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Introduction  

   There is a continuously growing demand for mobile 

telecommunication. However, the number of usable frequencies 

which are necessary for the communication between mobile 

users and the base stations of cellular radio networks is very 

limited. So this restricted number of frequencies constitutes an 

important bottleneck for the capacity of mobile cellular systems. 

Consequently, it becomes more and more important to use the 

frequencies as efficiently as possible. This means that, assigning 

the frequencies to the different base stations, it is desirable to 

reuse the same frequency as much as possible. Thereby, it is 

important to avoid possible interferences between different 

mobile users. At the same time, the number of frequencies 

assigned to each base station must be chosen large enough to 

satisfy the given demand in the corresponding cell. The channel 

assignment problem has been extensively studied to solve this 

important task in cellular mobile communication systems [1]-

[8]. 

The channel assignment problem (CAP) in this paper is 

based on a common model. The service area of the system is 

divided into a large number of hexagonal cells. A cell composes 

a unit area to provide communication services, where every user 

is located in one cell. When a user requests a call for this system, 

a channel or frequency spectrum is assigned there to provide the 

communication service. This channel assignment must satisfy 

the constraints to avoid the radio interference between channels. 

Three types of constraints have usually been considered in CAP. 

1) The Cochannel Constraint (CCC): The same channel cannot 

be reused in the cells within a certain distance from each other. 

A set of channel-reuse forbidden cells is called a cluster, where a 

different channel must be assigned to every call. 

2) The Adjacent Channel Constraint (ACC): Adjacent channels 

cannot be assigned to adjacent cells simultaneously. In other 

words, any pair of channels in adjacent cells must have a 

specified distance. Note that the distance indicates the difference 

in the channel domain. 

3) The Cosite Constraint (CSC): Any pair of channels in the 

same cell must have a specified distance. This distance for CSC 

is usually larger than that for ACC.  

The goal of CAP is to find a channel assignment to every 

requested call with the minimum number of channels subject to 

the above three constraints[2]. 

Many researchers have investigated the CAP in telephone 

networks[2]-[8]. Funabiki and Takefuji [2] proposed a neural-

network parallel algorithm for channel-assignment problem. All 

input values are sequentially updated, while all output values are 

fixed. Then, all output values are sequentially updated, while all 

input values are fixed. Their neural-network model is composed 

of the hysteresis McCulloch–Pitts neurons. In the Funabiki and 

Takefuji model, four heuristics were used to improve the 

convergence rate of channel assignment. Kunz [3] used the 

continuous Hopfield network, where the output of each neuron 

Vi was a fixed function f of the internal state ui , i.e., Vi=f(ui) , 

where f(x)=1/2(1+tanh( x)). The Kunz neural-network model 

required a large number of iterations in order to reach the final 

solution, and there were also difficulties in finding the proper 

values for   and the parameters in the interconnection weights 

and energy function. Kunz considered cochannel and cosite 

interference in his neural-network model [3]. Chan et al. [5] 

used a feedforward neural network, which had a learning 

process prior to actual channel assignment. For the learning 

process, they used training data that was dependently obtained 

by other assignment methods. The performance of their 

algorithm is totally dependent on the used training data. Also, in 

[5], only the cochannel constraint (CCC) was considered. 

Vidyarthi et al.[6] proposed a hybrid channel assignment 

approach using an efficient evolutionary strategy. They 

developed an evolutionary strategy(ES) which optimized the 
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channel assignment. Moradi in [7] proposed fixed channel 

assignment and neural network algorithm for CAP. He also 

investigated a Hopfield neural network in [8]. The channel 

assignment problem is formulated as an energy-minimization 

problem such that the energy is at its minimum when all the 

constraints are satisfied and the number of assigned frequencies 

are the same as required channel number in each cell.   

