Awakening to reality

Available online at www.elixirpublishers.com (Elixir International Journal)

Applied Mathematics

A common fixed point theorem for weakly compatible mappings satisfying a new contractive condition of integral type in 2-metric space

M. E. Hassan* and Elhadi Elnour Elniel

Department of Mathematics, College of Science and Arts, Taif University, Saudi Arabia.

ARTICLE II	NFO
------------	-----

20 August 2013;

Article history: Received: 19 July 2013; Received in revised form: ABSTRACT

In this paper we prove a unique common fixed point theorem in 2-metric space the existence of fixed point for two weakly compatible maps into 2-metric space is established under new contractive condition of integral type by using another functions ϕ and ψ .

© 2013 Elixir All rights reserved

Keywor ds

Fixed point, 2-metric space, Weakly compatible maps.

Accepted: 3 September 2013;

Introduction

As a generalization of the area function for Euclidean triangles the concept of 2-metric introduced by Menger [1] was investigated by Gahler in series of papers [2],[3],[4].

Fixed point theorems in 2-metric spaces have been established by several authors (see e.g.[5],[6],[7],[8],[9]).

In(1986)Jungck [10] introduced the concept of compatible mappings and used to obtain results which generalize a theorem by Park and Bae [11], a theorem by Hadzic [12], and others. Fixed point theorems for compatible mappings and weakly compatible mappings have been established by several authors (see e.g.[13],[14],[15],[16]).

In(2002)Branciari [17] obtained a fixed point result for a single mapping satisfying an analogue of a Banach contraction principle for integral type in the following theorem.

In (2011)V.Gupta and Vareen Manic[18]study the existence and uniqueness of common fixed point theorem for two weakly compatible maps under contractive condition of integral type.

Theorem 1. (Branciari). Let (X,d) be a complete metric space, $c \in [0,1)$ and let $T: X \to X$ be a mapping such that for each

$$x, y \in X, \quad \int_{0}^{d(Tx,Ty)} \varphi(t) dt \le c \int_{0}^{d(x,y)} \varphi(t) dt$$

where $\varphi:[0,\infty) \to [0,\infty)$ is a Lebesgue- integrable mapping which is summable (i.e. with finite integral) on each compact subset of $[0,\infty)$, and such that for each $x \in X$, then T has a unique fixed point $a \in X$ such that for each $x \in X$, $\mathcal{E} > 0, \int_{0}^{\varepsilon} \varphi(t) dt > 0,$

 $\lim_{n\to\infty}T^n x=a.$

After the paper of V.Gupta, a lot of research works have been carried out on generalizing contractive condition of integral type for different contractive mappings satisfying various known properties, in metric space and 2-metric space.

The aim of this paper is to translate the works of V.Gupta and Mani[18] from metric space into 2-metric space.

Definitions and Preliminaries

Definition 2. Let X be a non empty set. A real valued function d on $X \times X \times X$ is said to be 2-metric in X if (i) To each pair of distinct points $x, y \in X$, there exists a point $z \in X$ such that $d(x, y, z) \neq 0$

(ii)
$$d(x, y, z) = 0$$
, if at least two of x, y, z are equal

(iii)
$$d(x, y, z) = d(y, z, x) = d(x, z, y)$$

(iv) $d(x, y, z) \le d(x, y, w) + d(x, w, z) + d(w, y, z)$ for all $x, y, z, w \in X$. When d is 2-metric on X, then the pair (X, d) is called 2-metric space.

Definition 3. A sequence $\{x_n\}$ in 2-metric space (X, d) is said to be convergent to an element $x \in X$ if $\lim_{n \to \infty} d(x_n, x, a) = 0$ for

all $a \in X$. It follows that if the sequence $\{x_n\}$ converges to x then $\lim_{n \to n} d(x_n, a, b) = d(x, a, b)$ for all $a, b \in X$.

Tele: E-mail addresses: elhadielniel_2003@hotmail.com

^{© 2013} Elixir All rights reserved

Definition 4. A sequence $\{x_n\}$ in 2-metric space (X,d) is said to be Cauchy sequence if $d(x_m, x_n, a) = 0$ as $m, n \to \infty$ for all $a \in X$.

Definition 5. A 2-metric space (X,d) is said to be complete if every Cauchy sequence in χ is convergent.

Proposition 6. If a sequence $\{x_n\}$ in a 2-metric space converges to x then every subsequence of $\{x_n\}$ also converges to the same limit x.

