Edge LICT Domination in Graphs

M.H.Muddebihal* and Kalshetti. Swati.M

Department of Mathematics Gulbarga University, Gulbarga - 585 106, Karnataka - India.

ARTICLE INFO

Article history:

Received: 6 May 2013;
Received in revised form:
14 August 2013;
Accepted: 30 August 2013;

Keywords

Lict Graph,
Line Graph,
Edge dominating set,
Dominating set.

Abstract

For any graph G, the lict graph $n(G)=J$ of a graph G is the graph whose vertex set is the union of the set of edges and set of cut vertices of G in which two vertices are adjacent if and only if corresponding members are adjacent or incident .A set F^{\prime} of edges in a graph $n(G)$ is called edge dominating set of $n(G)$ if every edge in $E[n(G)]-F^{\prime}$ is adjacent to atleast one edge in F^{\prime}, denoted as $\gamma_{n}^{\prime}(G)$ and is the minimum cardinality of edge dominating set in $n(G)$. In this paper, many bounds on $\gamma_{n}^{\prime}(G)$ were obtained in terms of vertices, edges and other different parameters of G but not in terms of elements of J. Further we develop its relation with other different domination parameters.

© 2013 Elixir All rights reserved

Introduction

In this paper, all the graphs considered here are simple, finite, non-trivial, undirected and connected. As usual p and q denote, the number of vertices and edges of a graph G. In this paper, for any undefined terms or notations can be found in Harary [2].

The study of domination in graphs was begun by Ore [5] and Berge [1].The domination in graphs discussed by S.L.Mitchell and S.T.Hedetineimi [4].

As usual, the maximum degree of a vertices in $V(G)$ is denoted by $\Delta(\mathrm{G})$ and the maximum edge degree of edges in $E(G)$ is denoted by $\Delta^{\prime}(G)$. A vertex v is called a cut vertex if removing it from G increases the number of components of G. For any real number $\mathrm{x},\lceil x\rceil$ denotes the smallest integer not less than x and $\lfloor x\rfloor$ denotes the greatest integer not greater than x .

A subdivision of an edge $e=u v$ of a graph G is the replacement of the edge by a path $u w v$. The graph obtained from G by subdividing each edge of G exactly once is called the subdivision graph of G and is denoted by $S(G)$.

A Line graph $L(G)$ is the graph whose vertices corresponds to the edges of G and two vertices in $L(G)$ are adjacent if and only if the corresponding edges in G are adjacent.

We begin by recalling some standard definitions from domination theory.
A set $D \subseteq V$ of a graph $G=(V, E)$ is a dominating set, if every vertex not in D is adjacent to atleast one vertex in D.The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set in G.

A set $D^{\prime} \subseteq V^{\prime}$ is said to be a dominating set of $L(G)$, if every vertex not in D^{\prime} is adjacent to atleast one vertex in D^{\prime}.The domination number of $L(G)$ is denoted by $\gamma[L(G)]$ and is the minimum cardinality of a dominating set in $L(G)$.

A set F of edges in a graph $G=(V, E)$ is called an edge dominating set of G if every edge in $E-F$ is adjacent to at least one edge in F. The edge domination number $\gamma^{\prime}(G)$ of a graph G is the minimum cardinality of an edge dominating set in G. Edge domination number was studied by S.L. Mitchell and Hedetniemi [4].

A set I of edges in a graph $L(G)$ is called an edge dominating set of $L(G)$ if every edge in $E[L(G)]-I$ is adjacent to at least one edge in I. The edge domination number of $L(G)$ is denoted as $\gamma^{\prime}[L(G)]$ and is a minimum cardinality of an edge dominating set in $L(G)$.

Analogously, we define edge domination number in lict graph .
A set F^{\prime} of edges of Lict graph $J=n(G)$ is called edge dominating set of $n(G)$ if every edge in $E[n(G)]-F^{\prime}$ is adjacent to atleast one edge in F^{\prime}.The edge domination number $\gamma_{n}^{\prime}(G)$ of a graph $n(G)$ is the minimum cardinality of a edge dominating set in $n(G)$.

The edge dominating set F^{\prime} is called connected edge dominating set of $n(G)$, if induced subgraph $\left\langle F^{\prime}\right\rangle$ is also connected. The connected edge domination number $\gamma_{n c}^{\prime}(G)$
of a connected graph is the minimum cardinality of a connected edge dominating set..
We need the following Theorems to establish our further results.
Theorem A[3]: If G is a non trivial connected (p, q) graph whose vertices have degree d_{i} and l_{i} be the number of edges to which cutvertex C_{i} belongs in G, then lict graph $n(G)^{\text {has }} q+\sum C_{i}$ vertices and $-q+\sum\left(\frac{d_{i}^{2}}{2}+l_{i}\right)$ edges.

Theorem B[2]: If G is a (p, q) graph whose vertices have degree d_{i}, then $L(G)$ has q vertices and q_{L} edges where

$$
q_{L}=-q+\frac{1}{2} \sum_{i=1}^{p} d_{i}^{2}
$$

Results

Initially we begin with edge domination number of Lict graph of some standard graphs, which are straight forward in the following theorem.

