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Introduction 

As a generalization of the area function for Euclidean triangles the concept of 2-metric introduced by Menger [1] was investigated 

by Gahler in series of papers [2],[3],[4]. 

Fixed point theorems in 2-metric spaces have been established by several authors (see e.g.[5],[6],[7],[8],[9]). 

In(1986)Jungck [10] introduced the concept of compatible mappings and used to obtain results which generalize a theorem by 

Park and Bae [11], a theorem by Hadzic [12], and others. Fixed point theorems for compatible mappings and weakly compatible 

mappings have been established by several authors (see e.g.[13],[14],[15],[16]). 

In(2002)Branciari [17] obtained a fixed point result for a single mapping satisfying an analogue of a Banach contraction prin ciple 

for integral type in the following theorem. 

In (2011)V.Gupta  and Vareen Manic[18]study the existence and uniqueness of common fixed point theorem for two weakly 

compatible maps under contractive condition of integral type. 

Theorem 1. (Branciari). Let ),( dX be a complete metric space,  0,1c  and let  XXT :  be a mapping such that for each 

,, Xyx   

 

).(

0

),(

0

)(   )(

TyTxd yxd

dttcdtt 
 

where ),0[),0[:  is a Lebesgue- integrable mapping which is summable (i.e. with finite integral) on each compact 

subset of ),,0[  and such that for each 

 




0

0,(t)dt ,0
then T has a unique fixed point Xa such that for each ,Xx  

.lim axT n

n 
 

After the paper of V.Gupta, a lot of research works have been carried out on generalizing contractive condition of integral t ype 

for different contractive mappings satisfying various known properties, in metric space and 2-metric space.   

The aim of this paper is to translate the works of V.Gupta and Mani[18] from metric space into 2-metric space. 

Definitions and Preliminaries  

Definition 2. Let X be a non empty set. A real valued function d on XXX   is said to be 2-metric in X if  

(i) To each pair of distinct points ,, Xyx   there exists a point Xz such that 0),,( zyxd  

(ii) ,0),,( zyxd if at least two of zyx ,, are equal  

(iii) ),,(),,(),,( yzxdxzydzyxd   

(iv) ),,(),,(),,(),,( zywdzwxdwyxdzyxd  for all .,,, Xwzyx   When d is 2-metric on ,X then the pair ),( dX is 

called 2-metric space. 

Definition 3. A sequence }{ nx in 2-metric space ),( dX is said to be convergent to an element Xx if 0),,(lim  axxd nn
for 

all .Xa It follows that if the sequence }{ nx converges to x then ),,(),,(lim baxdbaxd nnn 
for all ., Xba   
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Definition 4. A sequence }{ nx in 2-metric space ),( dX is said to be Cauchy sequence if 0),,( axxd nm
as nm, for all 

.Xa  

 

Definition 5. A 2-metric space (X,d) is said to be complete if every Cauchy sequence in X is convergent. 

 

Proposition 6. If a sequence }{ nx in a 2-metric space converges to x then every subsequence of }{ nx also converges to the same 

limit .x  

 

Proposition 7. Limit of a sequence in a 2-metric space, if exists, is unique. 

 

Definition 8. Let f and g be two self maps on a set .X Maps f and g are said to be commuting if gfxfgx  for all .Xx  

 

Definition 9. Let ),( dX  is a 2-metric space and ).,(),(:, dXdXgf  The  mappings f and g are said to be compatible if 

whenever }{ nx is a sequence in X  such that tgxfx nnnn   limlim  for some Xt then 0),,( agfxfgxd nn
as 

n  for all .Xa  

 

Definition 10. Let f and g be two self maps in a 2-metric space ),( dX then f and g are said to be weakly compatible if they 

commute at their coincidence points.    

 

Lemma 11. Let f and g  be weakly compatible self mapping of a set .X If f and g have a unique point of coincidence ,z then z is 

the unique common fixed point of f and .g  

 

Main Result 

 

Theorem12. Let S and T be self compatible maps of a complete 2-metric space ),( dX satisfying the following conditions  

 

(i) )()( XTXS                                                                                             (1) 

 

(ii)  

  

a)Ty,d(Tx,

0

a)Ty,d(Tx,

0

a)Sy,d(Sx,

0

    (t)dt         -(t)dt )(    dtt
      (2) 

for each Xayx ,,  where  ),0[),0[:   is a continuous and non decreasing function and ),0[),0[:   is a 

lower semi continuous and non decreasing function such that  0)()(  tt   if and only if  0t  also  ),0[),0[:   is a 

“Lebesgue-integrable function” which is summable on each compact subset of  R , non negative, and such that for each 

 




0

0(t)dt ,0
. Then S  and T  have a unique common fixed point.   

 

Proof : let 
0x  be an arbitrary point of X . Since  )()( XTXS  . Choose a point 

1x  in X  such that  
10 TxSx  . Continuing 

this process, in general, choose 
1nx  such that ... 0,1,2,...n , 1   nnn SxTxy  For each integer , 1n  and for all Xa , we 

have from (2) 

 




),,(

0

),,d(y

0

),,(

0

1 1-n1

(t)dt        -(t)dt  (t)dt     

ayyd ayayyd nn nnn


 

 

                       






),,(

0

1

(t)dt     

ayyd nn


                                                                   (3) 

Since  is continuous and has a monotone property, Therefore  

 

     

 




),,(

0

),,d(y

0

1 1-n

(t)dt     (t)dt     

ayyd aynn n


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Let us take  






),,d(y

0

1n

(t)dt       

ay

n

n

z 
 then it follows that 

nz  is monotone decreasing and lower bounded sequence of numbers. 