Proposition 7. Limit of a sequence in a 2-metric space, if exists, is unique.

Definition 8. Let f and g be two self maps on a set X. Maps f and g are said to be commuting if fgx = gfx for all $x \in X$.

Definition 9. Let (X,d) is a 2-metric space and $f,g:(X,d) \to (X,d)$. The mappings f and g are said to be compatible if whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = t$ for some $t \in X$ then $d(fgx_n, gfx_n, a) \to 0$ as $n \to \infty$ for all $a \in X$.

Definition 10. Let f and g be two self maps in a 2-metric space (X,d) then f and g are said to be weakly compatible if they commute at their coincidence points.

Lemma 11. Let f and g be weakly compatible self mapping of a set X. If f and g have a unique point of coincidence z, then z is the unique common fixed point of f and g.

Main Result

Theorem12. Let S and T be self compatible maps of a complete 2-metric space (X, d) satisfying the following conditions

(i)
$$S(X) \subset T(X)$$
 (1)

(ii)
$$\psi \int_{0}^{d(Sx,Sy,a)} \varphi(t) dt \leq \psi \int_{0}^{d(Tx,Ty,a)} \varphi(t) dt - \phi \int_{0}^{d(Tx,Ty,a)} \varphi(t) dt$$

for each $x, y, a \in X$ where $\psi:[0,\infty) \to [0,\infty)$ is a continuous and non decreasing function and $\phi:[0,\infty) \to [0,\infty)$ is a lower semi continuous and non decreasing function such that $\psi(t) = \phi(t) = 0$ if and only if t = 0 also $\varphi:[0,\infty) \to [0,\infty)$ is a "Lebesgue-integrable function" which is summable on each compact subset of R^+ , non negative, and such that for each

(2)

$$\varepsilon > 0, \int_{0}^{\varepsilon} \varphi(t) dt > 0$$
. Then S and T have a unique common fixed point.

Proof: let x_0 be an arbitrary point of X. Since $S(X) \subset T(X)$. Choose a point x_1 in X such that $Sx_0 = Tx_1$. Continuing this process, in general, choose x_{n+1} such that $y_n = Tx_{n+1} = Sx_n$, $n = 0, 1, 2, \dots$. For each integer $n \ge 1$, and for all $a \in X$, we have from (2)

$$\psi \int_{0}^{d(y_{n},y_{n+1},a)} \varphi(t)dt \leq \psi \int_{0}^{d(y_{n-1},y_{n},a)} \varphi(t)dt - \phi \int_{0}^{d(y_{n-1},y_{n},a)} \varphi(t)dt$$

$$\leq \psi \int_{0}^{d(y_{n-1},y_{n},a)} \varphi(t)dt$$
(3)

Since Ψ is continuous and has a monotone property, Therefore

$$\int_{0}^{d(y_n, y_{n+1}, a)} \varphi(t) dt \leq \int_{0}^{d(y_{n-1}, y_n, a)} \varphi(t) dt$$

Let us take $z_n = \int_{0}^{d(y_n, y_{n+1}, a)} \varphi(t) dt$ then it follows that z_n is monotone decreasing and lower bounded sequence of numbers.

Therefore there exist $k \ge 0$ such that $z_n \to k$ as $n \to \infty$. Suppose that k > 0. Taking limit as $n \to \infty$ on both sides of (3) and using that ϕ is lower semi continuous, we get,

$$\psi(k) \le \psi(k) - \varphi(k) < \psi(k) \tag{4}$$

This is a contradiction. Therefore k = 0. This implies $z_n \rightarrow 0$ as $n \rightarrow \infty$

$$\int_{0}^{d(y_n, y_{n+1}, a)} \varphi(\mathbf{t}) d\mathbf{t} \to 0$$
(5)

Now we prove that $\{y_n\}$ is a Cauchy sequence. Suppose it is not. Therefore there exists an $\varepsilon > 0$ and subsequence $\{y_{m(p)}\}$ and $\{y_{n(p)}\}$ such that for each positive integer p(m), p(n) such that m(p) < n(p+1) with

$$d(y_{n(p)}, y_{m(p)}, a) \ge \varepsilon, d(y_{n(p)+1}, y_{m(p)}, a) < \varepsilon$$
Now
$$\varepsilon \le d(y_{n(p)}, y_{m(p)}, a) \le d(y_{n(p)}, y_{m(p)}, y_{n(p)-1}) + d(y_{n(p)}, y_{n(p)-1}, a) + d(y_{n(p)-1}, y_{m(p)}, a)$$

$$< d(y_{n(P)}, y_{m(p)}, y_{n(p)-1}) + d(y_{n(p)}, y_{n(p)-1}, a) + \varepsilon$$