In this paper, I propose a three-stage algorithm for CAP by 

combining sequential heuristic algorithms into a Hopfield neural 

network algorithm. The three-stage algorithm consists of the 

regular interval assignment stage, the greedy assignment stage, 

and the neural-network assignment stage. The performance is 

verified through solving the benchmark problems by Sivarajan, 

Kunz, and Kim. For Sivarajan’s and Kunz’s problems, my 

algorithm first achieves the lower bound solutions in all the 

instance and with the comparable average iteration number and 

the convergence rate, whereas my algorithm provides the better 

solution quality than Moradi’s algorithm in[8]. 

II. Problem Formulation of CAP 

The three constraints for the channel interference in the N- 

cell system are described by an NN symmetric compatibility 

matrix C. The nondiagonal element cij (i j) of C represents the 

minimum distance between a channel assigned to cell i  and a 

channel to cell j . The diagonal element Cii of C represents 

the distance between a pair of channels assigned to cell i . 

Thus, CCC is described by Cij =1, ACC is by Cij 2  and CSC is 

by Cii 1 in C, respectively. A set of requested calls in the N-

cell system is given by an N-element demand vector D. The ith 

element di of D represents the number of channels for the 

requested calls in cell  i. Let fik be the kth channel assigned to 

cell i for i=1,…,N and k=1,…,di. Then, the total number of 

required channels M can be represented by: 
 

      (1) 

Given a pair of a compatibility matrix C and a demand 

vector D, the goal of channel assignment problem is to find a 

channel assignment {fik} with the minimum value of M subject 

to the interference constraints: 
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III. Three-Stage Algorithm for CAP 

A. Overall Structure of Three-Stage Algorithm 

The three-stage algorithm for CAP consists of: 1) the 

regular interval assignment stage; 2) the greedy assignment 

stage; and 3) the neural-network assignment stage. In the first 

stage, the calls in a cell, which determines the lower bound on 

the total number of channels, are assigned channels at regular 

intervals. In the second stage, the calls in the greedy region are 

assigned channels by a greedy heuristic method sequentially. 

Initially, the greedy region is composed of a cell with the largest 

degree and its adjacent cells because the channel assignment to 

cells with large degrees is usually more difficult than the 

assignment to other cells. Then, every time the whole 

assignment is failed, the greedy region is expanded by 

additionally including the cells adjacent to the original region. In 

the third stage, the calls in the remaining cells are assigned 

channels by a binary neural network in parallel. 

 The overall procedure of the three-stage algorithm is 

described as follows. 

1) Input a compatibility matrix C and a demand vector D.  

2) Initialize the total number of channels M by the lower bound 

or its approximation. 

3) Compute the degree of cell # i , degi , for i=1,…,N  

      

ij

N

j

ijji ccd 












 

1

deg
                                      (3) 

4) Apply the regular interval assignment stage to the cell which 

determines the lower bound of M , if it exists. 

5) Initialize the greedy region by a cell with the maximum 

degree and its adjacent cells. 

6) Apply the greedy assignment stage to the greedy region while 

the assignment by 4) is fixed. If this assignment is failed, then 

increment M  by one (M=M+1) and go to 4). 

7) Apply the neural-network assignment stage to the remaining 

cells while the assignment by 4) and 6) is fixed. If this 

assignment is failed, then expand the greedy region by 

additionally including its adjacent cells and go to 6). If no 

expandable cell exists, then increment M by one and go to 4). 

 
Figure 1. The 21-cell system in Sivarajan’s benchmark 

problems 

Fig.1 shows a cellular system of 21 cells in Sivarajan’s 

benchmark problems [9]. Each number inside a cell represents 

the number of requested calls. In our three-stage algorithm, the 

regular interval assignment stage is applied to the cell with 77 

calls. The greedy assignment stage is initially applied to its 

adjacent six cells because the 77-call cell has the maximum 

degree. Then, the neural-network assignment stage is applied to 

the other cells. 

