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Introduction 

The flow and heat transfer behavior of polymeric fluids, colloidal fluids, real fluids with suspensions, fluids containing certain 

additives, liquids crystals, animal blood, etc. cannot be explained by the classical Navier-Stokes theory. Eringen[1] proposed a theory 

of micropolar fluids and derived constitutive laws for fluids with micro-structure. The theory of thermo-micropolar fluids has been 

developed by Eringen[2]. The micropolor fluids theory has been applied extensively for studying many complicated fluid motions. 

Liquid crystal behavior was described by Lee and Eringen[3,4] by using the theory of micropolar fluids. In Refs. [5] and [6] the theory 

of micropolar fluid was applied in studying a low concentration suspension flow. The presence of dust or smoke, particularly in gas, 

may also be modelled using microploar fluid dynamics [7]. Ishak et al.[8] studied the boundary layer flow of a micropolar fluid on a 

continuous moving or fixed surface. The effect of suction/ injection on the boundary layer flow of a micropolar fluid on a 

continuously moving or fixed surface was investigated by Ishak  et al.[9]. 

Also, the porous media heat transfer problems have several practical engineering applications, such as the crude oil extraction, the 

ground water pollution, and many other practical applications, i.e., in biomechanical problems (e.g., blood, flow in the pulmonary 

alveolar sheet) and in the filtration transpiration cooling. Hiremath and Patil[10] studied the effect of free convection currents on the 

oscillatory flow of the polar fluid through a porous medium, which is bounded by the vertical plane surface with a constant 

temperature. The unsteady hydromagnetic free convection flow of a Newtonian and polar fluid has been investigated by Helmy[11]. 

El-Hakien et al.[12] studied the effects of the viscous and Joule heating on MHD-free convection flows with variable plate 

temperatures in a micropolar fluid. El-Amin[13] considered MHD free-convection and mass transfer flow in a micropolar fluid over a 

stationary vertical plate with a constant suction. Kim[14] investigated the unsteady free convection flow of a micropolar fluid past a 

vertical plate embedded in a porous medium, and extended his work[15] to study the effects of heat and mass transfer in the MHD 

micropolar fluid flow past a vertical moving plate. 
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we study the effect of viscous dissipation on unsteady free convection flow of a laminar 

incompressible micropolar fluid with heat and mass transfer past a vertical porous plate 

embedded in a porous medium with chemical reaction. 
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Lukaszewicz [16]. Kim [17] studied the unsteady two-dimensional laminar flow of a viscous incompressible micropolar fluid past a 

semi-infinite porous plate embedded in a porous medium. Kim [18] investigated transient mixed radiative convection flow of a 

micropolar fluid past a moving, semi infinite vertical porous plate. Hassanien and Essawy [19] studied the natural convection flow of 

micropolar fluid from a permeable uniform heat flux surface in porous media. Lok et al [20] investigated unsteady mixed convection 

flow of a micropolar fluid near the stagnation point on a vertical surface. Mostafa [21] studied thermal radiation effect on unsteady MHD 

free convection flow past a vertical plate with temperature dependent viscosity. Ahmad [22] has studied the effects of thermophoresis on 

natural convection boundary layer flow of a micropolar fluid.  

The combined heat and mass transfer problems with chemical reactions are of importance in many processes, and therefore have 

received a considerable amount of attention in recent years. In processes, such as drying, evaporation at the surface of a water body, 

energy transfer in a wet cooling tower and the flow in a desert cooler, the heat and mass transfer occurs simultaneously. Chemical 

reactions can be codified as either homogeneous or heterogeneous processes. A homogeneous reaction is one that occurs uniformly 

through a given phase. In contrast, a heterogeneous reaction takes place in a restricted region or within the boundary of a phase. A 

reaction is said to be the first order if the rate of reaction is directly proportional to the concentration itself. In many chemical 

engineering processes, a chemical reaction between a foreign mass and the fluid does occur. These processes take place in numerous 

industrial applications, such as the polymer production, the manufacturing of ceramics or glassware, the food processing [23] and so on. 

Das et al.[24] considered the effects of a first order chemical reaction on the flow past an impulsively started infinite vertical plate with 

constant heat flux and mass transfer. Muthucumarswamy and Ganesan[25] and Muthucumarswamy[26] studied the first order 

homogeneous chemical reaction on the flow past an infinite vertical plate. Recently      Bala Siddulu Malga and Naikoti Kishan [27]  

have studied the Viscous Dissipation Effects on Unsteady free convection and Mass Transfer Flow past an Accelerated Vertical Porous 

Plate with Suction.  

