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Introduction 

Sequential Probability Ratio Test (SPRT), which is usually applied in situations, requires a decision between two simple 

hypothesis or a single decision point. Wald‟s (1947) SPRT procedure has been used to classify the software under test into one of two 

categories (e.g., reliable/unreliable, pass/fail, certified/noncertified) (Reckase, 1983). Wald's procedure is particularly relevant if the 

data is collected sequentially. Classical Hypothesis Testing is different from Sequential Analysis. In Classical Hypothesis testing, the 

number of cases tested or collected is fixed at the beginning of the experiment. In this method, the analysis is made and conclusions 

are drawn after collecting the complete data. However, in Sequential Analysis every case is analysed directly. The data collected up to 

that moment is then compared with certain threshold values, incorporating the new information obtained from the freshly collected 

case. This approach allows one to draw conclusions during the data collection, and a final conclusion can possibly be reached at a 

much earlier stage as is the case in Classical Hypothesis Testing. The advantages of Sequential Analysis are easy to observe. Data 

collection can be terminated after few cases, decisions can be taken quickly. This leads to saving in terms of human life and finance.  

In the analysis of software failure data, we often deal with Time Between Failures. If it is further assumed that the average 

number of recorded failures in a given time interval is directly proportional to the length of the interval and the random number of 

failure occurrences in the interval is explained by a Poisson process. Then it is known that the probability equation of the stochastic 

process representing the failure occurrences is given by a homogeneous poisson process with the expression 
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Stieber (1997) observes that if classical testing strategies are used, the application of software reliability growth models may be 

difficult and reliability predictions can be misleading. However, he observes that statistical methods can be successfully applied to the 

failure data. He demonstrated his observation by applying the well-known sequential probability ratio test of Wald for a software 

failure data to detect unreliable software components and compare the reliability of different software versions. In this chapter the 

popular SRGM – delayed S-shaped model is considered and the principle of Stieber is adopted in detecting unreliable software in 

order to accept or reject the developed software. The theory proposed by Stieber is presented in Section 2 for a ready reference. 

Extension of this theory to the considered SRGM is presented in Section 3. Maximum Likelihood parameter estimation method is 

presented in Section 4. Application of the decision rule to detect unreliable software with reference to the considered SRGM is given 

in Section 5. 
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ABSTRACT 

In Classical Hypothesis testing volumes of data is to be collected and then the conclusions 

are drawn, which may need more time. But, Sequential Analysis of Statistical science could 

be adopted in order to decide upon the reliability / unreliability of the developed software 

very quickly. The procedure adopted for this is, Sequential Probability Ratio Test (SPRT). It 

is designed for continuous monitoring. The likelihood based SPRT proposed by Wald is 

very general and it can be used for many different probability distributions. In the present 

paper we propose the performance of SPRT on 5 data sets of ungrouped using delayed S-

shaped model and analyzed the results. The parameters are estimated using Maximum 

Likelihood Estimation method.  

                                                                                                   © 2013 Elixir All rights reserved 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. 

 

ARTICLE INFO    

Article  history:  

Received: 9 August 2013; 

Received in revised form: 

29 September 2013; 

Accepted: 4 October 2013;

 
Keywords  

Software, 

Sequenial, 

Hypothesis, 

Monitor. 

 

Elixir Comp. Sci. & Engg. 63 (2013) 18327-18333 
 

Computer Science and Engineering 

Available online at www.elixirpublishers.com (Elixir International Journal) 

 

Tele:   

E-mail addresses: varshineta@gmail.com 

         © 2013 Elixir All rights reserved 



Varshine.T.A/ Elixir Comp. Sci. & Engg. 63 (2013) 18327-18333 
 

18328 

Wald's Sequential Test for a Poisson Process 

The sequential probability ratio test was developed by A.Wald at Columbia University in 1943. Due to its usefulness in 

development work on military and naval equipment it was classified as „Restricted‟ by the Espionage Act (Wald, 1947). A big 

advantage of sequential tests is that they require fewer observations (time) on the average than fixed sample size tests. SPRTs are 

widely used for statistical quality control in manufacturing processes. An SPRT for homogeneous Poisson processes is described 

below. 

Let {N(t),t 0} be a homogeneous Poisson process with rate „‟.  In our case, N(t) = number of failures up to time „ t‟ and „‟  is 

the failure rate (failures per unit time ). Suppose that we put a system on test (for example a software system, where testing is done 

according to a usage profile and no faults are corrected) and that we want to estimate its failure rate „‟. We can not expect to estimate 

