begin{equation*}
\frac{1}{x} \ln \left(1+\frac{x}{y}\right)+\frac{1}{y} \ln \left(1+\frac{y}{x}\right) \leq c_{2} x^{a} y^{-1-a} \tag{2.3}
\end{equation*}
$$

for all $x, y \in[2,4]$. Taking $\frac{y}{x}=t$, the inequality (2.3) is equivalent to the inequality
$t^{1+a} \ln \left(1+\frac{1}{t}\right)+t^{a} \ln (1+t) \leq c_{2}$.
By using L'Hospital rule, we have
$\lim _{t \rightarrow 0} t^{a} \ln (1+t)=\lim _{t \rightarrow 0} \frac{\ln (1+t)}{t^{-a}}$

$$
\begin{aligned}
& =\lim _{t \rightarrow 0} \frac{\frac{1}{1+a t^{-a-1}}}{-1} \\
& =-\frac{1}{a t \rightarrow 0} \frac{t^{a+1}}{1+t}=0
\end{aligned}
$$

and
$\lim _{t \rightarrow \infty} t^{a} \ln (1+t)=\lim _{t \rightarrow \infty} \frac{\ln (1+t)}{t^{-a}}$

$$
\begin{aligned}
& =-\frac{1}{a} \lim _{t \rightarrow \infty} \frac{t^{a+1}}{1+t} \\
& =-\frac{1}{a} \lim _{t \rightarrow \infty} \frac{(a+1) t^{a}}{1} \\
& =-\left(\frac{a+1}{a}\right) \lim _{t \rightarrow \infty} t^{a}=0
\end{aligned}
$$

Since the function $t \rightarrow t^{a} \ln (1+t)$ is continuous on $(0, \infty)$, it follows that there is a constant $c=\frac{c_{2}}{2}>0$ such that

$$
\begin{equation*}
t^{a} \ln (1+t) \leq \frac{c_{2}}{2} \tag{2.4}
\end{equation*}
$$

Also,
$\lim _{t \rightarrow 0} t^{1+a} \ln \left(1+\frac{1}{t}\right)=\lim _{t \rightarrow 0} \frac{\ln \left(1+\frac{1}{t}\right)}{t^{-1-a}}$

$$
\begin{aligned}
& =\lim _{t \rightarrow 0} \frac{\frac{1}{1+\frac{1}{t}}\left(-\frac{1}{t^{2}}\right)}{(-1-a) t^{-a-2}} \\
& =\frac{1}{a+1} \lim _{t \rightarrow 0} \frac{t^{a+2}}{t^{2}+t} \\
& =\frac{1}{a+1} \lim _{t \rightarrow 0}(a+2) \frac{t^{a+1}}{2 t+1}=0
\end{aligned}
$$

and
$\lim _{t \rightarrow \infty} t^{1+a} \ln \left(1+\frac{1}{t}\right)=\lim _{t \rightarrow \infty} \frac{\ln \left(1+\frac{1}{t}\right)}{t^{-1-a}}$

$$
\begin{aligned}
& =\frac{1}{a+1} \lim _{t \rightarrow \infty} \frac{(a+2) t^{a+1}}{2 t+1} \\
& (a+2)=\lim _{t \rightarrow \infty} \frac{t^{a}}{2}=0
\end{aligned}
$$

Since the function $t \rightarrow t^{a+1} \ln \left(1+\frac{\mathbf{1}}{t}\right)$ is continuous on $(0, \infty)$, it follows that there is a constant $c=\frac{c_{2}}{2}>0$ such that

$$
\begin{equation*}
t^{a+1} \ln \left(1+\frac{1}{t}\right) \leq \frac{c_{2}}{\mathbf{2}} \tag{2.5}
\end{equation*}
$$

From the inequalities (2.4) and (2.5), we find that the inequality (2.3) holds and hence (2.1) also holds. Therefore, there exists a reciprocal function $r(x)=\frac{\mathbf{1}}{x}$, for all $x \in[2,4]$ which shows that the functional equation (1.5) is still stable for the singular case $\rho=a+b=-\mathbf{1}$ in Theorem 1.3.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math.Soc. Japan, 2(1950), 64-66.
[2] B. Bouikhalene and E. Elqorachi, Ulam-Gavruta-Rassias stability of the Pexider functional equation, Int. J. Appl. Math. Stat. 7(2007), 27-39.
[3] P. Gavruta, An answer to a question of John M. Rassias concerning the stability of Cauchy equation, Hadronic Math. Ser. (1999), 67-71.
[4] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[5] P. Nakmahachalasint, Hyers-Ulam-Rassias and Ulam-Gavruta-Rassias stabilities of an additive functional equation in several variables, Int. J. Math and Math. Sci, Art. ID 63239 (2007), 10 pages.
[6] J.M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46(1982), 126-130.
[7] J.M. Rassias, Solution of a problem of Ulam, J. Approx. Theory, 57(1989), 268-273.
[8] K. Ravi and M. Arunkumar, On the Ulam-Gavruta-Rassias stability of the orthogonally Euler-Lagrange type functional equation, Int. J. Appl. Math. Stat. 7(2007), 143-156.
[9] K. Ravi and B.V. Senthil Kumar, Ulam-Gavruta-Rassias stability of Rassias Reciprocal functional equation, Global J. of Appl. Math. and Math. Sci. 3(1-2) (Jan-Dec 2010), 57-79.
[10] M.A. Sibaha, B. Bouikhalene and E. Elqorachi, Ulam-Gavruta-Rassias stability for a linear functional equation, Int. J. Appl. Math. Stat. 7(2007), 157-168.
[11] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72(1978), 297-300.
[12] S.M. Ulam, Problems in Modern Mathematics, Chapter VI, Wiley-Interscience, New York, 1964.

