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Introduction 

The theory of micropolar fluids was originally formulated by Eringen [3]. In essence, the theory introduces new material 

parameters, an additional independent vector field-the microrotation-and new constitutive equations which must be solved 

simultaneously with the usual equations for Newtonian flow. The desire to model the non-Newtonian flow of fluid containing rotating 

micro-constituents prporous media, turbulent shear flows, and flowing capillaries and microchannels by Lukaszewiez [6]. 

We analyze the effect of the variable viscosity and the variable thermal conductivity on self-similar boundary layer flow of a 

micropolar fluid in a porous channel, where the flow is driven by uniform mass transfer through the channel walls. The corresponding 

Newtonian fluid model was first studied by Berman [1], who described an exact solution of the Navier-Stokes equations by assuming 

a self-similar solution and reducing the governing partial differential equations to a nonlinear ordinary differential equation of fourth 

order. The solution is of potential value in understanding more realistic flow in channels and pipes, and study of Berman’s exact 

solution and generalizations of it have attracted numerous studies subsequently, for example Yuan [10], Robinson [8], Zaturska et. al. 

[11], Desseaux [2]. 

Through the viscosity and thermal conductivity are assumed as constant properties but in actual these are temperature dependent 

(Schlichiting [9], Eckert[4]). Therefore, in this paper we consider the effect of variable viscosity and variable thermal conductivity on 

steady incompressible laminar flow of a micropolar fluid in a porous channel with high mass transfer due to suction or injection which 

was studied by  Kelson et. al. [5] for constant properties of  viscosity and the thermal conductivity.  

Governing Equations:- 

The equation of motion for incompressible viscous micropolar fluid is given by 

     2. .
V

V V p V V N F
t

   
 

           
 

,                                  (1) 

where ρ is the mass density of the fluid, p is the pressure, µ is the viscosity, N  is the angular velocity, κ is the material constant 

and t denotes time. 

F  is the body force per unit volume.   
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g e dF F F F   ,                                                                          (2) 

where 
gF  is the body force per unit volume due to gravity given by   ,      gF g T T      (3)                                    

where g is the acceleration due to gravity, β is the coefficient of expansion and for perfect gas β = 1 and  T T  is the 

temperature difference between a hotter fluid particle and the colder surroundings. 

         
eF  is the body force per unit volume due to electric field and magnetic field given by  ,                                                                                                                 

                                        e eF E J B  
                                                                              (4) 

 where  ρe is the excess charged density, E  denotes the electrical field components, J  is the total electric density, B  is the 

magnetic induction ( also known as magnetic flux density ). The term  J B
 is known as the Lorentz force. In electrically neutral 

field ρe = 0, hence ρe E  can be omitted from the body force and
dF  is the body force per unit volume due to flow through porous 

media given by                                              

*d

v
F V




,                                                                                                                     (5) 

where ν is the kinametic viscosity of the fluid and λ
*
 is the coefficient of permeability of the porous media. 

The equation of angular momentum for incompressible viscous micropolar fluid is given by 

      . 2
N

j V N N V N
t

   
 

         
 

,                                        (6) 

where j is the micro-inertia per unit mass, γ is the material constants. 

The equation of heat transfer is given by 

 

     . .p

T
C V T T

t
    

 
      

 

,                                                               (7) 

where Cp is specific heat at constant pressure, T is the temperature of the fluid, λ is the coefficient of thermal conductivity of the 

fluid and   is the viscous dissipation function and is given by 

2 2 22 2 2

2
u v w v u w v u w

x y z x y y z z x


                   
                   

                    

,                      (8) 

where u, v, w are the components of the fluid velocity vector in the direction of x, y and z respectively. 