„‟   precisely. But we want to reject the system with a high probability if our data suggest that the failure rate is larger than 1 and 

accept it with a high probability, if it is smaller than 0. As always with statistical tests, there is some risk to get the wrong answers. So 

we have to specify two (small) numbers „α‟ and „β‟, where „α‟ is the probability of falsely rejecting the system. That is rejecting the 

system even if λ ≤ 0. This is the "producer‟s" risk. β is the probability of falsely accepting the system .That is accepting the system 

even if  λ ≥ 1. This is the “consumer‟s” risk. Wald‟s classical SPRT is very sensitive to the choice of relative risk required in the 

specification of the alternative hypothesis. With the classical SPRT, tests are performed continuously at every time point t > 0 as 

additional data are collected. With specified choices of 0 and 1 such that 0 < 0 < 1, the probability of finding N(t)  failures in the 

time span (0,t ) with 1, 0 as the failure rates are respectively given by 
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The decision rule of SPRT is to decide in favor of 
1
, in favor of 

0
  or to continue by observing the number of failures at a later 

time than 't' according as 
1

0

P

P

 is greater than or equal to a constant say A, less than  or equal to a constant say B or in between the 

constants  A and B. That is, we decide the given software product as unreliable, reliable or continue the test process with one more 

observation in failure data, according to 
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The approximate values of the constants A and B are taken as 1
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Where „  ‟ and „  ‟ are the risk probabilities as defined earlier. A good test is one that makes the   and  errors as small as 

possible. The common procedure is to fix the  error and then choose a critical region to minimize the error or maximize the power i.e 

1   of the test. A simplified version of the above decision processes is to reject the system as unreliable if N(t) falls for the first 

time above the line  

  2.UN t a t b             (2.6) 

To accept the system to be reliable if N(t) falls for the first time below the line 

    1.LN t a t b         (2.7) 

To continue the test with one more observation on (t, N(t)) as the random graph of [t, N(t)] is between the two linear boundaries 

given by equations (2.6) and (2.7) where 

   
1 0

1

0

log

a
 








 
 
 

       (2.8) 

   

1

1

0

1
log

log

b









 
 
 
 
 
 

      (2.9) 

   

2

1

0

1
log

log

b









 
 
 
 
 
 

                     (2.10) 

The parameters ,  ,
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If λ0 and λ1 are chosen in this way, the slope of  UN t  and  LN t  equals λ. The other two ways of choosing λ0 and λ1 are from 

past projects (for a comparison of the projects) and from part of the data to compare the reliability of different functional areas. 

Sequential Test for Software Reliability Growth Models 

In Section 2,  for the  Poisson process we know  that  the expected value of  N t t called the average number of failures 

experienced in time 't' .This is also called the mean value function of the Poisson process. On the other hand if we consider a Poisson 

process with a general function m(t) as its mean value function the probability equation of a such a process is 
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Depending on the forms of m(t) we get various  Poisson processes called NHPP. For our delayed S-shaped model, the mean value 

function is given as     1 1 btm t a bt e    where 0, 0a b   and „b‟ is the error detection rate per error in the steady state. 

This model is called delayed S-shaped NHPP model for such an error detection process, in which the observed growth curve of the 

cumulative number of detected errors is S-shaped (Yamada et. al., 1984). We may write 
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Where,
1( )m t ,

0 ( )m t  are values of the mean value function at specified sets of its parameters indicating reliable software and 

unreliable software respectively. Let
0P ,

1P  be values of the NHPP at two specifications of b say
0 1,b b , where  0 1b b . It can be 

shown that for our model  m t at 
1b  is greater than that at

0b . Symbolically    0 1m t m t . Then the SPRT procedure is as follows: 
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Substituting the appropriate expressions of the respective mean value function –m(t) of delayed S-shaped, we get the respective 

decision rules and are given in following lines 
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Rejection region: 
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Continuation region: 
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It may be noted that in the above mentioned model the decision rules are exclusively based on the strength of the sequential 

procedure (, ) and the values of the respective mean value functions namely, 
0 ( )m t ,

1( )m t . If the mean value function is linear in 

„t‟ passing through origin, that is, m(t) = λt  the decision rules become decision lines as described by Stieber. In that sense equations 

(3.1), (3.2) , (3.3) can be regarded as generalizations to the decision procedure of Stieber. The applications of these results for live 

software failure data are presented with analysis in Section 5. 

ML (Maximum Likelihood) Parameter Estimation 

Parameter estimation is of primary importance in software reliability prediction. Once the analytical solution for  m t  is known 

for a given model, parameter estimation is achieved by applying a technique of Maximum Likelihood Estimate (MLE). Depending on 

the format in which test data are available, two different approaches are frequently used. A set of failure data is usually collected in 

one of two common ways, time domain data (i.e ungrouped) and interval domain data (i.e grouped). 

  The idea behind maximum likelihood parameter estimation is to determine the parameters that maximize the 

probability (likelihood) of the sample data. The method of maximum likelihood is considered to be more robust and yields estimators 

with good statistical properties. In other words, MLE methods are versatile and apply to many models and to different types of data. 