Now

$$0 < \ell = \int_{0}^{\varepsilon} \varphi(t) dt \le \int_{0}^{d(y_{n(p)}, y_{m(p)}, a)} \varphi(t) dt \le \int_{0}^{d(y_{n(p)}, y_{m(p)}, y_{n(p)-1}) + d(y_{n(p)}, y_{n(p)-1}, a) + \varepsilon} \varphi(t) dt$$

Letting $p \rightarrow \infty$ and from (5)

$$\lim_{p \to \infty} \int_{0}^{d(y_{n(p)}, y_{m(p)}a)} \varphi(\mathbf{t}) d\mathbf{t} = \ell$$
(8)

Now consider triangle inequality,

$$d(y_{n(p)}, y_{m(p)}, a) \le d(y_{n(p)}, y_{m(p)}, y_{n(p)-1}) + d(y_{n(p)}, y_{n(p)-1}a) + d(y_{n(p)-1}, y_{m(p)}, a)$$

$$d(y_{n(p)}, y_{m(p)}, a) \le d(y_{n(p)}, y_{m(p)}, y_{n(p)-1}) + d(y_{n(p)}, y_{n(p)-1}a) + d(y_{n(p)-1}, y_{m(p)}, y_{m(p)-1})$$

$$+d(y_{n(p)-1}, y_{m(p)-1}, a) + d(y_{m(p)-1}, y_{m(p)}, a) = \alpha$$

$$d(y_{n(p)-1}, y_{m(p)-1}, a) \le d(y_{n(p)-1}, y_{m(p)-1}, y_{n(p)}) + d(y_{n(p)-1}, y_{n(p)}, a) + d(y_{n(p)}, y_{m(p)-1}, a)$$
(9)

$$d(y_{n(p)-1}, y_{m(p)-1}, a) \le d(y_{n(p)-1}, y_{m(p)-1}, y_{n(p)}) + d(y_{n(p)-1}, y_{n(p)}, a) + d(y_{n(p)}, y_{m(p)-1}, y_{m(p)})$$

$$+d(y_{n(p)}, y_{m(p)}a) + d(y_{m(p)} + y_{m(p)-1}, a) = \beta$$
(10)
and therefore

 $\int_{\alpha}^{d(y_{n(p)}, y_{m(p)}, a)} \varphi(t) dt \leq \int_{0}^{\alpha} \varphi(t) dt$ (11)

$$\int_{0}^{d(y_{n(p)-1},y_{m(p)-1},a)} \varphi(t)dt \leq \int_{0}^{\beta} \varphi(t)dt$$
(12)

(7)

Taking $p \rightarrow \infty$ and using (5) and (8) in (11) and (12). we get

$$\int_{0}^{d(y_{n(p)-1},y_{m(p)-1},a)} \varphi(t)dt \leq \ell \leq \int_{0}^{d(y_{n(p)-1},y_{m(p)-1},a)} \varphi(t)dt$$

This implies

This implies,

$$\lim_{p \to \infty} \int_{0}^{d(y_{n(p)-1}, y_{m(p)-1}, a)} \varphi(\mathbf{t}) d\mathbf{t} = \ell$$
(13)

Now from (2), we have

$$\psi \int_{0}^{d(y_{n(p)}, y_{m(p)}, a)} \varphi(t) dt \leq \psi \int_{0}^{d(y_{n(p)-1}, y_{m(p)-1}, a)} \varphi(t) dt - \phi \int_{0}^{d(y_{n(p)+1}, y_{m(p)-1}, a)} \varphi(t) dt$$
(14)

Taking limit as $p \rightarrow \infty$ and using (8) and (13) in (14) we get

$$\psi(\ell) \leq \psi(\ell) - \phi(\ell)$$

This is a contradiction. Hence $\{y_n\}$ is a Cauchy sequence. Since (X, d) is complete 2-metric space, therefore there exists a point V such that

 $Sx_n \rightarrow v \& Tx_n \rightarrow v \text{ as } n \rightarrow \infty$. Consequently, we can find *h* in *X* such that T(h) = v. Now, for all $a \in X$ we have

$$\psi \int_{0}^{d(Sx_{n},Sh,a)} \varphi(t)dt \leq \psi \int_{0}^{d(Tx_{n},Th,a)} \varphi(t)dt - \phi \int_{0}^{d(Tx_{n},Th,a)} \phi(t)dt$$
On taking Limit as $n \to \infty$ implies
$$\psi(\int_{0}^{d(v,Sh,a)} \phi(t)dt) \leq \psi(0) - \varphi(0)$$
So
$$\psi(\int_{0}^{d(v,Sh,a)} \phi(t)dt) = 0$$
implies that $S(h) = v$.