B. Regular Interval Assignment Stage 

The regular interval assignment stage assigns channels to 

the calls in the cell which determines the lower bound on M, at a 

regular interval of satisfying CSC in order to minimize the total 

number of channels M. Let us consider the channel assignment 

to cell #i, where Cii and di represent CSC and the number of 

requested channels for cell #i, respectively. Each of di calls is 

assigned a channel at an interval of either Cii or (Cii+1), after the 

first and last channels are assigned to cell #i. Actually, the first x 

calls are assigned at the interval of Cii , whereas the rest (di-x) 

calls are assigned at the interval of (Cii+1). 
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The value of x is given by solving the linear equation 

Mxdcxc iiiii  ))(1()1(1                     (5) 

C. Greedy Assignment Stage 

The greedy assignment stage assigns channels sequentially 

by using the assignment list, which is made of calls in the greedy 
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region after sorted in the descending order of the assignment 

difficulty in[10]. Each call in this list is assigned a channel by 

the requirement exhaustive strategy in [11]. The procedure of 

this stage is as follows. 

1) Make a list of the calls in the greedy region in the ascending 

order of the cell index number. 

2) Initialize the assignment difficulty of every call in the list by 

zero and the iteration number t by one. 

3) Initialize the channel number j by one. 

4) Check whether or not channel #j can be assigned to each 

unassigned call in the list from the top to the bottom 

sequentially. If it can be assigned there without interference, 

then assign channel #j to that call. 

5) If every call in the list is assigned a channel, then terminate 

the procedure as success, else if j<M then increment by one and 

go to 4). 

6) If the iteration number t reaches its upper limit G max, then 

terminate the procedure as failure, else increment t by one. 

7) Add a randomized real number between zero and one to the 

assignment difficulty for each unassigned cell in this iteration, 

clear the assignment result by this stage, remake the list by 

sorting the calls in the descending order of the assignment 

difficulty, and go to 3). 

II. Hopfield Neural Network Assignment Stage 

The Hopfield neural-network stage is base on the algorithm 

in [8]. Each processing element (neuron) is fully interconnected 

in the Hopfield network. The ith neuron is described by its state, 

which is denoted by Vi . Each neuron has two possible states. 

The value of each state is determined by the total input from 

other neurons followed by a thresholding operation. The input of 

the i th neuron is derived from two sources: the outputs of other 

neurons scaled by the connection weights and an appropriate 

external input. The total input to neuron #i is denoted by Ui 

 
j

ijiji IVWU                                                      (6) 

where Wij is the connection weight from neuron #j to neuron #i 

and Ii is the external input. Each neuron updates its own state 

according to a thresholding rule with threshold THD as shown 

by 
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The thresholding rule can be applied asynchronously (in series) 

or synchronously (in parallel). In the asynchronous mode, this 

rule is applied sequentially to each neuron, and the state of each 

neuron is updated individually. In the synchronous mode, this 

thresholding operation is simultaneously applied to every 

neuron, and the states of all neurons are updated at the same 

time. The updating operation is terminated when the states are 

unchanged or the energy has reached a minimum value. The 

energy function E is defined as 

 
i j i

iijiij IVVVWE
2

1                              (8) 

This energy function is minimized by the Hopfield neural 

network updating procedure. The successive application of the 

updating procedure will force the network to converge such that 

the energy of the network becomes smaller during the updating 

procedure. When the network reaches a stable state, it has fallen 

into minimum energy state, where this could be a local or global 

minimum. Wij  and Ii should be set appropriately for the 

applications so that E represents the function, which is 

minimized to solve the combinatorial optimization problems. 

The energy function should represent all the constraints of the 

problem. 

 
Figure 2. A 2-D Hopfield network for the channel 

assignment problem. 