Theorem 1: (i) For any cycle C_{p} with $p \geq 3$ vertices,

$$
\gamma_{n}^{\prime}\left(C_{p}\right)=\left\lceil\frac{p}{3}\right\rceil .
$$

(ii) For any path P_{p} with $p>2$ vertices,

$$
\gamma_{n}^{\prime}\left(P_{p}\right)=\left\lfloor\frac{p}{2}\right\rfloor
$$

(iii) For any star $K_{1, p}$ with $p \geq 2$ vertices,

$$
\gamma_{n}^{\prime}\left(K_{1, p}\right)=\left\lceil\frac{p}{2}\right\rceil
$$

(iv) For any wheel W_{p} with $p \geq 4$ vertices,

$$
\gamma_{n}^{\prime}\left(W_{p}\right)=p-2 .
$$

In the following theorem we obtain the relation for $\gamma_{n}^{\prime}(G)$ in terms of number of edges and maximum edge degree Δ^{\prime} of G.

Theorem 2: For any connected (p, q) graph G with $\Delta^{\prime}(G) \leq q-1$ and $G \neq P_{p}(p>6)$, $G \neq C_{p}(p>4)$. Then $\gamma_{n}^{\prime}(G) \geq q-\Delta^{\prime}(G)$. Equality holds if G is $P_{3}, P_{5}, P_{6}, C_{3}, C_{4}$ and $W_{p}(p \geq 4)$.

Proof: To the contrary, suppose G is a path P_{p} with $p>6$ vertices .Let $G=P_{p}$ with $p>6$ vertices $; P_{p}=v_{1,}, e_{1}, v_{2}, e_{2}, v_{3}, e_{3}, \ldots \ldots \ldots \ldots ., v_{p-1}, e_{p-1}, v_{p} . \operatorname{In} n(G), n\left[P_{p}\right]=e_{1}, e_{2}, e_{3}, .$.
$\ldots \ldots, e_{p-1}$, gives induced path with $p-1$ vertices. Let F^{\prime} be a minimal edge dominating set of $n(G)$, such that $\left|F^{\prime}\right|=\left\lfloor\frac{p}{2}\right\rfloor$. For any path P_{p} with $p>6$ vertices, $\Delta^{\prime}=2$ and $p=q+1$. Then it is clear that $\left|F^{\prime}\right|<p-1-\Delta^{\prime}$ and $\left|F^{\prime}\right|<q-\Delta^{\prime}(G)$, which gives $\gamma_{n}^{\prime}(G)<$
$q-\Delta^{\prime}(G)$.
Now if $G=C_{p}$ with $p>4$ vertices. Let $G=C_{p}$ with $p>4$ vertices; $C_{p}=v_{1}, e_{1}, v_{2}, e_{2}, \ldots \ldots v_{p}, e_{p}$, . In $n(G), V\left[n\left(C_{p}\right)\right]=e_{1}, e_{2}, e_{3}, \cdots \ldots . . ., e_{p}, e_{1}$, which is isomorphic to C_{p}. Let F^{\prime} be the minimal edge dominating set of $n(G)$.By Theorem $1,\left|F^{\prime}\right|=\left\lceil\frac{p}{3}\right\rceil$ and $\Delta^{\prime}=2$. Thus it is clear that $\left|F^{\prime}\right|<p-\Delta^{\prime}(G)$, which gives $\gamma_{n}^{\prime}(G)<q-\Delta^{\prime}(G)$.

For $\gamma_{n}^{\prime}(G) \geq q-\Delta^{\prime}(G)$, let $E(G)=\left\{e_{1}, e_{2}, e_{3}, \ldots \ldots, e_{n}\right\}$ be the edge set of G which gives $V[n(G)]$. We consider the of $E(G)$ such as subsets $E_{1}(G)=\left\{e_{i}\right\} ; 1 \leq i \leq n$ and $E_{2}(G)=\left\{e_{j}\right\}$, where $i \neq j ; 1 \leq j \leq n$. Every element of $E_{1}(G)$ has maximum edge degree in G and every element of $E_{2}(G)$ has minimum edge degree in G. Let $E_{3}(G)=$
$\left\{e_{k}\right\} ; 1 \leq k \leq n$, such that $E_{3}(G)=E(G)-\left\{E_{1}(G) \cup E_{2}(G)\right\}$ be the set of edges which have neither maximum edge degree nor minimum edge degree in G.Let $C=\left\{c_{1}, c_{2}, c_{3}, \cdots\right.$
$\left.\ldots \ldots ., c_{n}\right\}$ be the set of cutvertices in G.Denote $E[n(G)]=\left\{q_{1}, q_{2}, q_{3}, \ldots \ldots . . ., q_{n}\right\}$, the edge set of $n(G)$ and $V[n(G)]=E(G) \cup C(G)$. Suppose F^{\prime} be the minimal edge dominating set of $n(G)$, such that $\forall q_{i} \in F^{\prime} ; 1 \leq i \leq n$ is incident with atleast one of combination of $E_{1}(G), E_{2}(G), E_{3}(G)$ and $C(G)$. For this combination we consider the following cases.

Case 1: Suppose $\left\{q_{i}\right\} ; 1 \leq i \leq n$ be the set of edges joining some of the vertices of $E_{1}(G)$ and $C(G)$ in $n(G)$.Then $\left\{q_{i}\right\}=F^{\prime}$ be a minimal edge dominating set of $n(G)$. By the Theorem A, $n(G)^{\text {has }}-q+\sum\left(\frac{d_{i}^{2}}{2}+l_{i}\right)$ edges, which gives $F^{\prime} \geq E(G)-\Delta^{\prime}(G)$ and $\left|F^{\prime}\right| \geq|E(G)|-\Delta^{\prime}(G)$. Clearly $\gamma_{n}^{\prime}(G) \geq q-\Delta^{\prime}(G)$.

