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Introduction

As a generalization of the area function for Euclidean triangles the concept of 2-metric introduced by Menger [1] was investigated
by Gahler in series of papers [2],[3],[4].

Fixed point theorems in 2-metric spaces have been established by several authors (see e.g.[5],[6].[7].[8].[9D).

In(1986)Jungck [10] introduced the concept of compatible mappings and used to obtain results which generalize a theorem by
Park and Bae [11], a theorem by Hadzic [12], and others. Fixed point theorems for compatible mappings and weakly compatible
mappings have been established by several authors (see e.g.[13],[14],[15],[16]).

In(2002)Branciari [17] obtained a fixed point result for a single mapping satisfying an analogue of a Banach contraction prin ciple
for integral type in the following theorem.

In (2011)V.Gupta and Vareen Manic[18]study the existence and uniqueness of common fixed point theorem for two weakly
compatible maps under contractive condition of integral type.

Theorem 1. (Branciari). Let (X,d) be a complete metric space, Ce [011) and let T :X — X be a mapping such that for each

X,y e X, dxm) d(x,y)
p(t)dt<c j o(t)dt
0 0

where ¢:[0,00) —[0,0) is a Lebesgue- integrable mapping which is summable (i.e. with finite integral) on each compact

subset of [o,oo),and such that for each then T has a unique fixed point g e X such that for each x e X,

£>0, j o(t)dt>0,
0

lim.__ T"x=a.

nN—o0
After the paper of V.Gupta, a lot of research works have been carried out on generalizing contractive condition of integral type
for different contractive mappings satisfying various known properties, in metric space and 2-metric space.
The aim of this paper is to translate the works of V.Gupta and Mani[18] from metric space into 2-metric space.
Definitions and Preliminaries
Definition 2. Let X be a non empty set. A real valued function d on X x X x X is said to be 2-metric in X if
() To each pair of distinct points x, y € X, there exists a point z & X such that d(x,y,z) =0

(i) d(x,y,z)=0,if atleast two of X,Y,Zare equal
(i)d(x,y,z)=d(y,z,x)=d(x,z,Y)
(v) d(x,y,2) <d(x,y,w)+d(x,w,z2)+d(w,y,z)forall x,y,z,we X. When d is 2-metric on X then the pair (X,d)is

called 2-metric space.
Definition 3. A sequence{xn}in 2-metric space (X, d) is said to be convergent to an element x e X if lim,__ d(x,,x,a)= Qfor

all a e X. Itfollows that if the sequence {x,}converges to Xthen lim_ d(x,,ab)=d(xa,b) forall g,b e X.

Tele:
E-mail addresses: elhadielniel_2003@hotmail.com

© 2013 Elixir All rights reserved




17613 M. E. Hassan et al./ Elixir Appl. Math. 62 (2013) 17612-17616

a):oas m, N — oo for all

m’Xn1

Definition 4. A sequence {x }in 2-metric space (X,d) is said to be Cauchy sequence if d(x
n
aeX.

Definition 5. A 2-metric space (X,d) is said to be complete if every Cauchy sequence in X is convergent.

Proposition 6. If a sequence {x }in a 2-metric space converges to Xthen every subsequence of {x }also converges to the same
n n

limit X

Proposition 7. Limit of a sequence in a 2-metric space, if exists, is unique.

Definition 8. Let f and J be two self maps onaset X Maps f and § are said to be commuting if fgx = gfx forall x e X.

Definition 9. Let (X,d) is a 2-metric space and f,g:(X,d) _)()(,d)_The mappings f and g are said to be compatible if
ox, =t for some t e X then d(fgx_,gfx ,a) —08s

n—o

whenever {x }is a sequence in X such that |jm fx =lim
n nN— n
N—>x forall ge X.

Definition 10. Let f and J be two self maps in a 2-metric space (X,d) then f and { are said to be weakly compatible if they

commute at their coincidence points.

Lemma 11. Let f and J be weakly compatible self mapping of a set X If f and J have a unique point of coincidence Z, then Z is

the unique common fixed point of f and Q.

Main Result

Theoreml2. Let Sand T be self compatible maps of a complete 2-metric space (X, d) satisfying the following conditions

M S(X)=T(X) &)

(i)  dexsya) d(TxTy.8) d(TxTy.8) @
v | edt<y [ odt-g [ (bt
0 0

0
for each x, y,ae X where v :[0,00) —[0,0) is a continuous and non decreasing function and ¢:[0,00) —[0,0) is a

lower semi continuous and non decreasing function such that y/(t) =¢(t) =0 ifand only if t=0 also ¢:[0,00) —[0,0) is a
“Lebesgue-integrable function” which is summable on each compact subset of R+, non negative, and such that for each
. Then S and T have a unique common fixed point.