In the simulation, I considered a mobile radio network that 

has N cells (or base stations) and M available frequency 

channels. The value of M is set to be the lower bound of 

required number of channels LB for a given channel assignment 

problem. Fig.2 shows a two-dimensional (2-D) Hopfield 

network for the channel assignment problem. Each ith cell can 

carry any of the di frequencies among the M frequencies if the 

carriage of frequencies does not violate the imposed constraints 

of the channel-assignment problem. The value of the processing 

unit Vij , 1 iN and 1 jM indicates if frequency #j is 

assigned to cell #i: Vij =1 meaning that the frequency j is 

assigned to cell #i and Vij =0, which means that the frequency #j 

cannot be assigned to cell #i. In Fig.2, i and p represent the cell 

number; j and q indicate the frequency number, respectively. 

The state of the current processing neuron to be updated is 

represented by Vij . An energy function is derived to represent 

the three constraints of the channel-assignment problem. In 

CSC, a frequency fiq cannot be assigned to cell #i if the distance 

of fiq and any assigned frequency fij , 1 jM is less than cii  

(minimum frequency distance for CSC). The energy function for 

cell #i (for CSC) can be defined as 
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For both ACC and CCC, the frequency fij cannot be assigned to 

cell #i if the distance of fij and any other assigned frequency fpq  

is less than cip (minimum frequency separation between the 

frequencies in cell #i and cell #p). The energy function of ith cell 

for ACC and CCC can be defined as 
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In addition to the three constraint conditions, the total assigned 

channel numbers (ACN’s) in the ith cell must be the same as the 

required channel numbers (RCN’s) for cell #i. The energy 

function for the ACN can be defined as 
2
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From (9), (11), and (13), the energy function for ith cell can be 

defined as 
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The total energy function for the channel-assignment problem is 

as follows 
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 (15)                                                                                               

This energy function can be minimized by an equivalent 

Hopfield neural network with the appropriate interconnection 

weights and the external inputs. The interconnection weights 

must represent the constraints of the optimization problem such 

as the RCN’s for each cell and the three constraint of the 

channel-assignment problem. Each of the constraints are 

invoked by inhibitory and excitatory support. If neuron Vij takes 

a value of unity, which means frequency fij can be used at cell #i, 

then the neuron Viq within the interference must be inhibited by 

the CSC condition. The constraint can be specified in the form 

)( iijqipCSC cW                                                  (16) 

where is the Kronecker delta function and defined with
ij as 

follows:    
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In both ACC and CCC, if neuron Vij takes a value of unity, then 

a neuron Viq within the interference must be inhibited. This 

constraint can be specified in the form 

)()1(),( ijjqipCCCACC cW                             (19) 

To make ACN’s the same as the RCN’s, I have to feed 

inhibitory support to the neuron by an amount proportional to 

the number of assigned frequencies. If RCN is less than or equal 

to the ACN’s, the additional frequencies cannot be assigned to a 

cell. This constraint can be expressed as 

)1( jqipACNW                                                (20) 

Equation (20) shows that the self-inhibition is not allowed. The 

purpose of WACN  is to give the inhibitory support to neurons in 

the same cell in order to avoid the case of ACN>RCN. 

From (16), (19), and (20), the total interconnection weight is 

)1()()1()( jqipijjqipiijqipijpq ccW    

                                                                                      (21) 

The interconnection weight Wijpq between Vij and Vpq is 

symmetrical, i.e., Wjpq= Wpqij for 1 i , pN and 1 j , qM. 

Self-feedback is not allowed, i.e., Wijij =0. 

According to new strategy In [8], to increase the convergence 

rate, a nonlinear function is applied on the weights as follows  

   ijpqijpqnewijpq WWsignAW exp)(                 (22) 

The external input Ii  is defined as 

)1(  ii dI                                                                (23) 

The external input Ii  is used to give excitatory support to 

neurons in the same cell to make them to be satisfied by the 

traffic demand constraint. If a frequency assignment satisfies all 

the three constraints (CSC, CCC, and ACC) for a cell and the 

ACN’s are less than the RCN’s, then that cell must receive 

excitatory support as it relates to reinforcing that assignment. 