Case 2: Suppose the edge set $\left\{q_{i}\right\} ; 1 \leq i \leq n$ forms a minimal edge dominating set in $n(G)$.Then the edges $\left\{q_{i}\right\}$ are joining the some vertices of $E_{2}(G)$ and $E_{3}(G)$ in $n(G)$. Since every edge of $E[n(G)]-\left\{q_{i}\right\}$ are adjacent to atleast one edge of $\left\{q_{i}\right\}$.Then $F^{\prime}=\left\{q_{i}\right\}$, be a minimal edge dominating set of $n(G)$. Hence $\left|F^{\prime}\right|=|E(G)|-\Delta^{\prime}(G)$, generates $\gamma_{n}^{\prime}(G) \geq q-\Delta^{\prime}(G)$.
Case 3: Suppose the elements of $\left\{q_{i}\right\} ; 1 \leq i \leq n$ are incident with the vertices of $E_{1}(G)$ and $E_{2}(G)$ in $n(G)$. Then $\quad\left\{q_{i}\right\}=F^{\prime}$ be a minimal edge dominating set of $n(G)$. Clearly $\left|F^{\prime}\right| \geq|E(G)|-\Delta^{\prime}(G)$. Hence $\left|F^{\prime}\right| \geq q-\Delta^{\prime}(G)$. Which implies that $\gamma_{n}^{\prime}(G) \geq q-\Delta^{\prime}(G)$.

Case 4: Suppose $\left\{q_{j}\right\}$ and $\left\{q_{k}\right\}$ are edge sets such that $\left\{q_{i}\right\},\left\{q_{k}\right\}^{\in} E[n(G)]$ and $\left\{q_{j}\right\} \subset\left\{q_{i}\right\} ;\left\{q_{k}\right\} \subset\left\{q_{i}\right\}$. Since every edge of $\left\{q_{j}\right\}$ are adjacent with the vertices of
$E_{2}(G)$ and $C(G)$, also every edge of $\left\{q_{k}\right\}$ are incident with the vertices of $E_{3}(G)$ and
$C(G)$ in $n(G)$. Then $\left\{q_{j}\right\} \cup\left\{q_{k}\right\}=\left\{q_{i}\right\}=F^{\prime}$ be a minimal edge dominating set of $n(G)$. Then clearly $\left|F^{\prime}\right| \geq|E(G)|^{-} \Delta^{\prime}(G)$, which gives $\gamma_{n}^{\prime}(G) \geq q-\Delta^{\prime}(G)$.

For the remaining combination of the vertex sets $E_{1} \cup E_{3}, E_{2} \cup C, E_{3} \cup C$, denote the edge set $\left\{q_{l_{1}}\right\}$ joining the vertices of $E_{1}(G)$ and $E_{3}(G)$, the edge set $\left\{q_{l_{2}}\right\}$ joining the vertices of $E_{2}(G)$ and $C(G)$, the edges of $\left\{q_{l_{3}}\right\}$ joining the vertices of $E_{3}(G)$ and $C(G)^{\text {in }} n(G)$. Since $\left\{q_{l_{1}}\right\} \supset\left\{q_{i}\right\},\left\{q_{l_{2}}\right\} \supset\left\{q_{i}\right\}$ and $\left\{q_{l_{3}}\right\} \supset\left\{q_{i}\right\}$. Then the edge set $\left\{q_{i}\right\}$
is a minimal edge dominating set of $n(G)$. Clearly the combination of $\left[E_{1} \cup E_{3}, E_{2} \cup C\right.$,

$$
\left.E_{3} \cup C\right] \notin F^{\prime}
$$

For the equality

i) If G is isomorphic to P_{3}, then $n\left(P_{3}\right)=C_{3}$ and $\gamma_{n}^{\prime}\left(P_{3}\right)=1$. Since $\Delta^{\prime}=2$. Hence it follows that $\gamma_{n}^{\prime}\left(P_{3}\right)=q-\Delta^{\prime}(G)$.
ii) If G is isomorphic to P_{5}, then $\gamma_{n}^{\prime}\left(P_{5}\right)=2$. Since $\Delta^{\prime}=2$ and $p=q+1$. Then $\gamma_{n}^{\prime}\left(P_{5}\right)=$ $p-1-\Delta^{\prime}(G)$. It follows that $\gamma_{n}^{\prime}\left(P_{5}\right)=q-\Delta^{\prime}(G)$.
iii) If G is isomorphic to P_{6}, then $\gamma_{n}^{\prime}\left(P_{6}\right)=3$. Thus $\gamma_{n}^{\prime}\left(P_{6}\right)=p-1-\Delta^{\prime}(G)$. Clearly

$$
\gamma_{n}^{\prime}\left(P_{6}\right)=q-\Delta^{\prime}(G) .
$$

iv) If G is isomorphic to C_{3} or C_{4}, then $n(G)=C_{3}$ or C_{4}, by definition. Since for any cycle C_{p} with p vertices, we have $p=q$ and also $\Delta^{\prime}(G)=2$. Hence clearly it follows that for $p=3$ or $4 \gamma_{n}^{\prime}\left(C_{p}\right)=q-\Delta^{\prime}(G)$.
v) If G is isomorphic to W_{p} with $p \geq 4$ vertices, then by Theorem 1 , we have $\gamma_{n}^{\prime}\left(W_{p}\right)$ $=p-2$. For any wheel W_{p} with $p \geq 4$ vertices, $\Delta^{\prime}=p$ and $q>p$. Thus $\gamma_{n}^{\prime}\left(W_{p}\right)=$ $q-p$, which gives $\gamma_{n}^{\prime}\left(W_{p}\right)=q-\Delta^{\prime}(G)$.

