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Introduction 

The theory of micropolar fluids, introduced by Eringen [1–2] in order to deal with the characteristics of fluids with suspended 

particles, has received considerable interest in recent years. Also, as demonstrated by Papautsky et al. [3], Eringen’s model predicts 

successfully the characteristics of flow in microchannels. An excellent review of the various applications of micropolar fluid 

mechanics was presented by Ariman et al. [4].Many of the non-Newtonian fluid models describe the nonlinear relationship between 

stress and the rate of strain. But the micropolar fluid model introduced by Eringen [5] exhibits some microscopic effects arising from 

the local structure and micro motion of the fluid elements. Further, the micropolar fluid can sustain couple stresses and include 

classical Newtonian fluid as a special case. The model of micropolar fluid represents fluids consisting of rigid, randomly oriented (or 

spherical) particles suspended in a viscous medium where the deformation of the particles is ignored. Micropolar fluids have been 

shown to accurately simulate the flow characteristics of polymeric additives, geomorphological sediments, colloidal suspensions, 

haematological suspensions, liquid crystals, lubricants etc. The mathematical theory of equations of micropolar fluids and applications 

of these fluids in the theory of lubrication and porous media are presented by Lukaszewicz [6]. The heat and mass transfer in 

micropolar fluids is also important in the context of chemical engineering, aerospace engineering and also industrial manufacturing 

processes. The problem of mixed convection heat and mass transfer in the boundary layer flow along a vertical surface submerged in a 

micropolar fluid has been studied by a number of investigators. Ahmadi [7] studied the boundary layer flow of a micropolar fluid over 

a semi-infinite plate. 

However, it is well known that convection, in a binary mixture, can also be induced by Soret effects. For this situation the species 

gradients result from the imposition of a temperature gradient in an otherwise uniform-concentration mixture. Two kinds of problems 

have been considered in the literature concerning the convection of a binary mixture filling a horizontal porous layer. The first kind of 

problem, called double diffusion, considers flows induced by the buoyancy forces resulting from the imposition of both thermal and 

solutal boundary conditions on the layer. Early investigations on double-diffusive natural convection in porous media primarily 

focused on the problem of convective instability in a horizontal layer. To this end Nield [8], Taunton et al. [9] Poulikakos [10], Taslim 

& Narusawa [11] and Malashetty [12] used linear stability analysis to investigate the onset of thermohaline convection. 
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The second kind of problem considers thermal convection in a binary fluid driven by Soret effects. For this situation the species 

gradients are not due to the imposition of solutal boundary conditions as in the case of double diffusion. Rather, they result from the 

imposition of a temperature gradient in an otherwise uniform-concentration mixture. Brand & Steinberg [13-14] investigated the 

influence of Soret-induced solutal buoyancy forces on the convective instability of a fluid mixture in a porous medium heated 

isothermally.  

 

The first study of the fully developed free convection of a micropolar fluid in a vertical channel was presented by Chamkha et al. [15]. 

This problem was extended by Kumar et al. [16] to consider the case of a channel with one region filled with micropolar fluid and the 

other region with a Newtonian fluid. It was found that the effects of the micropolar fluid material parameters suppress the fluid 

velocity but enhance the microrotation velocity. An analytical solution predicting the characteristics of fluid flow, and heat and mass 

transfer was derived. It was reported that an increase of the vortex viscosity parameter tends to decrease the fluid velocity in the 

vertical channel. The same problem was later reconsidered by Bataineh et al. [17]. The problem of the fully developed natural 

convection heat and mass transfer of a micropolar fluid between porous vertical plates with asymmetric wall temperatures and 

concentrations was investigated by Abdulaziz and Hashim [18]. Profiles for velocity and that, as the Reynolds number increases, the 

velocity decreases in the left part of the channel and increases in the right part. The above studies [17-18] are concerned with double-

diffusive convection in a vertical channel for which the flows induced by the buoyancy forces result from the imposition of both 

thermal and solutal boundary conditions on the vertical walls. The first study of Soret-induced convection was described by Bergman 

and Srinivasan [19], while considering natural convection in a cavity filled with a binary fluid. This flow configuration has also been 

investigated by R.Krishnan et al.[20].  