The summation of inputs from all neurons for the current 

updating neuron is –(di -1) which should be given an excitatory 

bias. The input to each neuron (i,j) in the original Hopfield 

neural net is defined as 


 


N

p

M

q

ipqijpqij IVWU
1 1

                                        (24) 

When a neuron receives an input, only frequencies which are 

satisfied by the three channel-assignment constraints are selected 

as usable frequencies for the cell. A local minimum can be 

achieved for the channel assignment given in (24) by using the 

Hopfield updating procedure. If all the assigned frequencies are 

satisfied by the three channel-assignment constraints, but one or 

more of the cells have fewer channels than the RCN’s, the 

frequency assignment will never change and the energy value 

cannot reach the global minima even though more iterations are 

performed. To prevent this from occurring, I incorporate a 

forced assignment method, which allows for a frequency to be 

assigned to a cell by another excitatory input, even though the 

channel-assignment constraints are violated and the energy is 

increased. The forced assigned frequency can change the 

frequency assignment for other cells too. The algorithm will 

then search for another solution space in order to attempt to 

reach the global minima when the current assigned channels 

does not satisfied the traffic demand constraint. The algorithm 

checks for the ACN with the value of RCN . The difference 

between the RCN and the ACN constraints is used as an 

additional excitatory input, which is given by 


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The values of WACN and Ii are constant for the neurons in the 

same cell. However, the value of IEij is variable based on the 

current neuron states. In IEij , the difference of (RCN-CAN) is 

fed into the neurons in cell #i. To count ACN, Vij  is included in 

ACN of (25).  

It is possible that the forced reassignment fails, i.e., 

ACN<RCN although the additional term IEij is introduced. If 

ACN<RCN even after the forced reassignment is applied, it 

means that the assignment for some calls are failed, which will 

cause the call drops. The number of callers who could not have 

the channels and their calls are dropped is (RCN-ACN). This 

case is considered as a nonconvergence case. On the other hand, 
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when all calls have the assigned frequencies without any call 

dropping, it is considered as convergence case. In the simulation 

results, the convergence rate is the number of cases that all calls 

have the assigned frequencies without any call dropping before 

the maximum number of iterations is reached when 100 

simulation runs were performed. Input to each neuron of the 

modified network is defined as 

Table I. Specifications for Sivarajan’s and Kunz’s 

Benchmark Problems 
 

Instance 

Compatibility matrix Demand Vector 

Nc cij acc cii Call 

distrib. 

Total 

calls 

#1 

#2 

#3 

#4 

#5 

#6 

#7 

#8 

12 

7 

12 

7 

12 

7 

12 

7 

1 

1 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

1 

1 

1 

1 

5 

5 

7 

7 

5 

5 

7 

7 

case1 

case1 

case1 

case1 

case1 

case1 

case1 

case1 
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481 

481 

481 

481 

481 

481 

481 

#9 

#10 

#11 

#12 

12 

7 

12 

7 

1 

1 

1 

1 

2 

2 

2 

2 

5 

5 

7 

7 

case2 

case2 

case2 

case2 

470 

470 

470 

470 

 

Eij

N

p

M

q

ipqijpqij IIVWU 
 1 1

                             (26) 

 

The output function consists of a threshold operation. The final 

output state of the neuron is 

)( ijoutij UfV                                                            (27) 

Where 
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
otherwise

THDUif
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out
,0
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and THD is the threshold value and THD=0 in this paper. 

A.  Applying Modified Hopfield Network 

In this section, the implementation of the algorithm is discussed. 

The overall algorithm is summarized in the following steps. 

1) The initial state of neurons is set to one or zero according to 

the initialization method. 

2) Repeat the following steps until all neurons are picked. 

a) Pick neuron Vij according to the updating method. 

b) Calculate the input to this neuron by (26). 

c) Decide the new state of this neuron by (27) and (28). 