In the following theorem we established the result on lower bound for $\gamma_{n}^{\prime}(G)$.
The orem 3: If G is connected (p, q) graph, then $\gamma_{n}^{\prime}(G) \leq\left\lfloor\frac{p}{2}\right\rfloor$.
Proof: We consider the following cases.
Case 1: If $C(G)=\phi$.Now we partition edge set $E(G)=\left\{e_{1}, e_{2}, e_{3}, \ldots \ldots, e_{n}\right\}$, such as set $E_{1}(G)=\left\{e_{i}\right\}$, where $1 \leq i \leq n$ has maximum edge degree in G and set $E_{2}(G)=\left\{e_{j}\right\}$;where
$1 \leq j \leq n$ has minimum edge degree in G and $E_{3}(G)=E(G)-\left\{E_{1}(G) \cup E_{2}(G)\right\}=\left\{e_{k}\right\}$ where $1 \leq j \leq n$ be the edge set with neither maximum nor minimum edge degree in G.

We obtain $\gamma_{n}^{\prime}(G)$ set with respect to the edges joining the $V[n(G)]$, where $E_{1}(G)$,
$E_{2}(G), E_{3}(G) \in V[n(G)]$. Further we consider $E[n(G)]=\left\{q_{i}\right\} \cup\left\{q_{j}\right\} \cup\left\{q_{k}\right\} ; \forall q_{n} ;$
$1 \leq n \leq i ; \forall q_{m} ; 1 \leq m \leq j$ and $\forall q_{t} ; 1 \leq t \leq k$ are the set of edges joining the vertices of $E_{1}(G), E_{2}(G) ;$ $E_{1}(G), E_{3}(G)$ and $E_{2}(G), E_{3}(G)$ in $n(G)$, where $E_{1}(G), E_{2}(G)$,
$E_{3}(G)^{\in} V[n(G)]$.The remaining set $\left\{q_{j}\right\}$ and $\left\{q_{k}\right\}$ are the edges joining the elements of $E_{1}(G), E_{2}(G)$ and $E_{3}(G)$ in all other combinations. Since $q_{n} \subset q_{i}$, if $\left|q_{n}\right|=$ minimum, then $\left|q_{n}\right|=\gamma_{n}^{\prime}(G)$.By the Theorem A, $n(G)$ has $-q+\frac{1}{2} \sum\left(\frac{d_{i}^{2}}{2}+l_{i}\right)^{\text {edges which gives }}\left|q_{n}\right| \subset E[n(G)]$. Clearly $\quad \gamma_{n}^{\prime}(G) \leq \frac{p}{2}$.

Case 2: If $C(G) \neq \phi$, let $C=\left\{c_{1}, c_{2}, c_{3}, \ldots \ldots \ldots ., c_{n}\right\}$ the set of cutvertices of G. Since $E[n(G)]=\left\{q_{i}\right\} \cup\left\{q_{j}\right\} \cup\left\{q_{k}\right\}$. We consider the subset $\left\{q_{i}\right\}$, such that some of $q_{i}^{\prime} s$ are incident with the elements of $E_{1}(G)$ and $E_{2}(G)$ in $n(G)$. For the subset $\left\{q_{j}\right\}$, some of $q_{j}^{\prime \prime}$'s are incident with the elements of $E_{2}(G)^{\text {and }} E_{3}(G)$ in $n(G)$.Further for the subset $\left\{q_{k}\right\}$, for some of $q_{k}^{\prime} ' s$ are incident with the elements of $E_{1}(G)$ and $E_{3}(G)$ in $n(G)$.For the set $\left\{C_{j}\right\}$, some of elements of C_{j} are adjacent with either the elements of $E_{1}(G)^{\text {or }} E_{2}(G)$ or $E_{3}(G)$, we consider the following subcases.

Subcase 2.1:If $F^{\prime}=\left\{q_{i}^{\prime} \cup q_{k}^{\prime}\right\}$, where $q_{i}^{\prime} \subset q_{i}$ and $q_{k}^{\prime} \subset q_{k}$ be the edge dominating set of $n(G)$ formed by joining the elements of $E_{1}(G)$ and $E_{2}(G)^{\text {in }} n(G)$, such that $\left|F^{\prime}\right|=\gamma_{n}^{\prime}(G) \leq\left\lfloor\frac{p}{2}\right\rfloor$.

Subcase 2.2: If $F^{\prime}=\left\{q_{j}^{\prime} \cup q_{k}^{\prime}\right\}$, where $q_{j}^{\prime} \subset q_{j}$, be the edge dominating set of $n(G)$, formed by joining the elements of $E_{2}(G)$ and $E_{3}(G)$ in $n(G)$, such that $\left|F^{\prime}\right|=\gamma_{n}^{\prime}(G)$.

Since $\left\{q_{i}^{\prime} \cup q_{k}^{\prime}\right\} \subset E[n(G)]$. Which gives the result as $\gamma_{n}^{\prime}(G) \leq\left\lfloor\frac{p}{2}\right\rfloor$.
Subcase 2.3: Let $F^{\prime}=\left\{q_{i}^{\prime} \cup c_{m}^{\prime}\right\} \subset E[n(G)]$ be the edge dominating set of $n(G)$, where c_{m}^{\prime} is the set of edges joining the elements of $E_{1}(G)^{\text {or }} E_{2}(G)^{\text {or }} E_{3}(G)$ in $n(G)$ and $c_{m}^{\prime} \subset c_{m}$, such that $\left|F^{\prime}\right|=\gamma_{n}^{\prime}(G) \leq\left\lfloor\frac{p}{2}\right\rfloor$.