Although the methodology for maximum likelihood estimation is simple, the implementation is mathematically intense. Using today's 

computer power, however, mathematical complexity is not a big obstacle. If we conduct an experiment and obtain N independent 

observations, 
1 2, , , Nt t t . Then the likelihood function is given by (Pham, 2006) the following product: 
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Assuming that the data given is the cumulative number of Time Between Failures (i.e Time domain / Ungrouped), the log 

likelihood function takes on the following form. 
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The maximum likelihood estimators (MLE) of 
1 2, , , k    are obtained by maximizing L or  , where is ln L . By 

maximizing , which is much easier to work with than L, the maximum likelihood estimators (MLE) of 
1 2, , , k   are the 

simultaneous solutions of k equations such that:  
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The parameters „a‟ and „b‟ are estimated using iterative Newton Raphson Method, which is given as,
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SPRT Analysis of ungrouped Data 

In this section we evaluate the decision rules based on the considered mean value function for FIVE different data sets, borrowed 

from Pham (2006), Xie (2002) and SONATA (Ashoka, 2010) software services. Based on the estimates of the parameter „b‟ in each 

mean value function, we have chosen the specifications of  
0b b   , 

1b b    equidistant on either side of estimate of  b obtained 

through a data set to apply SPRT such that b0 < b < b1. Assuming the value of 0.004  , the choices are given in the following table. 

Table 5.1: Estimates of a, b & Specifications of b0, b1 for ungrouped data 

Data Set Estimate of ‘a’ Estimate of ‘b’ b0 b1 

1 30.293717 0.009035 0.005035 0.013035 

2 34.926746 0.001884 -0.002116 0.005884 

3 26.769244 0.021628 0.017628 0.025628 

4 15.484667 0.017924 0.013924 0.021924 

5 22.253256 0.009543 0.005543 0.013543 

Using the selected 
0b , 

1b   and subsequently the  
0 1( ), ( )m t m t   for the model, we calculated the decision rules given by 

Equations 3.4 and 3.5, sequentially at each „t‟ of the data sets taking the strength ( α, β ) as (0.05, 0.2). These are presented for the 

model in Table 5.2. 

Table 5.2: SPRT analysis for 5 data sets of ungrouped data 

Data Set T N(t) 
Acceptance region 

(≤) 

Rejection Region 

(≥) 
Decision 

1 

30.02 1 0.026797 2.507130 

Rejection 

31.46 2 1.299420 3.790187 

53.93 3 1.477420 4.139399 

55.29 4 1.709327 4.382196 

58.72 5 2.609367 5.309976 

71.92 6 3.070112 5.881298 

2 52.5 1 1.077386 3.527223 Acceptance 

3 

9 1 -0.37989 5.796440 

Continue 

21 2 1.25401 8.012783 

32 3 2.01087 9.376087 

36 4 3.16368 10.768744 

43 5 3.65445 11.706527 

45 6 4.43522 12.621776 

50 7 5.64211 14.178827 

58 8 6.59510 15.736469 

63 9 7.52864 17.077987 

70 10 8.09289 18.255929 

71 11 8.56826 18.823258 

77 12 9.10569 19.936479 
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78 13 9.52827 20.459176 

87 14 10.42669 22.316060 

91 15 10.83845 23.189186 

92 16 10.94345 23.413148 

95 17 11.23429 24.069925 

98 18 11.41747 24.633026 

104 19 12.07487 26.094660 

105 20 11.60198 25.761835 

116 21 9.61279 25.437009 

149 22 12.49613 35.008313 

156 23 -0.36822 23.978441 

247 24 -1.76182 72.705175 

249 25 -2.13020 74.328763 

250 26 -27.87521 49.601618 

4 

10 1 -1.158060 3.904705 

Continue 

19 2 -0.352824 4.996781 

32 3 0.437638 6.245045 

43 4 1.528641 7.768524 

58 5 2.423944 9.330167 

70 6 3.421917 10.934184 

88 7 4.252168 12.816797 

103 8 4.760696 14.357293 

125 9 4.980364 16.403251 

150 10 5.152370 19.221257 

169 11 3.984377 20.585023 

199 12 2.350313 24.165604 

231 13 0.471426 30.104967 

256 14 -3.932532 34.081659 

296 15 -20.697571 36.829605 

5 
5.5 1 -0.838349 1.625846 

Rejection 
7.33 2 -0.802263 1.675552 

From the above table we observe that a decision of either to accept or reject the system is reached well in advance of the last time 

instant of the data. 

Conclusion 

The table 5.2 of Time domain data as exemplified for 5 Data Sets shows that Delayed S-shaped model is performing well in 

arriving at a decision. Out of 5 Data Sets of Time domain the procedure applied on the model has given a decision of rejection for 2, 

acceptance for 1 and continue for 2 at various time instant of the data as follows. Data Set #1 and #5 are rejected at 6
th

 and 2
nd

  instant 

of time. Data Set #2 is accepted at 1
st
 instant of time. Data Set #3 and #4 are continuing. Therefore, we may conclude that, applying 

SPRT on data sets we can come to an early conclusion of reliable / unreliable of software.     
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