Applied Mathematics

A study on (q, l)-fuzzy ideals of a ring

G. Jayanthi ${ }^{1,,^{*}}$, M. Simaringa ${ }^{1}$ and K.Arjunan ${ }^{2}$
${ }^{1}$ Department of Mathematics, TK Govt Arts College, Virudhachalam-606001. Cuddalore Dist.
${ }^{2}$ Department of Mathematics, H.H. The Rajah's College, Pudukkottai-622001, Tamilnadu, India.

ARTICLE INFO

Article history:

Received: 7 August 2013;
Received in revised form:

ABSTRACT
 In this paper, we study some of the properties of (Q, L)-fuzzy ideal of a ring and prove some

 results on these.© 2013 Elixir All rights reserved

20 September 2013;
Accepted: 30 September 2013;

Keywords

(Q, L)-fuzzy subset,
(Q, L)-fuzzy ideal,
(Q, L)-fuzzy relation,
Product of (Q, L)-fuzzy subsets.

Introduction

After the introduction of fuzzy sets by L.A.Zadeh[19], several researchers explored on the generalization of the notion of fuzzy set. Azriel Rosenfeld[4] defined a fuzzy groups. Asok Kumer Ray[3] defined a product of fuzzy subgroups and A.Solairaju and R.Nagarajan $[16,17,18]$ have introduced and defined a new algebraic structure called Q-fuzzy subgroups. We introduce the concept of (Q, L)-fuzzy ideal of a ring and established some results.

Preliminaries:

Definition: Let X be a non-empty set and $\mathrm{L}=(\mathrm{L}, \leq)$ be a lattice with least element 0 and greatest element 1 and Q be a non-empty set. $A(Q, L)$-fuzzy subset A of X is a function $A: X \times Q \rightarrow L$.

Definition: Let $(\mathrm{R},+, \cdot)$ be a ring and Q be a non empty set. A (Q, L)-fuzzy subset A of R is said to be a ($\mathbf{Q}, \mathbf{L})$-fuzzy ideal (QLFI) of R if the following conditions are satisfied:
(i) $\mathrm{A}(\mathrm{x}+\mathrm{y}, \mathrm{q}) \geq \mathrm{A}(\mathrm{x}, \mathrm{q}) \wedge \mathrm{A}(\mathrm{y}, \mathrm{q})$,
(ii) $\mathrm{A}(-\mathrm{x}, \mathrm{q}) \geq \mathrm{A}(\mathrm{x}, \mathrm{q})$,
(iii) $A(x y, q) \geq A(x, q) \vee A(y, q)$, for all x and y in R and q in Q.

Definition: Let A and B be any two (Q, L)-fuzzy subsets of sets R and H, respectively. The product of A and B, denoted by $A \times B$, is defined as $A \times B=\{\langle((x, y), q), A \times B((x, y), q)\rangle /$ for all x in R and y in H and q in $Q\}$, where $A \times B((x, y), q)=A(x, q) \wedge B(y$, q).

Definition: Let A be a (Q, L)-fuzzy subset in a set S , the strongest (\mathbf{Q}, \mathbf{L})-fuzzy relation on S , that is a (Q , L)-fuzzy relation V with respect to A given by $V((x, y), q)=A(x, q) \wedge A(y, q)$, for all x and y in S and q in Q.

Properties of ($\mathbf{Q}, \mathrm{L})$-fuzzy idealS:

Theorem: If A is a (Q, L)-fuzzy ideal of a ring $(\mathrm{R},+, \cdot)$, then $\mathrm{A}(\mathrm{x}, \mathrm{q}) \leq \mathrm{A}(\mathrm{e}, \mathrm{q})$, for x in R , the identity e in R and q in Q .
Proof: For x in R, q in Q and e is the identity element of R. Now, $A(e, q)=A(x-x, q) \geq A(x, q) \wedge A(-x, q)=A(x, q)$. Therefore, $A(e$, $q) \geq A(x, q)$, for x in R and q in Q.