Therefore there exist 0k such that kzn 
 as  n . Suppose that 0k . Taking limit as n  on both sides of (3) and 

using that   is lower semi continuous, we get, 

                                               

                           (4) 

This  is a contradiction. Therefore 0k . This implies 0nz  as n  






),,(

0

1

0(t)dt     

ayyd nn


 as  n                                                                        (5) 

Now we prove that }{ ny is a Cauchy sequence. Suppose it is not. Therefore there exists an 0 and subsequence 

}{y and }{ n(p))( pmy such that for each positive integer p(n) , )(mp  such that )1()()(  pmpnpm with 

 

  ),,d(y , ),,( )(1-n(p))()( ayayyd pmpmpn
                                                        (6) 

Now 

         ),,(),,(),,(),,( )(1)(1)()(1)()()()()( ayydayydyyydayyd pmpnpnpnpnpmpnpmpn    

 

  ),,(),,( 1)()(1)()()( ayydyyyd pnpnpnpmPn
                                                  (7) 

 

Now 

        

  
 



 


0

),,(

0

),,(),,d(y

0

)()( 1)()(1)()(n(p)

(t)dt                    (t)dt       )(0

ayyd ayydyypmpn pnpnpnpm

dtt
   

                 

Letting p and from (5) 

 

 

),(

0

)()(

(t)dt       lim

ayyd

p

pmpn


                                                                              (8) 

 

Now consider triangle inequality, 

 

),,(),(),,d(y ),,( )(1)(1)()(1)()(n(p))()( ayydayydyyayyd pmpnpnpnpnpmpmpn     

( ) ( ) n(p) ( ) ( ) 1 ( ) ( ) 1 ( ) 1 ( ) ( ) 1( , , )  d(y , , ) ( , ) ( , , )

                           

n p m p m p n p n p n p n p m p m pd y y a y y d y y a d y y y                                  

( ) 1 ( ) 1 m(p)-1 ( )( , , ) d(y , , )n p m p m pd y y a y a                                (9) 

 ),(),,(),,(),,( 1)()()(1)()(1)(1)(1)(1)( ayydayydyyydayyd pmpnpnpnpnpmpnpmpn    

 

( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) ( ) 1 ( ) ( ) ( ) 1 ( )( , , ) ( , , ) ( , , ) ( , )

                               

n p m p n p m p n p n p n p n p m p m pd y y a d y y y d y y a d y y y                                        

( ) ( )( , )n p m pd y y a  m(p) ( ) 1d(y , )m py a                         (10) 

and therefore   

 

 




0

),,(

)((t)dt

)()(

dtt

ayyd

o

pmpn                                                                                  (11) 

 

 




),,(

0 0

1)(1)(

(t)dt(t)dt 

ayyd pmpn 


                                                                       (12) 

( ) ( ) ( ) ( )k k k k     
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Taking p and using (5) and (8) in (11) and (12). we get 

 

 
 



),,(

0

),,(

0

1)(1)( 1)(1)(

(t)dt        (t)dt        

ayyd ayydpmpn pmpn

 
 

This implies, 

 






),,(

0

1)(1)(

(t)dt        lim

ayyd

p

pmpn


                                                                       (13) 

 

Now from (2), we have 

 

 
 



),,(

0

),,d(y),,(

0

1)(1)( 1)(1-n(p))()(

(t)dt         -(t)dt  )( 

ayyd ayayyd pmpn pmpmpn

dtt 
              (14) 

 

Taking limit as p  and using (8) and (13) in (14) we get  

 

)()()(     

 

This is a contradiction. Hence }{ ny is a Cauchy sequence. Since ),( dX is complete 2-metric space, therefore there exists a point 

v such that  

 n as Tx & n vvSxn
. Consequently, we can find h in X such that .)( vhT   

Now, for all Xa we have 

 

          

  

),,(

0

),,(

0

),,(

0

)(-(t)dt)(

aShSxd aThTxd aThTxdn n n

dttdtt 
 

On taking Limit as n  implies ( , , )

0

( ( )  ) (0) (0)

d v Sh a

t dt    
 

So   ( , , )

0

( ( )  ) 0

d v Sh a

t dt  
implies that .)( vhS   

Hence v is the  point of coincidence of S and T . 

Now we prove that v  is the unique point of coincidence of S and T . Suppose not, therefore there exists  ,  u u v )and there 

exists X  such that .S T u    

Using (2) we have for all Xa  

 
( , , ) ( , , ) d(Tv,T ,a) ( , , )

0 0 0 0

( ) ( )  (t)dt - ( )

d Tv T a d Sv S a d Tv T a

t dt t dt t dt

   

           
 

Therefore 

 
( , , ) ( , , )

0 0

( ) ( )

d Tv T a d Tv T a

t dt t dt

 

    
 

This is a contradiction which implies .vu  This proves uniqueness of point of coincidence of S and .T Therefore by using 

lemma (11), the theorem is proved. 
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