Further we deal with the edges of $\left\{q_{i}\right\},\left\{q_{j}\right\},\left\{q_{k}\right\}$ with $\left\{c_{m}\right\}, c_{m} \in V[n(G)]$
in the following subcase.
Subcase 2.4: Let the edge dominating set F^{\prime} of $n(G)$ as $F^{\prime}=\left\{q_{i}\right\} \cap\left\{c_{m}^{\prime}\right\} \cup\left\{q_{j}^{\prime}\right\}$ or $\quad\left\{q_{j}\right\} \cap\left\{c_{m}^{\prime}\right\} \cup\left\{q_{k}^{\prime}\right\}$ or $\left\{q_{k}^{\prime}\right\} \cap\left\{c_{m}^{\prime}\right\}$, by Theorem A we have $E[n(G)]=-q+\sum\left(\frac{d_{i}^{2}}{2}+l_{i}\right)$
then $\left|F^{\prime}\right|=\gamma_{n}^{\prime}(G) \geq\left\lfloor\frac{p}{2}\right\rfloor$.Which gives the result.
Theorem 4: If G is (p, q) connected graph with $p>2$ vertices then $\frac{q}{\Delta^{\prime}(G)+1} \leq \gamma_{n}^{\prime}(G)$.
Proof: For a connected (p, q) graph G, with $p>2$ vertices, $n(G)$ be the Lict graph
with p^{\prime} vertices and q^{\prime} edges. Now we consider a set F^{\prime}, be an edge dominating set of $n(G)$, such that $\left|F^{\prime}\right|=\gamma_{n}^{\prime}(G)$.
Then

$$
\begin{aligned}
\left|F^{\prime}\right| \Delta^{\prime}(G) & \leq \sum_{q^{\prime} \in F^{\prime}} d\left(q^{\prime}\right)=\sum N\left(q^{\prime}\right) \\
\leq & \left|\bigcup_{q^{\prime} \in F^{\prime}} N\left(q^{\prime}\right)\right|
\end{aligned}
$$

$$
\begin{gathered}
\leq\left|E[n(G)]-F^{\prime}\right| \\
\leq|E[n(G)]|-\left|F^{\prime}\right| \\
\left|F^{\prime}\right| \Delta^{\prime}(G)+\left|F^{\prime}\right| \leq|E[n(G)]| \\
\left|F^{\prime}\right|\left(\Delta^{\prime}(G)+1\right) \leq|E[n(G)]| \\
\left|F^{\prime}\right|\left(\Delta^{\prime}(G)+1\right) \leq q^{\prime} .
\end{gathered}
$$

By the definition of Lict graph .Since $V[n(G)]=E(G) \cup C(G)$ and also $E[n(G)]$

$$
\geq E(G)
$$

Thus

$$
\begin{aligned}
& |E[n(G)]| \geq\left|F^{\prime}\right|\left(\Delta^{\prime}(G)+1\right) \geq|E(G)| . \\
& \left|F^{\prime}\right|\left(\Delta^{\prime}(G)+1\right) \geq|E(G)| . \\
& \left|F^{\prime}\right|\left(\Delta^{\prime}(G)+1\right) \geq q, \text { where } q \in E(G) .
\end{aligned}
$$

Hence

$$
\left|F^{\prime}\right| \geq \frac{q}{\left(\Delta^{\prime}(G)+1\right)} .
$$

Which gives $\gamma_{n}^{\prime}(G) \geq \frac{q}{\left(\Delta^{\prime}(G)+1\right)}$.
The following theorem provides the relation between $\gamma_{n}^{\prime}(G)$ and $\gamma[L(G)]$.
Theorem 5: For any connected (p, q) graph G with $p>2$ vertices, $\gamma_{n}^{\prime}(G) \geq \gamma[L(G)]$.
Equality holds if G is isomorphic to P_{3}, P_{5} and $C_{p}(p \geq 3)$.
Proof: Let $E(G)=\left\{e_{1}, e_{2}, e_{3}, \ldots \ldots . ., e_{n}\right\}$ be the edge set of G and let $F \subset E(G)$, such that, $\left\{e_{i}\right\} ; 1 \leq i \leq n$ be a minimal edge dominating of G. By definition of Line graph, let $D^{\prime}=$ $\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots, v_{n}\right\}$,with $e_{i} \leftrightarrow v_{i}$, is a minimal dominating set of $L(G)$. Hence $\left|D^{\prime}\right|=$
$\gamma[L(G)]$. Further we consider the edge set $F^{\prime}=\left\{q_{1}, q_{2}, q_{3}, \ldots \ldots \ldots, q_{n}\right\}$, such that $F^{\prime} \subset$
$E[n(G)]$ be a minimal edge dominating set of $n(G)$. Hence $\left|F^{\prime}\right|=\gamma_{n}^{\prime}(G)$. Since each edge in G is adjacent to atleast one edge of F and $D^{\prime} \in V[L(G)] \subseteq V[n(G)]$.Clearly it follows that $\left|F^{\prime}\right| \geq\left|D^{\prime}\right|$. Hence $\gamma_{n}^{\prime}(G) \geq \gamma[L(G)]$.