3) Compute the energy E of the current assignment. If E=0, stop 

and go to Step 4), otherwise, repeat the process from Step 2). 

4) The output state of the neurons Vij will be the final assignment 

based on the compatibility matrix C and demand vector D. 

Initialization method: In general, a random initialization method 

is used as the initial states for the neurons in the Hopfield 

network.  In my algorithm, initialization technique with the 

frequency assignment constraints are investigated in order to 

increase the convergence rate and to decrease the iteration 

number. The total frequency spectrum is composed of a certain 

number of blocks for the initialization with consideration of the 

constraints.  

Updating Method: In an asynchronous Hopfield network, the 

neurons are selected randomly or sequentially by a certain order 

for the updating. In my algorithm, both random and sequential 

selection techniques are used along with updating method. The 

procedural step for updating method is as follows. 

Table II. Specification of Simulation Problems Used by 

Moradi. 
 

 

Number of 

Radio Cells 

N 

Lower 

bound  

LB 

Compatibility 

Matrix 

C 

Demand 

Vector 

D 

1 

2 

3 
4 

5 

6 
7 

25 

21 

21 
21 

21 

21 
21 

73 

381 

533 
533 

221 

309 
309 

C2 

C3 

C4 

C5 

C3 

C4 

C5 

D2 

D3 

D3 

D3 

D4 

D4 

D4 

1) Make a list of cells according to the descending order of RCN 

for each cell. 

2) Execute the iteration subroutine as follows until the counter 

reached to a prespecified maximum iteration number 500 or 

E=0. 

a) Choose the cell #i according to the order of the cell list. 

b) Randomly choose one neuron #j in cell #i [neuron(i,j) ] and 

update that neuron. 

c) For the next updating neuron, the direction is randomly 

chosen whether in favor of the left- [neuron(i , j-1)] or the right-

side neuron [neuron(i , j+1)]. 

d) After the initial direction is decided by Step c), the next 

neurons are updated sequentially. 

e) Repeat Steps a) – d) until all frequencies for all the cells are 

assigned. 

3) Repeat Step 2) for the next cell in the list. 

TABLE III. 

Simulation Results For Sivarajan’s And Box’s Benchmark 

Problems 
Box Sivarajan Three stage  

LB 

 

Instance average best average Best average best 

443.6 

443.4 

533.2 

533.0 

381.0 

381.0 

533.0 

533.0 

442 

442 

533 

533 

381 

381 

533 

533 

498.3 

498.3 

552.8 

550.1 

381.0 

381.0 

533.0 

533.0 

460 

447 

536 

533 

381 

381 

533 

533 

427.0 

427.0 

533.0 

533.0 

381.0 

381.0 

533.0 

533.0 

427 

427 

533 

533 

381 

381 

533 

533 

427 

427 

533 

533 

381 

381 

533 

533 

1 

2 

3 

4 

5 

6 

7 

8 

271.7 

261.6 

309.0 

309.0 

270 

260 

309 

309 

315.9 

294.4 

338.5 

330.6 

283 

269 

310 

310 

258.0 

258.0 

309.0 

309.0 

258 

258 

309 

309 

258 

258 

309 

309 

9 

10 

11 

12 

TABLE IV. 

Summary of Simulation Results 

Problem 

# 

 

LB 

 

M 

Three Stage  Moradi 

Average 
Iter. No. 

Convergence 
Rate 

Average 
Iter. No. 