 

As pointed out recently by Rawat and Bhargava [21], the study of heat and mass transfer in micropolar fluids is of importance in the 

fields of chemical engineering, aerospace engineering and also industrial manufacturing effects processes. Sunil et al.[22] studied the 

Effect of Rotation on Double-Diffusive Convection in a Magnetized Ferrofluid with Internal Angular Momentum; A. A. Bakr et al. 

[23] studied the Double-Diffusive Convection-Radiation Interaction on Unsteady MHD Micropolar Fluid Flow over a Vertical 

Moving Porous Plate with Heat Generation and Soret Effects. R. A. Mohamed [24] also analyzed Double-Diffusive Convection-

Radiation Interaction on Unsteady MHD   Flow over a Vertical Moving Porous Plate with Heat Generation and Soret Effects, A. 

Bahloul et al. [25] studied Double-diffusive and Soret-induced convection in a shallow horizontal porous layer. Z. Alloui at.al.[26] 

Double-diffusive and Soret-induced convection of a micropolar fluid in a vertical channel. 

 

 

 

       
 

 

  

 

                                                                    

                                                                    
 

Figure (a). The flow configuration and the coordinate system. 
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Mathematical Model 

We consider a steady fully developed laminar natural convection flow of a micropolar fluid between two infinite vertical plates (see 

Fig.(a)). The vertical plates are separated by a distance H′. The convection current is induced by both the temperature and 

concentration gradients. The flow is assumed to be in the x′ direction, which is taken to be vertically upward along the channel walls, 

while the y′-axis is normal to the plates. The fluid is assumed to satisfy the Boussinesq approximation, with constant properties except 

for the density variations in the buoyancy force term. The density variation with temperature and concentration is described by the 

state equation            
         

               where    is the fluid mixture density at temperature       
  and mass 

fraction      , and     and βC are the thermal and the concentration expansion coefficients, respectively. In the present 

investigation the Dufour effect is neglected since it is well known that the modification of the heat flow due to the concentration 

gradient is of importance in gases but negligible in liquids. Under these assumptions, the governing equations can be written as:  
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where    is the velocity component along the x′ direction, and g is the acceleration due to gravity. Further,          and   are 

respectively the dynamic viscosity, vortex viscosity, micro-inertia density, angular velocity and spin gradient viscosity. Following 

Chamkha et al. [15] it is assumed that   has the form 

                  
 

The appropriate boundary conditions applied on the walls of the vertical channel are  
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where 0 ≤ n ≤ 1 is a boundary parameter that indicates the degree to which the microelements are free to rotate near the channel walls. 

The case n = 0 represents concentrated particle flows in which the microelements close to the wall are unable to rotate S.K. Jena & 

M.N. Mathur [27]. Finally, according to Peddieson [28] the case      n = 1 is applicable to the modeling of turbulent boundary layer 

flows. D and    are respectively the molecular diffusion coefficient and the thermodiffusion coefficient. 
 

The governing equations are non-dimensionalized by scaling length by   

           
   ,     is the velocity, 

           
    , is the microrotation, 

        
   

            
      is the Grashof number , 

     
    ⁄   is the Magnetic parameter, 

          
      

    
  , is the reduced temperature, 

                , is the reduced concentration, 

       
    

   and           for double-diffusive convection,   

                     for Soret-driven convection. 

         
     is the buoyancy ratio,  
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   is the wall temperature ratio,  

                   is the wall concentration ratio, 

        is the vortex viscosity parameter, 

          is the micro-inertia parameter, the subscript   indicates a reference state.  

 

The dimensionless equations governing the present problem then read 
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The corresponding boundary conditions in dimensionless form are  
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In the present formulation the particular case a = 0 corresponds to double-diffusive convection for which the solutal buoyancy forces 

are induced by the imposition of a constant concentration such that S = 1 on y = 0 and       on y = 1. On the other hand a = 1 

corresponds to the case of a binary fluid subject to the Soret effect. For this situation, it follows from Eqs. (11) and (12) that        

       on y = 0, 1. 