For the equality,
i) If $G \cong P_{3}$, then $\gamma_{n}^{\prime}(G)=\gamma\left[L\left(P_{3}\right)\right]=1$
ii) If $G \cong P_{5}$, then $\gamma_{n}^{\prime}\left(P_{5}\right)=\gamma\left[L\left(P_{5}\right)\right]=2$
iii) If $G \cong C_{p}$ with $p \geq 3$ vertices. For any cycle C_{p}, we have $n\left(C_{p}\right)=L\left(C_{p}\right) \cong C_{n}$.

Hence $\gamma_{n}^{\prime}\left(C_{p}\right)=\gamma^{\prime}\left[L\left(C_{p}\right)\right]=\gamma\left(C_{p}\right)$.
The following theorem provides the analogous relation between $\gamma_{n}^{\prime}(G)$ and $\gamma^{\prime}[L(G)]$.
Theorem 6: For any connected (p, q) graph G with $p>2$ vertices , $\gamma_{n}^{\prime}(G) \geq \gamma^{\prime}[L(G)]$.

Equality holds if G is a block.
Proof: We consider the following cases.
case1: Suppose G is not a block. Then $\exists C(G) \neq \phi$ in G. We partition the $E(G)=$
$E_{1}(G) \cup^{E_{2}}(G) \cup E_{3}(G)$. Now we consider $E_{1}(G)=\left\{e_{1}, e_{2}, e_{3}, \ldots \ldots . . ., e_{k}\right\}$ be the edge set with maximum edge degree in G and $E_{2}(G)=\left\{e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime} \cdots \cdots, e_{j}^{\prime}\right\}$ be the edge set with minimum edge degree in G.Let $E_{3}(G)=E(G)-\left\{E_{1}(G) \cup E_{2}(G)\right\}$ be the edges with neither maximum nor minimum edge degrees in $G \cdot V[n(G)]=E_{1}(G) \cup E_{2}(G) \cup E_{3}(G)$
$\cup C(G)$, where $C(G)$ is the set of cutvertices in G. Denote $E[n(G)]=\left\{q_{i}\right\} \cup\left\{q_{j}\right\} \cup$
$\left\{q_{k}\right\} \cup\left\{q_{l}\right\}$. For the set $\left\{q_{i}\right\}$, let $q_{m} \subset q_{i} ; 1 \leq m \leq i$ are incident with the elements of $E_{1}(G)^{\text {and }} E_{2}(G)^{\text {in }} n(G)$. For the set $\left\{q_{j}\right\}$, let $q_{n} \subset q_{j} ; 1 \leq n \leq j$ are incident with the elements of $E_{2}(G)$ and $E_{3}(G)$ in $n(G)$. For the set $\left\{q_{k}\right\}$, let $q_{p} \subset q_{k} ; 1 \leq p \leq k$ are incident with the elements of $E_{1}(G)$ and $E_{3}(G)$ in $n(G)$. Further for the set $\left\{q_{l}\right\}$, let $q_{t} \subset q_{l} ; 1 \leq t \leq l$ are incident with the elements of $E_{1}(G)$ or $E_{2}(G)$ or $E_{3}(G)$ in $n(G)$.

Let F^{\prime} be a minimal edge dominating set of $n(G) ; F^{\prime}=\left\{q_{m}\right\}$ or $\left\{q_{n}\right\}$ or $\left\{q_{p}\right\}$ or $\left\{q_{t}\right\}$; such that $\left|F^{\prime}\right|=\gamma_{n}^{\prime}(G)$. But in line graph,$E_{1}(G) \cup E_{2}(G) \cup E_{3}(G)=V[L(G)]$. Here we consider $E[L(G)]=\left\{q_{i}^{\prime}\right\} \cup\left\{q_{j}^{\prime}\right\} \cup\left\{q_{k}^{\prime}\right\}$. For the set $\left\{q_{i}^{\prime}\right\}$, let $q_{m}^{\prime} \subset q_{i}^{\prime} ; 1 \leq m \leq i$ are incident with the elements of $E_{1}(G)$ and $E_{2}(G)$ in $L(G)$. For the set $\left\{q_{j}^{\prime}\right\}$, let $q_{n}^{\prime} \subset q_{j}^{\prime} ; 1 \leq n \leq j$ are incident with the elements of $E_{2}(G)$ and $E_{3}(G)$ in $L(G)$. Further for the set $\left\{q_{k}^{\prime}\right\}$, let $q_{p}^{\prime} \subset q_{k}^{\prime} ; 1 \leq p \leq k$ are incident with the elements of $E_{1}(G)$ and $E_{3}(G)$ in $L(G)$. Let I be a minimal edge dominating set of $L(G) ; I=\left\{q_{m}^{\prime}\right\}$ or $\left\{q_{n}^{\prime}\right\}$ or $\left\{q_{p}^{\prime}\right\}$, such that $|I|=\gamma^{\prime}[L(G)]$. By Theorem A and Theorem B ,$E[L(G)] \subseteq E[n(G)]$.