Theorem: If A is a (Q, L)-fuzzy ideal of a ring $(R,+, \cdot)$, then $A(x-y, q)=A(e, q)$ gives $A(x, q)=A(y, q)$, for x and y in R, e in R and q in Q .

Tele:

E-mail addresses: jayanthig14@gmail.com

Proof: Let x and y in R, the identity e in R and q in Q. Now, $A(x, q)=A(x-y+y, q) \geq A(x-y, q) \wedge A(y, q)=A(e, q) \wedge A(y, q)=A(y, q)$ $=A(x-(x-y), q) \geq A(x-y, q) \wedge A(x, q)=A(e, q) \wedge A(x, q)=A(x, q)$. Therefore, $A(x, q)=A(y, q)$, for x and y in R and q in Q.
Theorem: Let A be a (Q, L)-fuzzy subset of a ring $(R,+\cdot \cdot)$. If $A(e, q)=1$ and $A(x-y, q) \geq A(x, q) \wedge A(y, q), A(x y, q) \geq A(x, q) \vee$ $A(y, q)$, then A is a (Q, L)-fuzzy ideal of R, for all x and y in R and q in Q, where e is the identity element of R.

Proof: Let x and y in R, e in R and q in Q. Now, $A(-x, q)=A(e-x, q) \geq A(e, q) \wedge A(x, q)=1 \wedge A(x, q)=A(x, q)$. Therefore, $A(-x, q) \geq$ $A(x, q)$, for all x in R and q in Q. Now, $A(x+y, q)=A(x-(-y), q) \geq A(x, q) \wedge A(-y, q) \geq A(x, q) \wedge A(y, q)$. Therefore, $A(x+y, q) \geq$ $A(x, q) \wedge A(y, q)$, for all x and y in R and q in Q and clearly $A(x y, q) \geq A(x, q) \vee A(y, q)$, for all x and y in R and q in Q. Hence A is a (Q, L)-fuzzy ideal of R .
Theorem: If A is $a(Q, L)$-fuzzy ideal of a ring $(R,+\cdot \cdot)$, then $H=\{x / x \in R: A(x, q)=1\}$ is either empty or is a ideal of R.
Proof: If no element satisfies this condition, then H is empty. If x and y in H, then $A(x-y, q) \geq A(x, q) \wedge A(-y, q) \geq A(x, q) \wedge A(y, q)$ $=1 \wedge 1=1$. Therefore, $A(x-y, q)=1$.

We get $x-y$ in H. And $A(x y, q) \geq A(x, q) \vee A(y, q)=1 \vee 1=1$. Therefore, $A(x y, q)=1$. We get $x y$ in H. Therefore, H is a ideal of R. Hence H is either empty or is a ideal of R.
Theorem: If A is $a(Q, L)$-fuzzy ideal of a ring $(R,+, \cdot)$, then $H=\{x \in R: A(x, q)=A(e, q)\}$ is a ideal of R.
Proof: Let x and y be in H. Now, $A(x-y, q) \geq A(x, q) \wedge A(-y, q) \geq A(x, q) \wedge A(y, q)=A(e, q) \wedge A(e, q)=A(e, q)$. Therefore, $\mathrm{A}(\mathrm{x}-\mathrm{y}, \mathrm{q}) \geq \mathrm{A}(\mathrm{e}, \mathrm{q})$ (1). And, $A(e, q)=A((x-y)-(x-y), q) \geq A(x-y, q) \wedge A(-(x-y), q) \geq A(x-y, q) \wedge A(x-y, q)=A(x-y$, q).

Therefore, $A(e, q) \geq A(x-y, q)$--------- (2). From (1) and (2), we get $A(e, q)=A(x-y, q)$.
Therefore, $x-y$ in H. Now, $A(x y, q) \geq A(x, q) \vee A(y, q)=A(e, q) \vee A(e, q)=A(e, q)$. Therefore, $A(x y, q) \geq A(e, q)---------{ }^{-}(3)$ And clearly, $A(e, q) \geq A(x y, q)$ (4).