Hence v is the point of coincidence of S and T.

Now we prove that v is the unique point of coincidence of S and T. Suppose not, therefore there exists u, $(u \neq v)$ and there

exists $\mu \in X$ such that $S \mu = T \mu = u$.

Using (2) we have for all $a \in X$

$$\psi \int_{0}^{d(Tv,T\mu,a)} \phi(t) dt = \psi \int_{0}^{d(Sv,S\mu,a)} \phi(t) dt \le \psi \int_{0}^{d(Tv,T\mu,a)} \phi(t) dt - \varphi \int_{0}^{d(Tv,T\mu,a)} \phi(t) dt$$

Therefore

Therefore

$$\psi \int_{0}^{d(T_v,T,\mu,a)} \phi(t) dt < \psi \int_{0}^{d(T_v,T,\mu,a)} \phi(t) dt$$

This is a contradiction which implies u = v. This proves uniqueness of point of coincidence of S and T. Therefore by using lemma (11), the theorem is proved.

Acknowledgment

The authors would like to express their sincere thanks to Taif university, Saudi Arabia for supported of this work.

References

[1] K.Menger, Untersuchungen uber all gemeine Metrik, Math-Ann 100 (1928)75-163.

[2] S.Gahler,2-metrische Raume und ihre topologische struktur, Math Nachr 26(1963) 115-148.

[3] S.Gahler, Uber die uniformisierbrakeit 2-metrisch Raume, Math Nachr 28(1965) 235-244.

[4] S.Gahler, Zur geometric 2-metrische Raume, Rev.Roum Math Pures et appl XI(1966) 665-667.

[5] K.Iseki, P.L.Sharma and B.K.Sharma, Contraction type mapping in 2-metric space, Japonica, 21(1976)67-70.

[6] S.N.Lal and A.K.Singh, An analogue of Banach contraction principle for 2-metric spaces, Bull. Australian Math Soc 18(1978)137-143.

[7] S.N.lal and A.K.Singh, Invariant points of generalized non-expansive mappings in 2-metric spaces, Indian J Math 20(1978)71-76.

[8] S.N.Lal Mohan Das, Common invariant points of relative contractions in 2-metric spaces, Indian J Math 23(1981)211-222.

[9] B.E. Rhoades, Contractive type mappings on a 2-metric spaces, Math. Nachr,91 (1971),151-155.

[10] G.Jungch, compatible mappings and common fixed point, Internet .J.Math & Math Sci 9(1986)771-779.

[11] S.Park and Bae, Jong Sook Extentions of a fixed point theorem of Meir and Keeler, Ark.Mat.19(1981)223-228.

[12] O. Hadzic, Common Fixed Point Theorems for Family of Mappings in Complete Metric Spaces. Jnanabaha 13(1983) 13-25.

[13] H.Kaneko and S. Sessa , Fixed point theorems for compatible multi-valued and single-valued mappings, Int.J. Math. Sci, 12(1989), 257-262.

[14] S.L.Singh and S.N.Mishra, Remarks on Jachymski's fixed point theorems for compatible maps, Indian J. Puer Appl. Math,28(5)(1997),611-615.

[15] R.Chugk and S.Kumar, Common fixed points for weakly compatible maps, Proc, Indian Acad. Sci. Math. Sci 111(2)(2001),241-247.

[16] V.Popa, A general fixed point theorem for four weakly compatible mappings Satisfying an implicit relation, Filomat, 19(2005),45-51.

[17] A.Branciari, A fixed point theorem for mappings satisfying a general Contractive condition of integral type, Int. J.Math, Math.Sci, 29(9)(2002),531-536.

[18] V.Gupta and N.Mani, A common fixed point theorem for two weakly compatible mappings satisfying a new contractive condition of integral type, Mathematical Theory and Modeling, Vol.1,No.1,(2011).