Clearly it follows that $\left|F^{\prime}\right|>|I|$. Thus $\gamma_{n}^{\prime}(G)>\gamma^{\prime}[L(G)]$.
Case 2: Suppose G is a block. Clearly $C(G)=\phi$. Then $V[n(G)]=V[L(G)]=E(G)$.
Then $E_{1}(G) \cup E_{2}(G) \cup E_{3}(G) \subseteq E(G)$ and $\left\{E_{1}(G), E_{2}(G), E_{3}(G)\right\} \in V[n(G)]=$
$V[L(G)]$. Denote $E[n(G)]=\left\{q_{i}\right\} \cup\left\{q_{j}\right\} \cup\left\{q_{k}\right\} ; \forall q_{n} ; 1 \leq n \leq i ; \forall q_{m} ; 1 \leq m \leq j ; \forall q_{t} ;$
$1 \leq t \leq k$ are the set of edges joining the elements of $E_{1}(G), E_{2}(G)$ and $E_{3}(G)$ in $n(G)$. For the set $\left\{q_{i}\right\}$, we consider q_{n} elements, for the set $\left\{q_{i}\right\} ; \forall q_{i} \subset E[n(G)]$ are joining the elements of $E_{1}(G)$ and $E_{2}(G)$ in $n(G)$. The remaining sets $\left\{q_{j}\right\}$ and $\left\{q_{k}\right\}$ are the edges joining the elements of $E_{1}(G), E_{2}(G)^{\text {and }} E_{3}(G)$ in the remaining combination. Since $q_{n} \subseteq q_{i}$ then $\left|q_{n}\right|=$ minimum and $\left|q_{n}\right|=\gamma_{n}^{\prime}(G)=\gamma^{\prime}[L(G)]$. Which gives the required result.

In the next result we obtain the relation of $\gamma_{n}^{\prime}(G)$ with $\gamma^{\prime}[L(G)]$ and $\gamma[L(G)]$.
Theorem 7: For any connected (p, q) graph G with $p>2$ vetices, $\gamma_{n}^{\prime}(G) \leq \gamma^{\prime}[L(G)]$
${ }^{+} \gamma[L(G)]$, Equality holds if and only if $G \cong P_{4}$.
Proof: Let γ^{\prime} be a minimal edge dominating set of G, which is also a γ set of $L(G)$. If
G has no cutvertex then $E[n(G)]=E[L(G)]^{\text {and }} E(G)=V[n(G)]$. If G has atleast one cutvertex then $E[n(G)]>E[L(G)]$ which gives $\gamma_{n}^{\prime}(G)>\gamma^{\prime}[L(G)]$ and also
$E[n(G)]=E[L(G)] \cup E_{1}(G)$; where $E_{1}(G) \subset E[n(G)] ; \forall e_{i} \in E_{1}(G)$ are incident to each cutvertex of G in $n(G)$. By Theorem 5 and Theorem 6 we have the above result.

For equality, if $G \cong P_{4}$, then $L\left(P_{4}\right)=P_{3}$ with $\gamma^{\prime}\left(P_{3}\right)=\gamma\left(P_{3}\right)=1$ and $n\left(P_{4}\right)=C_{3} . C_{3}$ with
$\gamma_{n}^{\prime}\left(P_{4}\right)=\frac{p}{2}=2$. Which gives the equality result.
In the following theorem we obtain the relation between $\gamma_{n}^{\prime}(G)$ and a domination number of G.
The orem 8: For any connected (p, q) graph G, with $p>2$ vertices $\gamma_{n}^{\prime}(G) \geq \gamma(G)$.
Equality holds if G is isomorphic to P_{p} with $p=3,7, C_{p}(p \geq 3)$ and spider or a wounded spider with exactly one or two wounded legs.

Proof: Let $D=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots . . ., v_{n}\right\}$ be the minimal dominating set of G, such that $|D|=$
$\gamma(G)$. Further let $F^{\prime}=\left\{q_{1}, q_{2}, q_{3}, \ldots \ldots ., q_{n}\right\}$ be the minimal edge dominating set of $n(G)$,
where some of the $q_{i}{ }^{\prime} s \subseteq F^{\prime}$; where $1 \leq i \leq n \quad$ joining the elements of $V[n(G)]$ with