Convergence 
Rate 

1 

2 

3 
4 

5 

6 
7 

73 

381 

533 
533 

221 

309  
309 

73 

381 

533 
533 

221 

309 
309 

102.3 

11.13 

3.3 
42.3 

25.51 

28.52 
57.33 

98% 

100% 

100% 
100% 

100% 

100% 
85% 

156.23 

11.59 

3.34 
44.78 

28.59 

32.44 
64.77 

95% 

100% 

100% 
100% 

98% 

100% 
60% 

III. Simulation and Discussion 

A.  Simulated Benchmark Problems 

For the comparison, three heuristic algorithms by Sivarajan 

[9], Box[10] and Moradi [8] have also been implemented. The 

benchmark problems by Sivarajan [9], and Kunz [3] are used as 

simulated instances in this paper, where specifications are 

summarized in Tables I. In the compatibility matrix of these 

tables, “Nc” is the cluster size for CCC, “cij” is the minimum 
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channel distance between any pair of cells in the same cluster 

except for adjacent cells for CCC, “ acc” is the minimum 

channel distance between adjacent cells for ACC, and “cii” is the 

minimum distance within the same cell for CSC. In the demand 

vector, “case 1” and “case 2” represent the corresponding 

channel requirements in [9]. Table II shows the specifications of 

the problems, which are also used by Moradi in [8]. LB is the 

lower bound on required frequencies for each problem. 

B.  Simulation Condision  

The regular interval assignment stage is applied to the cell 

with 77 calls in instances #1-8 and to the cell with 45 calls in 

instances #11 and #12 in Sivarajan’s problems because they 

determine the lower bond on the total number of channels. In the 

other instances, the first stage is not applied to any cell. In  the 

greedy assignment stage, the iteration limit G max is set 100 and 

a maximum of ten trials using different random numbers is 

repeated for each greedy region until the assignment succeeds.  

A total of ten runs using different random numbers is executed 

by my algorithm and Box’s algorithm for each instance, whereas 

one run is executed by each of Sivarajan’s eight algorithms. 

Table III shows the lower bound in [9] and [3], best and average 

solutions found by this algorithm. Here, we need to correct the 

lower bound on M in instances #1 and #2. Consider the channel 

assignment in istance#1, to the requests in the seven-cell cluster 

composed of the 77-call cell and its adjacent six cells. In this 

cluster, a different channel must be assigned to every call to 

satisfy CCC. When a channel is assigned to each call in the 77-

call cell, this channel and its adjacent channels cannot be reused 

to the other cells in this cluster because of acc=2. Thus, the 77-

call cell must occupy 229(=22+3 (77-2)) channels 

exclusively in this cluster. The remaining six cells need at least 

198(=25+8+52+28+57+28) different channels.  

 

Figure 3. Distribution of the frequency for each cell with 533 

frequency in instance #4. 

 

Figure 4. The number of iteration step required to 

convergence in instance #4. 

Therefore, the channel assignment for this cluster requires 

at least 427(=229+198) channels. Table III indicates that my 

algorithm first achieves the lower bound solutions in all of the 

benchmark instances, whereas the existing algorithms cannot 

find them in instances #1, #2, #3, #9, and #10.  

In Table IV, the result of this paper compared with the 

result in [8]. The average iteration number and the convergence 

rate to the solution are also shown in Table IV. The average 

iteration number is the average number of iterations, which are 

increased until E=0. Convergence rate is the probability that the 

network has E=0 before the maximum number iteration is 

reached. In these simulations, the maximum number of iterations 

is fixed at 500. To investigate the number of iterations and the 

convergence rates, 100 simulation runs were performed with 

different initial seed values using a random number generator for 

each of the seven problems. The simulation results in this paper 

have a smaller average iteration number and a higher 

convergence rate than Moradi’s results. For example, in problem 

#1, my algorithm found the solution with 102.3 average iteration 

number and 98% convergence rate, but Moradi’s algorithm 

found the solution with 156.23 average iteration number and 

95% convergence rate. It demonstrates that generally, my 

algorithm has a better performance (i.e., smaller iteration 

numbers and higher convergence rates) than Moradi’s algorithm. 

Fig.3 shows the distribution of the frequency for each cell and 

Fig.4 shows the number of iteration step required to 

convergence to solution in instance #4.  
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