 

METHOD OF SOLUTION 

 

It can be shown that Eqs. (7)– (10), together with the boundary conditions Eqs. (11)– (12), possess the following Finite Element 

solution, obtained with the help of the MATLAB software. In order to reduce the above system of differential equations to a system of 

dimensionless form, we may represent the velocity and microrotation, temperature and concentration by applying the Galerkin finite 

element method for equation (7) over a typical two-noded linear element                   is 
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We write the element equation for the elements            and            .  Assembling these element equations, we get 
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Now put row corresponding to the node i to zero, from equation (15) the difference schemes with         is  

     

 
                 

  

 
                                                                                                                    

(16) 

Using the Cranck-Nicolson method to the equation (16), we obtain: 
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Similarly, the equations (8), (9) and (10) are becoming as follows: 
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Here   
 

    where k, h is mesh sizes along y direction and x direction respectively. Index i refers to space and j refers to time. The 

mesh system consists of h=0.1 for velocity profiles and concentration profiles and k=0.1 has been considered for computations. In 

equation (8)-(10), taking i=1(1) n and using initial and boundary conditions (11) and (12), the following system of equation are 

obtained. 

                                                                                             

(21) 

Where    ’s are matrices of order n and              are column matrices having n-components. The solution of above system of 

equations are obtained using Thomas algorithm for velocity, angular velocity and temperature. Also, numerical solutions for these 

equations are obtained by MATLAB program. In order to prove the convergence and stability of Galerkin finite element method, the 

same Mat lab-program was run with slightly changed values of h and k, no significant change was observed in the values of          

Hence, the Galerkin finite element method is stable and convergent. 

 

Results and Discussion  

 

The numerical computations for the velocity u, angular velocity fields N for various governing parameters the buoyancy ratio φ, 

vortex viscosity parameter K, dimensionless microgyration n and constant a are illustrated in the graphs. The Fig.1 illustrates  the 
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influence of vortex viscosity parameter K  on the distribution of velocity u and microrotation N for n=0,a=0 and for φ=5  in Fig.1(a) 

and  φ=-5 in Fig.1(b). It is observed that with the increasing the value of K the intensity of convective velocity u is reduced as 

compared to the Newtonian fluid situation (K=0). In fact it is found that as K  , u  .The influence of parameter K on the 

microrotation N it is noticed that the variation with K of the value of N evaluated at the position half of the channel also presented in 

the graphs it can be seen that the intensity of N first increases with increase of K, the reverse phenomenon is observed later. 

 

Fig.1(b) show the results obtained  from φ=-5 i.e. when thermal and solutal buoyancy forces are opposing each other for this situation 

in case of double-diffusive convection indicates that the flow direction is in down wards, since the solutal buoyancy forces 

predominant. The velocity profiles increases with the increase of K are observed from Fig. 1(b). It is seen that for K=0 when N=0, 

since no rotation can be occur in the absence of micropolar elements (Newtonian fluid situation). Microrotation N decreases with the 

increase of K up to half of the channel where as microrotation N flow direction is now downward and the reverse phenomenon is 

observed. 
 

The effect of buoyancy ratio φ velocity u, microrotation N exemplified in Fig. 2 for the case a=0, n=0, K=5 in the absence of solute 

concentration effect i.e. when φ=0 the flow is induced solely by the imposed temperature gradients. It is observed from this figure 

when         the thermal and solutal buoyancy forces act in the same direction and the flow is considered to aided thus the 

magnitude of the fluid of the fluid velocity and microrotation promoted in the vertical channel on the other hand when     the 

solutal and buoyancy forces acts in opposite direction as a result the flow direction is now reversed since it is governed by the 

predominant solutal effects. 

 

Fig. 3 Depicts the influence of micropolar parameter n velocity u, microrotation N profiles K=5, φ=10 and a=0, it can be seen from 

this figure, upon increase the value of n,the concentration of the solution becomes weaker such that the particle near the walls are the 

free to rotate. Which results there is an enhancement of the flow. It also seen that the velocity u increases with the increase of n. 