Governing Equations 

In cartesian coordinate system, we consider the two dimensional unsteady flow of a laminar incompressible micropolar fluid with heat 

and mass transfer in the presence of chemical reaction past a vertical porous moving plate embedded in a porous medium and subjected 

to a transverse magnetic field in the presence of a pressure gradient. The analysis is based on the assumption that the viscous and Darcy 

resistance terms are taken into account with constant permeability porous medium. Under these conditions, the governing equations for 

the problem are:  

Continuity equation: 
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Linear momentum equation: 
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Diffusion equation: 
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where x* and y* are the dimensional distances along and perpendicular to the plate respectively,       are the components of 

dimensional velocities along x* and y* respectively, ρ is the fluid density, ν is the fluid kinematic viscosity,     is the fluid kinematic 

rotational viscosity, g is the acceleration due to gravity,     and    are the coefficients of volume expansions for  temperature and 

concentration,    is an empirical constant called permeability of the porous medium,    is the micro-inertia density,    is the component 
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of the angular velocity, γ is the spin-gradient  viscosity, T is the temperature,    is the component of dimensional concentration, α is the 

fluid thermal diffusivity, D is the coefficient of mass diffusivity. µ is the fluid dynamic viscosity, Chemical reaction parameter  
 , 

Dimensionless co-ordinate η. The first term on the RHS of (2) is the pressure term, the second term is the viscous term, the third term is 

the buoyancy due to temperature difference, the fourth term is the Darcy or porous term and the fifth term is the micropolar term while 

the last is the mass term.  

The boundary conditions for the velocities, temperature and concentration are 
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Where n* is the dimensionless exponential index,   
   is the free stream velocity,    is a scale of free stream velocity, A is a real positive 

constant of suction velocity parameter, ε and ε A are small less than unity, i.e. ε A <<1,    is a scale of suction velocity normal to the 

plate and is assumed as a function of time only. 

 

Outside the boundary layer, the pressure term in (2) gives  
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We now introduce the following dimensionless variables as follows:   
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Where γ is the spin-gradient viscosity, β is the dimensionless viscosity ratio and Λ is the coefficient of gyro-viscosity or vortex viscosity.  

In view of equation (9), the governing equations (2)–(6) reduce to the following non-dimensional form:   
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The boundary conditions (6) are given by the following dimensionless form:   
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Method of Solution 

In order to reduce the above system of partial differential equations to a system of dimensionless form, we may represent the linear and 

angular velocities, temperature and concentration by applying the Galerkin finite element method for equation (10) over a typical two-

noded linear element ( )  (         )  is 
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The element equation given by 

∫ (   ) *
  

   
      

   
 

  
   

        
   

 
+ *
  
  
+    (       ) *

    
        

 

    
          

 
+ *
  
  
+    

  

  

[
        
        

] [
  ̇
  ̇
]     

 

 
[
        
        

] *
  
  
+   

  [
  
  
]       

   ∫ (   )    ∫      
  
  

  
  

                                                                                          (17) 

 Where      (   ) *
  

   
      

   
 

  
   

        
   

 
+ *
  
  
+  (       ) *

    
        

 

    
          

 
+ *
  
  
+   [

        
        

] *
  
  
+         

  [
        
        

] [
  ̇
  ̇
]           [

  
  
] 

Here the prime and dot denote differentiation with respect to y and t. we obtain 
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We write the element equation for the elements            and            .  Assembling these element equations, we get 
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Now put row corresponding to the node i to zero, from equation (18) the difference schemes with         is  
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Using the Cranck-Nicolson method to the equation (19), we obtain: 
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Similarly, the equations (11), (12), (13) are becoming as follows: 
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Here   
 

  
  where k, h is mesh sizes along y direction and time direction respectively. Index i refers to space and j refers to time. The 

mesh system consists of h=0.4 for velocity profiles and concentration profiles and k=0.125 has been considered for computations. In 

equation (20)-(23), taking i=1(1) n and using initial and boundary conditions (14), the following system of equation are obtained. 

                                                                                              (24) 

Where    ’s are matrices of order n and               are column matrices having n-components. The solution of above system of 

equations are obtained using Thomas algorithm for velocity, angular velocity, temperature and concentration. Also, numerical solutions 

for these equations are obtained by Mat lab-program. In order to prove the convergence and stability of Galerkin finite element method, 

the same Mat lab-program was run with slightly changed values of h and k, no significant change was observed in the values of 

         Hence, the Galerkin finite element method is stable and convergent.  

Results and Discussion  

The numerical computations are carried out for the distribution of steam velocity, angular velocity, temperature and concentration 

profiles are presented for various values of the flow parameters, such as Prandtl number Pr, Grashof number G, Modified Grashof 

number Gm, Schmidth number Sc, Eckert number Ec, index number n, the spin-gradient viscosity γ, the dimensionless viscosity ratio β, 

the coefficient of gyro-viscosity or vortex viscosity Λ, permeability of the porous medium K, Chemical reaction 

parameter  ,Dimensionless coordinate  η and time t are chosen over a range as listed in the figures. 
 