Formulation of the problem:- 

We consider steady, incompressible, laminar flow of a micropolar fluid along a two-dimensional channel with porous walls 

through which fluid is uniformly injected or removed with speed q.  Using Cartesian coordinate, the channel walls are parallel to the 

x-axis and located at y = ± h, where 2h is the channel width. The governing equations (1), (6) and (7) under above assumptions 

become 

Mass equation:  

0
u v

x y

 
 

 

            (9) 

Momentum equation: 
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2

2x

u u u u N
u v p

x y y y y y
   
        

        
        

,                                                   (10) 

2

2y

v v v v N
u v p

x y y y y x
   
        

        
        

,                                                    (11) 

Angular momentum equation: 

2 s

n n u N
j u v N

x y y y y
  

         
         

         

                                                          (12) 

           Energy equation: 

 p

T T T T
C u v

x y x x y y
     

         
        

         

,                                         (13) 

The appropriate physical boundary conditions are 

     
 

 

2

0 , 
, 

,  0,     v ,  ,     N ,  ,     w x h
x h

u
u x h x h q x h s T T Bx

y 



         



       (14) 

and assuming that that the flow is symmetric about y = 0, 

     0,0 ,0 0,      ,0
u

x v x T T x
y


  



,                                                                       (15)                                  

where q > 0 correspondence to suction, q < 0 to injection, and s is a boundary parameter that is used to model the extent to which 

microelements are free to rotate in the vicinity of the channel walls. For example, the value s = 0 corresponds to the case where 

microelements close to a wall are unable to rotate, whereas the value s = ½ corresponds to the case where the microrotation is equal to 

the fluid vorticity at the boundary (Lukaszewiez [6]). 

To simplify the governing equations, we generalize Berman’s similarity solutions [3] to include micropolar effects by assuming a 

stream function and microrotation of the form 

   2
,         

qx
qxF N G

h
    

,                                                                               (16) 

where 

   ',     ,      
y qx

u F v qF
h y h x

  
 

      
 

                                               (17) 

and  

 
  0

0w

T T

T T


 






.                                                                                                        (18) 

In addition we introduce the dimensionless micropolar parameters as 

1 2 32 2
,    ,          s j

N N N
h h

  


 

                                                                                (19) 

where Re > 0 corresponds to suction, and Re < 0 to injection.. 

The fluid viscosity is assumed to be inverse linear function of temperature (Lai and Kulacki [7] as 

   
1 1 1 1

1 ,    ,       and   r rT T a T T a T T 



         



    

,                (20) 
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where a and Tr are constants and their values depends on the reference state and the thermal property of the fluid. In general, a > 0 for 

liquids and a < 0 for gases. Tr is transformed reference temperature related to viscosity parameter. α  is  constant based on thermal 

property and 


 is the viscosity at T T  

Similarly, consider the variation of thermal conductivity as, 

   
1 1 1 1

1 ,    ,    b    and   k kT T b T T T T 

 

         



    

 ,                  (21)             

where b and Tk are constants and their values depends on the reference state and the thermal property of the fluid. ξ  is constant 

based on thermal property and 


 is the thermal conductivity at T T . 

Using equations (16)and (17), it can be easily verified that the continuity equation is satisfied automatically and using equations 

(16)-(21) in the equations (10)-(13) become, 

 2

Re 1 0r r r r

r r r r r

K F FF F F K G
     

          
 

       

     

,      (22) 

  / / // //

1 2( ) ( 2 )G FG F G K F G G G                                                                            (23) 

and                        
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2
4k k

r r c

kk

P F P E F F
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  
  

         
  

                                        (24)         

where    

            non-zore cross-flow Reynolds number, 
Re

qh



 

                                               Prandtl number,  
p

r

C
P








 

                                               Eckert number,   

 
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E
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q

C T T
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

 

The transformed boundary conditions are 

          F
1
(x,±h)=0, F (x,±h)=1, G(x,±h)=0,   θ(x,±h) = 2

0w

Bx

T T

                                                                                                                                                                                                                                                                               

                        

Fig 1: Variation of Velocity distribution of F' against η for various values of Coupling Constant Parameter ( K ) taking    