 

The effect of magnetic filed parameter M on the velocity profiles u and mocrorotation N for K=5, φ=5 when a=0 is shown in Fig.4 (a) 

and K=5, φ=-5 when a=0 is shown in Fig.4 (b). Here it is observed that the velocity profiles decreases with an increase of M, 

microrotation profiles increases up to centre of the channel the reverse phenomenon is observed in the other part of the channel. It is 

indicates that from Fig.4 (b) that the velocity flow direction is now downward for φ=-5, since the solute buoyancy forces are free 

dominant. It can be seen that the velocity profiles u increases with an increase of M, The microrotation N decreases with the increase 

of M, up to middle of the channel (flow direction is upward) and it is increases with increase of M, in the other part of the channel is 

observed. 

 

From Fig.5-10 are shown for the velocity profiles u and microrotation N for different values of flow parameter when a=1. The effect 

of Magnetic parameter M on the velocity profiles u and mocrorotation N for K=5, φ=5 is shown in Fig.5 (a) and K=5, φ=-5 is shown 

in Fig.5 (b) is remains same when compared with a=0 in the present case a=1. The effect of vortex viscosity parameter K, on the 

velocity profiles u and microrotation N are shown in Fig.6 for both φ=5 and φ=-5 in the case of a=1, n=0, the effect of K is same in 

both the cases a=0 and a=1, where as in the present case (a=1) for φ=-5 from Fig.6 (b) it indicates that the flow direction is upward in 

the present case where as it is downward case a=0. It also noticed that the effect of K decreases the velocity profiles u, the 

microrotation N decreases up to half of the channel and decreases the other part of the channel is observed with the effect of K, it is 

also observed that the reverse phenomenon is observed in the present case (a=1) when compared to a=0. 

 

The buoyancy ratio parameter φ effect on the velocity profiles u and microrotation N are shown in Fig. 7. It is clear that the velocity 

profiles u increases with the increase of φ from 0 to 10, where as it is decreasing from 0 to -10. However up on increasing φ, 

considerably the flow pattern is depending on the sign of the parameter up or down in the halves of the channel, it can be also seen that 
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the microrotation profiles N decreases with the increase of φ from 0 to 10 and   increases with the decrease of φ from 0 to -10, in the 

first half of the channel is indicating from the Fig.7 and the reverse phenomenon is observed in the other half of the channel. 

 

Fig.8 illustrates the influence of micro-gyration parameter n on velocity u and microrotation N for φ=10, K=5, a=1 it is noticed that the 

velocity u increases with the increase of n. In the present case for a=1, the results indicates the intensity of convective flow u and that 

of the angular velocity N are minimum for n = 0. This particular value of n represents the case where the concentration of the 

microelements is sufficiently large that the particles close to the walls are unable to rotate. Upon increasing the value of n, the 

concentration of the solution becomes weaker such that the particles near the walls are free to rotate. Thus, as n is augmented the 

microrotation term is augmented, which induces an enhancement of the flow. 

 

Fig.9 (a) & (b) illustrates the Volume flow rate Q with the buoyancy ration parameter φ, when K=1.5, for the various values of micro-

gyration parameter n at a=0 and a=1 for For the case of double-diffusive convection it is observed that when both the thermal and 

solutal buoyancy forces are aiding (ϕ > 0), the flow direction is upward (Q > 0). The reverse is true (Q < 0) when both the thermal and 

solutal buoyancy forces are opposing (ϕ < 0). On the other hand, for the case of Soret-induced convection, the flow rate is found to be 

independent of the buoyancy ratio ϕ. This follows from the fact that, for this situation, the quantity of the solute between the two 

vertical plates remains constant. The Soret effect acts merely to redistribute the concentration in the system, giving rise to local 

increase or decrease of the local velocity. However, the global flow rate remains constant. Also, as discussed above, upon increasing 

the value of n the intensity of the velocity field (and thus of the flow rate Q) is enhanced. 

 

The dimensionless total rate, E, at which heat is added to the fluid is plotted in Fig. 10 (a) and (b) as a function of the buoyancy ratio ϕ 

and the micro-gyration parameter n, for the case K = 1.5. Fig. 10(a) shows that, in the case of double diffusive convection, for ϕ > 0, 

increasing ϕ results in an augmentation of the strength of the convective motion such that E increases. For ϕ < 0, the results are similar 

but, since the flow direction is now downward, the value of E is negative. On the other hand the results obtained for Soret-induced 

convection, Fig. 10(b), are quite different. For this situation, the velocity profiles (not presented here) indicate that for      the flow 

is upward near the left hotter wall and downward near the right colder one. Thus, the total rate E at which heat is added to the fluid is 

promoted upon increasing ϕ as a result of the increase of the flow intensity near the hotter wall. 