£>0, [p(t)dt>0
0

Proof : let X, be an arbitrary point of X . Since S(X) < T(X) . Choose a point X, in X such that Sx, :Txl.Continuing

this process, in general, choose X1 such that y,=Tx,,,=5%,,n=012,...... For each integer n>1, and forall g e X , we
have from (2)
d(Ynlyn+1’a) d(yn—llynva) d(yn-llynva)
v | ety [ eMdt-g [ et
0 0 0
d(yn—lvynva) (3)
<y j o(t)dt

0
Since ¥ is continuous and has a monotone property, Therefore

d(ynvyn+1va) d(yn-lvyn'a)

phdt< [ p(t)dt
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Let us take CIVARE:)) then it follows that ; is monotone decreasing and lower bounded sequence of numbers.
n

z = j p(t)dt
0
Therefore there exist k >(Qsuchthat ; _y |k as N—>00. Suppose that k > Q. Taking limit as N —> 00 on both sides of (3) and
n

using that ¢ is lower semi continuous, we get,

p(k)<y(k)-ok)<p(k) @
This is a contradiction. Therefore k = (. This implies z, > gas N—x

d(YnYni1.2) as N—x (5)
p(t)dt— 0
0
Now we prove that{yn}is a Cauchy sequence. Suppose it is not. Therefore there exists an ¢ > (Qand subsequence

{ym(p)}and {yn(p)}such that for each positive integer p(m), p(n) such that m(p) <n(p) <m(p+1) with

d (yn(p)1 ym( p)’ a) 2& ' d(yn(p)—l’ ym( p)?’ a) <& (6)
Now

£<d(Ynep)r V() @) <A(Yacpy Yinipyr Yoepy1) 9 Vigyr Yoepy10@) +d(Ynpy11 Yy 1 @)

<dYaeeyr Yooy Yoeoy1) TAVaepys Yoy @) +€ Y
Now
& d(Yn(p)lym(p)la) d(yn(p)lym(p)vyn(p)—1)+d(Yn(p)lyn(p)—l'a)+g
0< /(= j p(t)dt < j p(t)dt< j p(t)dt
0 0 0

Letting P — o0 and from (5)

d(yn(p)xym(p)a) (8)

lim [ pdt=1

p—
0

Now consider triangle inequality,

d (yn(p) 1 Yin(p)» a)< d(yn(p)' Yin(py yn(p)—l) +d (yn(p)’ yn(p)—la) +d (yn(p)—l’ Yi(p) a)
d(y n(p)’ym(p)’a) < d(yn(p)’ Y m(p) yn(p)—l) +d (yn(p)'yn(p)—la)-'-d (y n(p)-Lr ym(p)'ym(p)—l)

H (Y opyar Ymp 2@tV e Y & =& ©)
Ad(Ynepy1 Yiepy10 @ < AYnipyas Ymepyar Yo)) ¥ A Yncpyas Yooy @ + A Vo) Yincpya: &)

d(y n(p)-Lr ym(p)—l’a) <d(y n(p)-11 Y m(p)-1’ yn(p))+d (y n(p)-Lr yn(p)7a)+d (y n(p)Y m(p)-11 ym(p))

+d (yn(p)’ym(p)a)+ d(ym(p) +ym(p)4’a) :ﬂ (10)
and therefore
d(Yn(py:Ym(p)+2) a (11)
[et)dt< [p(t)dt
o] 0

d(Yn(p)-1:Ym(p)-1-8) (12)

p(t)dt < f(p(t)dt



17615 M. E. Hassan et al./ Elixir Appl. Math. 62 (2013) 17612-17616

Taking P — o0and using (5) and (8) in (11) and (12). we get

d(yn(p)flvym(p)flva) d(yn(p)flvym(p)flva)
p(t)dt< ¢ < [ o
0 0
This implies,
d (Yn(p)-1:Ym(p)-2:2) (13)
lim . [ eydt=1

0

Now from (2), we have

d(yn(p)vym(p)va) d(yn(p)—lvym(p)—lva) d(yn(p}lvym(p)—lva) (14)
v o [ ebdtsy [ eldt-g [ (bt
0 0

Taking limit as [P — 0 and using (8) and (13) in (14) we get
w(0) <y (0)—¢(0)

This is a contradiction. Hence {yn}is a Cauchy sequence. Since (X,d) is complete 2-metric space, therefore there exists a point
V'such that

Sx, >V&TX, —>vasn—oo- Consequently, we can find hin X suchthat T (h) =v.

Now, forall g X we have

d(Sx,,Sh.a) d(Tx,.Th,a) d(Tx,,Tha)

v | edtsy [ obdt-g 40t
0 0 0
On taking Limit as N — o0 implies d(,sh.a)

w( [ #t)dt )<y (0)-p(0)
So d(v.sh.a) implies that Szh) =V.

w( [ gt)dt)=0
0
Hence Vis the point of coincidence of Sand T .

Now we prove that V is the unique point of coincidence of S and T . Suppose not, therefore there exists |, (u £V ))and there

exists neX such that Su=T u=u.
Using (2) we have forall g € X

d(v,T ua) d(Sv,Sua) d(Tv,Tu,a) d(v,T ua)

v | ogdt=y [ gt)t<y [ gdt-p [ gt
Therefgre 0 0 O
d(TvT ua) d(TvT ua)

v [ gdt<y [ gt

0

This is a contradiction which implies U =V.This proves uniqueness of point of coincidence of S and T . Therefore by using
lemma (11), the theoremis proved.
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