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1. Introduction

An inquisitive question that was given a serious thought by S.M. Ulam [12] concerning the stability of group
homomorphisms gave rise to the stability problem of functional equations. The laborious intellectual strivings of D.H.
Hyers [4] did not go in vain because he was the first to come out with a partial answer to solve the question posed by
Ulam on Banach spaces. In course of time, the theorem formulated by Hyers was generalized by T. Aoki [1] for additive
mappings and by Th.M. Rassias [11] for linear mappings by taking into consideration an unbounded Cauchy difference.
The findings of Th.M. Rassias have exercised a delectable influence on the development of what is addressed as the
generalized Hyers-Ulam-Rassias stability of functional equations. A generalized and modified form of the theorem
evolved by Th.M. Rassias was advocated by P. Gavruta [3] who replaced the unbounded Cauchy difference by driving
into study a general control function within the viable approach designed by Th.M. Rassias. In 1982, a generalization of
the result of D.H. Hyers was proved by J.M. Rassias using weaker conditions controlled by a product of different powers
of norms [6]. The above stability involving a product of different powers of normed is called as Ulam-Gavruta-Rassias
(or UGR) stability by Bouikhalene and Elgorachi [2], Sibaha et.al. [10], Nakmahachalasint [5], K. Ravi and M.
Arunkumar [8], K. Ravi and B.V. Senthil Kumar [9]. In [7], J.M. Rassias proved the following result.

Theorem 1.1. Let £ be a normed space with the norm Ell-[1Z:1 and let ¥ be a Banach space with the norm
211242 | Assume in addition that f*X =Y s a mapping such that /2 is continuous int for each fixed *- If there
exist @b, 2 a+b <1 angcz =0 gych that

If G+ )= FE) = FOM < ez e Iy IE (1.1)

forall *-¥ € X for which the second member of (1.1) is defined, then there exists a unique linear mapping 2% = ¥
such that

If Gy — Leoll < el ig+® (1.2)
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Ca
c = —‘.
for all X € X, where 2 — ga+b

In the same paper, J.M. Rassias posed the following question:

What is the situation in the above Theorem 1.1 in the case @ + b = 17

A clever counter-example has been given by P. Gavruta [3] by proving the following theorem.
Theorem 1.2. Let be O < @ < 1. Then there is a function /B = R and a constant €z = 0 such that
If e+ )= fe) — FON = eIyl 2 (1.3)

forall x:¥ ER gpd

SUp 5 +00
= || (L4)

for every additive mapping T: B = R.
In 2010, K. Ravi and B.V. Senthil Kumar [9] investigated the well-known Ulam-Gavruta-Rassias stability for the 2-
dimensional Rassias reciprocal functional equation
r{xkh(y)
rlx+yl=——""—
rix) + ry) (1.5)

by proving the following theorem.

Theorem 1.3. Let £ be the space of non-zero real numbers. Let fiX—R pe g mapping and there exist

a.b:p=a+b# -1 gndec; =0 gych that

f(-":}f(}’} < C‘-l.‘l’lall"la

fE N v f o (L6)

for all %-¥ € X+ then there exists a unique reciprocal mapping 7:% = B sych that

2.
If ) = rGol = —— s Ix1P
[1 - 277 (1.7)

for all * € X.
Inspired by the brilliant counter-example constructed by P. Gavruta in Theorem 1.2 to the question of J.M. Rassias, in this

paper, we present a counter-example to the singular case # = @ + b=—1 i, Theorem 1.3.

2. ACOUNTER-EXAMPLE TO THE SINGULAR CASE IN THEOREM 1.3
We present here a counter-example to the singular case 2 = @ + b=-=1 iy Theorem 1.3 by proving the
following theorem.

Theorem 2.1. Let® be suchthat =1 < @ < 0. Then thereis a function /* [24] R andaconstant €z = 0 such that

-1-a

|IDglx, vil = c;xy (2.1)

for all ©-¥ € [24] ang

ax lg () — rixil _.

N 1
L2 (2.2)
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1

for a reciprocal mapping 7: [24] = R yjth rtd = x and a small positive quantity

Proof. Let us define 3 [2:4] = R py
1
flx)=——,for all x e [2.4].
xlnx

Then

1 1
max lg(x)— rixl ~ max |§3,m X

x€[24] 1 xg[z4] 1
X

=x§?ﬁ]|ﬁ_ 1|
= Iﬁ— 1|= =

Hence the relation (2.2) follows. We have to prove (2.1) is true.

IDgx, vil =

1A

We have to prove that there exists a constant €z

1 1
1 xlnx yiny

|{x +yinix+y) _1 1

xlnx ~ ylny

1 1 |

(x + v¥nix + )  xlnx + yinyl|

& + y)In(x +y) - (xlnx + ylny)|

(xlnx + ylnyj(x = v} In{x +y) |

Ty (% + %)ln(x + v —xv (?1, Inx + %lny)

(xlnx + vinyi(x +vilnix + v

(% + %) In{x +v) — %iﬂx - %lﬂ}’

+ v

'|.‘:|'

(xlnx + ylny) (x )ln(x + v

(1 + 1) Infx+ v — Elﬂx - liﬂ}’
'\.x }:r.-' }:r x

1 T4+vy 1 X+ v
—In = +—lﬂ( ‘)
x v v x

li:rf,(l +£)+lln(1 +£)|.
x v, ¥ x

>0 sych that

1 x 1 v
—lﬂ(l +—)+—iﬂ(1 +‘—) = cxTy~1-d
x v/ vy x

'I"J'

for all . € [2,4]. Taking x =t the inequality (2.3) is equivalent to the inequality

1
tlmiﬂ,(l +?)+ t%In(1 + t) = 3.
By using L’Hospital rule, we have

Ini1+t)
lim t21n(1 + £) = lim e T
t—o - © t=p t—d@

(2.3)
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1
. 14+t
= lim ————
ri.::nl: —gtTa-1

1 tﬂ+1

= ——lim =0

at—=el +t
and
Inf1+ &)
. a o . )
e i =i =

1 I.ﬂ+:|.

= ——lim
at==1 4t

1. {a+1x"
=——lim———
= 1

a4+ 1
=—( )limta=0.

=

i

. . ¢ Y. ] . ) c =0
Since the function £ = t% In{1 + £} is continuous on (0. 2. it follows that there is a constant 2 such that

) .2
a = _=
t%lnf14+¢t) = 5 (2.4)
Also,
1
lﬂ,(1+—)
1 t
. 1sa D_w
%l—lﬁ:pt iﬂ(1+t) %ﬂ t-1-a
1 1
Y
TS —1—a)ta-3
1 tﬂ+=
= aTiimay
1 a+1
= gryimiat+ 2 re =0
and
1
iﬂ,(1+—)
1 t
. lsa D
lim e1+2in (1 +3) = lim —r e
1 (a4 2)tet
Tt lomT 2511
ta
fa+2)=lim—=0.
I—h::z

-

1
t—rta“in(l +—)_ _ _ _ c =0
t/ is continuous on (0. 2} it follows that there is a constant 2 such that

Since the function

a+1 Iy, &
t lﬂ(1+t)5 > 25)
From the inequalities (2.4) and (2.5), we find that the inequality (2.3) holds and hence (2.1) also holds. Therefore, there

1
. . . rix) =—, E [2 ,;_1_] . . . . .
exists a reciprocal function x for all * <=1 which shows that the functional equation (1.5) is still stable for

the singular case # = @+ &= =1 j; Theorem 1.3.
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