 

We now consider the buoyancy ratio. The dimensionless total rate, Φ, at which species are added to the fluid is depicted in Fig. 11 as a 

function of ϕ and the micro-gyration parameter n, for the case K = 1.5. The Soret-induced convection, represented by a dotted line, 

indicates that Φ = 0 independently of n. This is expected since for this situation the solid boundaries are impermeable to concentration. 

The Soret effect is merely to redistribute the originally uniform concentration within the system. However, for double diffusion, the 

solid lines indicate that increasing ϕ, i.e. increasing the strength of the convective flow, results in an enhancement of the rate of mass 

transfer through the system. These results are similar to those reported by Cheng [13]. Also, it is observed from Fig. 11 that, for a 

given value of ϕ, Φ decreases as the value of n is reduced toward n = 0. As already mentioned, a decrease of n corresponds to an 

increase of the concentration of the solution such that the particles close to the solid boundaries are unable to rotate. This results in a 

decrease of the flow rate and thus a decrease of Φ. The volume flow rate, Q, and total rate at which heat is added to the fluid, E, are 

plotted in Fig. 12 as a function of K for ϕ = 2 and n = 0. Here again, the results obtained for double-diffusive convection and Soret-

induced convection are qualitatively similar. In the limit K → 0 both Q and E tend asymptotically to constant values corresponding to 

the Newtonian fluid situation. On the other hand, in the limit K → ∞, both Q and E become negligible, due to the increase of the 

vortex viscosity. 

 

 



Bala Siddulu Malga et al./ Elixir Appl. Math. 63 (2013) 18555-18568 
 

18562 
 

18562 

 

 

 

 

 

Figure 1(a): Effect of Parameter K on the velocity profiles u and the microrotation N for n=0, a=0 and φ=5, 

 

 

Figure 1(b): Effect of Parameter K on the velocity profiles u and the microrotation N for n=0, a=0 and φ=-5 

 

 

Figure. 2. Effects of buoyancy ratio φ on the velocity profiles u and the microrotation profiles N for K = 5, n = 0 and a = 0. 
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Figure 3. Effects of parameter n on the velocity profiles u and the microrotation profiles N for K =5, ϕ = 10 and a = 

0. 

 

 

Figure 4(a). Effects of parameter M on the velocity profiles u and the microrotation profiles N for K =5, φ=5 and 

a=0. 

 

 

 

Figure 4(b). Effects of parameter M on the velocity profiles u and the microrotation profiles N for K =5, φ=-5 and 

a=0. 
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Figure 5(a). Effects of parameter M on the velocity profiles u and the microrotation profiles N for K =5, φ=5 and 

a=1. 

 

Figure 5(b). Effects of parameter M on the velocity profiles u and the microrotation profiles N for K =5, φ=-5 and 

a=1. 

 

 

Figure 6(a): Effect of Parameter K on the velocity profiles u and the microrotation N for n=0, a=1 and φ=5. 
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Figure 6(b): Effect of Parameter K on the velocity profiles u and the microrotation N for n=0, a=1 and φ=-5. 

 

 

 

Figure.7. Effects of buoyancy ratio φ on the velocity profiles u and the microrotation profiles N for K = 5, n = 0 and a = 1. 

 

 

 

Figure 8. Effects of parameter n on the velocity profiles u and the microrotation profiles N for K=5, φ=10 

and a = 1. 
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(a) (b) 

Figure 9. Effects of buoyancy ratio ϕ and parameter n on the volume flow rate Q for K = 1.5, (a) a = 0, (b) a = 1. 

 

 

(a) (b) 

Figure 10.Effects of buoyancy ratio ϕ and parameter n on the total rate at which heat is added to the fluid, E, for K = 1.5, 

(a) a = 0, (b) a = 1. 

 

 

 

Figure 11.Effects of parameter K on the volume flow rate Q and on the total rate at which heat is added to the 

fluid for ϕ = 2   and n = 0 
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