Pr=0.7, Ec= 0.10, N3=1.0, єN2=2,єN1=.10, θr= - 10, θk= - 10 
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Fig 2: Variation of Velocity distribution of  F' against η for various values of temperature corresponding to the viscosity 

parameter θr taking Pr=0.7, Ec= 0.10, N3=1.0, єN2=2 єN1=.10,  θk= - 10 
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Fig-3 Velocity Distribution profiles F' 
 
along the channel for various values of constant parameter (G1) taking Pr=0.7, Ec= 

0.10, N3=1.0, єN2=2, єN1=.10, θr= - 10 
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Fig-4  Velocity Distribution profiles F' along the channel for various values of constant (G) taking Pr=0.7, Ec= 0.10, N3=1.0, 

єN2=2, єN1=.10, θr= - 10, θk= - 10 
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Fig 5:Variation of Temparature Distribution (θ) against  η for the various values of temperature corresponding to thermal 

conductivity parameter (θk) taking Pr=0.7, Ec= 0.10, N3=1.0, єN2=2,єN1=.10, θr= - 10, 
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Fig-6 : Variation of Microrotation Distribution(G) against η for various values of Coupling Constant Parameter ( K ) taking  

Pr=0.7, Ec= 0.10, N3=1.0, єN2=2,єN1=.10, θr= - 10, θk= - 10 

 

Fig-7 :Variation of Microrotation Distribution (G) against η for various values of Constant Parameter (
1G ) taking  Pr=0.7, 

Ec= 0.10, N3=1.0, єN2=2,єN1=.10, θr= - 10, θk= - 10 
 

K=0.1 

K=0.5 

K=0.9 



B. Borgohain/ Elixir Appl. Math. 63 (2013) 18417-18423 
 

18423 

Results and discussion:- 

The equations (10) , (11), (12) and (13) together with the boundary conditions (14) are solved for various condition of the 

Parameters involved in the equations using an algorithms based on the shooting method (13) and presented results for the distribution 

of dimensionless velocity distribution, dimensionless micro-rotation distribution and temperature distribution with the variation of 

different parameters. Initially solution was taken for constant values of  Pr=0.7, Ec= 0.10, N3=1.0, єN2=2, єN1=.10, θr= - 10, θk= - 10 

with the viscosity Parameter θr ranging from -15 to -1 at the certain value of θk= -10. Similarity the solutions have been found with 

varying the thermal conductivity parameter  θk ranging from -9 to -1 at the certain value of θr= - 10 keeping the other values 

remaining same. Solution have been also been found for different values of Coupling Constant Parameter ( K ), Prandtl number (Pr), 

Eckert number (Ec). The variation in velocity distribution, micro-rotation distribution and temperature distribution are illustrated in 

figures ( 1 – 7). From the equation (17) it is found that the velocity ‘u’ is dependent on F  ( ). The figures (1 – 4) represent the 

variation in velocity (u) distribution with the variation of coupling constant parameter K  ,  viscosity parameter θr ,constant parameter 

1G  and  G. From fig. (5) It is seen that   the variation in temperature distribution with the variation of θk. From fig. (6-7) it is found 

that the variation in micro rotation distribution with variation of Coupling Constant Parameter ( K ) and parameter
1G  .From figure (1) 

it is clear that velocity increases as coupling constant parameter ( K ) increases. From figure (2) and (3), it is seen that velocity 

distribution decreases with the increasing values of θr and G1. From (4) it is found that velocity decreases as microrotation G 

increases.  From figure (5) it  can be observed that temperature distribution decreases with the increase of θk. From figure (6) it is seen 

that microrotation distribution decreases as K  increases. From (7) it is seen that microrotation distribution increases as constant 

parameter 
1G  increases. 

Conclusion:- 

In this study, the effect of variable viscosity and thermal conductivity on flow and heat transfer for micropolar flow in a porous 

channel with large mass transfer through the channel walls is examined. The results presented demonstrate clearly that the viscosity 

and thermal conductivity parameters have a substantial effect on velocity, temperature and micro-rotation distribution within the 

boundary layer. The effects of Coupling Constant Parameter ( K ) is quite significant. Thus the assumption on constant properties may 

cause a significant error in the flow problems and in the prediction of skin friction while designing fluid machinery. 
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