For equality,
i) If $G=P_{3}, P_{7}$, then $\gamma\left(P_{3}\right)=\gamma\left(P_{7}\right)=\left\lfloor\frac{p}{2}\right\rfloor$ and also by Theorem1,we have $\gamma_{n}^{\prime}\left(P_{p}\right)=\left\lfloor\frac{p}{2}\right\rfloor$.
which gives the result.
ii) If $G=C_{p}$ with $p \geq 3$ vertices. For any cycle $C_{p}, n\left(C_{p}\right) \cong C_{p}, \gamma_{n}^{\prime}\left(C_{p}\right)=\gamma\left(C_{p}\right)=\left\lceil\frac{p}{3}\right\rceil$.
iii) If G is a spider, then we partition $E(G)$ into $E_{1}(G)=\left\{e_{1}, e_{2}, e_{3}, \ldots \ldots . ., e_{i}\right\} ; E_{2}(G)=$
$\left\{e_{1}, e_{2}, e_{3}, \ldots \ldots ., e_{j}\right\}$,where each e_{i} is incident to v, where $\operatorname{deg}(v)=\Delta(G)$. For the set $E_{2}(G) ; \forall e_{j} \in E_{2}(G)$ are adjacent to the elements of $E_{1}(G)$ with $e_{i} \leftrightarrow e_{j}$, with preserving 1-1 correspondence .Let $D=\left\{c_{1}, c_{2}, c_{3}, \ldots \ldots . ., c_{i}\right\}$ be a minimal dominating set of G and $D=C(G)-v$, where $\{C(G)-v\} \subset V(G)$ a cutest of G. Hence $|D|=\gamma(G)$. In $n(G), E_{1}(G)$ together with v forms a complete subgraph $K_{e_{i}+1}$. Since $V[n(G)]=E(G)$
$\cup_{C(G)}$, then $\left\{\left(c_{1}, c_{2}, c_{3}, \ldots \ldots \ldots, c_{i}\right) \cup E_{2}(G) \cup E_{1}(G)\right\}$ forms c_{i} number of copies of K_{3}.
In $n(G)$, edges joining the elements of $E_{1}(G)$ and the elements of C_{i} or edges joining the elements of $E_{2}(G)$ and the elements of $E_{1}(G)$ will be denoted as $\left\{q_{1}, q_{2}, q_{3}, .\right.$. .
$\left.\ldots . ., q_{i}\right\}$ and $\left\{q_{1}, q_{2}, q_{3}, \ldots \ldots \ldots . . ., q_{j}\right\}$. Let $F^{\prime}=\left\{q_{1}, q_{2}, q_{3}, \ldots \ldots . . ., q_{i}\right\}$ or $\left\{q_{1}, q_{2}, q_{3}, \ldots \ldots \ldots ., q_{j}\right\}$
be a minimal edge dominating set of $n(G)$ obtained by above sets with $q_{i} \leftrightarrow q_{j}$. Hence $|D|=\left|F^{\prime}\right|=\gamma_{n}^{\prime}(G)$.
iv) For the wounded spider with exactly one or two wounded legs. Then the set $E_{2}(G)=$
$\left\{e_{2}, e_{3}, \ldots \ldots ., e_{j}\right\}$ or $\left\{e_{3}, e_{4}, \ldots . ., e_{j}\right\}$; the cutvertex set $C=\left\{c_{2}, c_{3}, \ldots \ldots ., c_{i}\right\}$ or $\left\{c_{3}, c_{4}, \ldots \ldots ., c_{i}\right\}$.
Let D be a minimal dominating set of G, such that $|D|=\left\{v, c_{2}, c_{3}, \ldots \ldots, c_{i}\right\}$ or $\left\{v, c_{3}, c_{4}, \ldots\right.$.
$\left.\ldots, c_{i}\right\}$. Then $|D|=\gamma(G)$. In $n(G)$, since G is a wounded spider with one leg, then $F^{\prime}=\left\{e, q_{2}, q_{3}, \ldots . . ., q_{i}\right\}$ or $\left\{e, q_{2}, q_{3}, \ldots \ldots . ., q_{j}\right\}$,where $e=v_{q_{1}}$. Further if G is a wounded spider with two wounded legs ,then $F^{\prime}=\left\{e, q_{3}, q_{4}, \ldots \ldots . . ., q_{i}\right\}$ or $\left\{e, q_{3}, q_{4}, \ldots \ldots, q_{j}\right\}$.Clearly $|D|=\left|F^{\prime}\right|=\gamma_{n}^{\prime}(G)$.

The following Theorem gives the relation between $\gamma_{n}^{\prime}(G)$ and its connected edge domination number $\gamma_{n c}^{\prime}(G)$.
Theorem 9: For any connected (p, q) graph $G, \gamma_{n}^{\prime}(G) \leq \gamma_{n c}^{\prime}(G)$.
Proof: Let $F^{\prime}=\left\{q_{1}, q_{2}, q_{3}, \ldots \ldots . . ., q_{n}\right\}$ be a minimal edge dominating set of $n(G)$, such that
$\left|F^{\prime}\right|=\gamma_{n}^{\prime}(G)$. If $H=E[n(G)]-F^{\prime}$ and let $F_{1}^{\prime}=\left\{a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}, \ldots \ldots . ., a_{i}^{\prime}\right\} ; \forall a_{i}^{\prime} \in E[n(G)]$ be the set of edges of $n(G)$, such that $F_{1}^{\prime} \in N\left(F^{\prime}\right)$ and $H \subset F_{1}^{\prime}$ in $n(G)$. Then $\left\langle F^{\prime} \cup H\right\rangle$ is a minimal connected edge dominating set of $n(G)$. Clearly $\left|F^{\prime} \cup H\right| \geq\left|F^{\prime}\right|$. Thus $\gamma_{n c}^{\prime}(G) \geq \gamma_{n}^{\prime}(G)$.

The following Theorem provides the result for $\gamma_{n}^{\prime}(G)$ in terms of edge domination in subdivision of Lict graph of a graph G.

Theorem 10: For any connected $(p, q) \operatorname{graph} G, \gamma_{n}^{\prime}(G) \leq \gamma_{n}^{\prime}[S(G)]$.
Proof: The above result is obvious.
Finally we obtain the Nordhous - Gaddum type result,
Theorem 11: Let G be a connected (p, q) graph, such that both G and \bar{G} are connected, then
i) $\gamma_{n}^{\prime}(G) \cdot \gamma_{n}^{\prime}(\bar{G}) \leq p+2$.
ii) $\gamma_{n}^{\prime}(G)+\gamma_{n}^{\prime}(\bar{G}) \leq p$.

References

[1] C.Berge, Theory of graphs and its applications, Methuen London, (1962).
[2] F.Harary, Graph theory, Adison Wesley, Reading Mass,(1972).
[3] V.R. Kulli and M.H.Muddebihal, Journal of Analysis and Computation ,Vol 2 ,No.1, (2006),(33-43).
[4] S.L. Mitchell and S.T. Hedetniemi, Edge domination in trees, Congr. Number, 19, (1977),(489-509).
[5] O.Ore, Theory of graphs, Amer.Math.Soc., Colloq Publ., 38 Providence, (1962).