Figure.1 (a) and Figure.1 (b) shows the effect of time t, on the steam velocity and angular velocity profiles, it is observed that the steam 

velocity increases, angular velocity decreases with the values of time t. Figure.2 (a) and Figure.2 (b) displays the effect of n, on the 

steam velocity and angular velocity profiles shows an accelerating notice as n increases. Figure.3 (a) and Figure.3 (b) displays the effect 

of Eckert number Ec on the steam velocity and angular velocity profiles. It can be seen that the steam velocity profiles increases as Ec 

increases whereas angular velocity profiles decreases with increase of Ec. Figure.4 (a) and Figure.4 (b) illustrates the effect of the 

Chemical Reaction parameter    on the steam velocity and angular velocity profiles. It can be seen that steam wise velocity increases 

during the generative reaction (    ) and decreases in the destructive reaction(    ), while the reverse phenomenon is observed 
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for the microrotation. The effect of Prandtl number Pr is shown in Figure.5 it is obvious that the effect of Pr decreases the steam velocity 

profiles. Figure.6 illustrates the effect of the Grashof number G, Modified Grashof number Gm on the steam velocity profiles. One notes 

from this figure that the steam velocity profiles with the increasing of both. Figure.7 displays the effect of η, on the angular velocity 

profiles it is observed that the angular velocity increases with the increase of η.  
 

The temperature profiles increases with the increase of time t is noticed from Figure.8 and Figure.9 depicts the temperature profiles for 

different values of Pr, it can be observed that from the figure that the temperature decreases with the increasing Pr. The effect of n on 

temperature profiles for different values of n is plotted in Figure.10 with the effect of n the temperature profiles increases near the plate 

while reverse phenomenon is observed far away from the plate. The effect of Eckert number Ec on the temperature profiles are plotted in 

Figure.11 it can be seen that the effect of Ec accelerates temperature profiles. 

Figure.12-15 are presented the concentration profiles for different values of Schmidth number Sc, time t and index number n. Chemical 

Reaction parameter  . The figure.12 reveals that the concentration profiles increases with the increase of time t. The concentration 

profiles for different values of Schmidth number Sc is shown in Figure.13 it reveals that an increase in Sc leads to a decrease the 

concentration distribution. From Figure.14 it can be seen that there is a fall in the concentration profiles due to the increasing the value of 

n. Figure.15 shows that there is a fall in the concentration due to the increasing the values of chemical reaction parameter   . 

Table 1: The values of the Skin friction    (
  

  
)          and the heat transfer coefficient in terms of Nusselt number                   
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Figure 1(a). Velocity profiles for different values of t  Figure 1(b). Angular Velocity profiles for different values of t 
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Table 1: Values of Skin friction=   and Nasselt number =  
S.No A n t ε G Gm Pr Sc   

1 1 1 1 0.01 1 1 0.7 0.2 2.74525 -1.8395 

2 1 1 2 0.01 2 1 0.7 0.2 2.93575 -1.9495 

3 1 1 2 0.01 5 2 0.7 0.2 3.59275 -2.3495 

4 1 1 2 0.01 5 3 0.7 0.2 3.85625 -2.5495 

5 1 2 2 0.01 1 1 0.7 0.2 4.4905 -2.513 

6 1 2 2 0.01 5 1 0.7 0.2 5.086 -2.813 

7 1 2 2 0.07 1 2 0.7 0.2 19.9825 -2.08775 

8 1 2 2 0.07 1 1 1 0.2 19.775 -2.02775 

9 1 1 2 0.07 1 1 1 0.2 4.35275 -1.72 

10 1 1 1 0.07 1 1 1 0.2 3.246 -1.629 

t= 0.5,1,2. 

 

n=1,ε=0.01,G=1,Gm=1, 

A=1, Sc=0.2,   K=0.5, 

K1=0.5,  β=0.4, η=0.5. 

Pr=0.7. 

 

t= 0.5,1, 2. 

 

n=1, ε=0.01, G=1, Gm=1, A=1, 

K1=0.5, Sc=0.2, K=0.5, β=0.4, 

η=0.5.Pr=0.7. 
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Figure 2(a). Velocity profiles for different values of n               Figure 2(b). Angular Velocity profiles for different values of n 

 

          

Figure 3(a). Velocity profiles for different values of Ec             Figure 3(b). Angular Velocity profiles for different values of Ec 

 

 

 

Figure 4(a). Velocity profiles for different values of K1                 Figure 4(b).Angular Velocity profiles for different values of K1 
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Figure 5. Velocity profiles for different values of Pr                         Figure 6. Velocity profiles for different values of G &Gm 

 

                  

Figure 7. Angular Velocity profiles for different values of η              Figure 8. Temperature profiles for different values of t 

    

Figure 9. Temperature profiles for different values of Pr              Figure 10. Temperature profiles for different values of n 
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 Figure 11. Temperature profiles for different values of Ec              Figure 12 Concentration profiles for different values of t 

  

Figure 13. Concentration profiles for different values of Sc          Figure 14. Concentration profiles for different values of n 

 

Figure 15. Concentration profiles for different values of K1 
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