From (3), (4), we get $A(e, q)=A(x y, q)$. Therefore, $x y$ in H. Hence H is a ideal of R.
Theorem: Let A be $a(Q, L)$-fuzzy ideal of a ring $(R,+, \cdot)$. If $A(x-y, q)=1$, then $A(x, q)=A(y, q)$, for x and y in R and q in Q.
Proof: Let x and y in R and q in Q. Now, $A(x, q)=A(x-y+y, q) \geq A(x-y, q) \wedge A(y, q)=1 \wedge A(y, q)=A(y, q)=A(-y, q)=$ $A(-x+x-y, q) \geq A(-x, q) \wedge A(x-y, q)=A(-x, q) \wedge 1=A(-x, q)=A(x, q)$. Therefore, $A(x, q)=A(y, q)$, for x and y in R, q in Q.
Theorem: Let A be a (Q, L)-fuzzy ideal of a ring $(R,+, \cdot)$. If $A(x-y, q)=0$, then either $A(x, q)=0$ or $A(y, q)=0$, for all x and y in R and q in Q .

Proof: Let x and y in R and q in Q. By the definition $A(x-y, q) \geq A(x, q) \wedge A(y, q)$ which implies that $0 \geq A(x, q) \wedge A(y, q)$. Therefore, either $A(x, q)=0$ or $A(y, q)=0$.
Theorem: Let $(R,+\cdot)$ be a ring and Q be a non-empty set. If A is a (Q, L)-fuzzy ideal of R, then $A(x+y, q)=A(x, q) \wedge A(y, q)$ with $A(x, q) \neq A(y, q)$, for each x and y in R and q in Q.

Proof: Let x and y belongs to R and q in Q. Assume that $A(x, q)>A(y, q)$. Now, $A(y, q)=A(-x+x+y, q) \geq A(-x, q) \wedge A(x+y, q)$ $\geq A(x, q) \wedge A(x+y, q) \geq A(y, q) \wedge A(x+y, q)=A(y, q)$. And $A(y, q)=A(x, q) \wedge A(x+y, q)=A(x+y, q)$. Therefore, $A(x+y, q)=A(y$, $q)=A(x, q) \wedge A(y, q)$, for all x and y in R and q in Q.
Theorem: If A and B are two (Q, L)-fuzzy ideals of a ring R, then their intersection $A \cap B$ is $a(Q, L)$-fuzzy ideal of R.
Proof: Let x and y belong to R and q in $\mathrm{Q}, \mathrm{A}=\{\langle(\mathrm{x}, \mathrm{q}), \mathrm{A}(\mathrm{x}, \mathrm{q})\rangle / \mathrm{x}$ in R and q in Q$\}$ and $\mathrm{B}=\{\langle(\mathrm{x}, \mathrm{q}), \mathrm{B}(\mathrm{x}, \mathrm{q})\rangle / \mathrm{x}$ in R and q in $Q\}$. Let $C=A \cap B$ and $C=\{\langle(x, q), C(x, q)\rangle / x$ in R and q in $Q\}$. (i) $C(x+y, q)=A(x+y, q) \wedge B(x+y, q) \geq\{A(x, q) \wedge A(y, q)\} \wedge\{$ $B(x, q) \wedge B(y, q)\} \geq\{A(x, q) \wedge B(x, q)\} \wedge\{A(y, q) \wedge B(y, q)\}=C(x, q) \wedge C(y, q)$. Therefore, $C(x+y, q) \geq C(x, q) \wedge C(y, q)$, for all x and y in R and q in Q. (ii) $C(-x, q)=A(-x, q) \wedge B(-x, q) \geq A(x, q) \wedge B(x, q)=C(x, q)$. Therefore, $C(-x, q) \geq C(x, q)$, for all x in R and q in Q. (iii) $C(x y, q)=A(x y, q) \wedge B(x y, q) \geq\{A(x, q) \vee A(y, q)\} \wedge\{B(x, q) \vee B(y, q)\} \geq\{A(x, q) \wedge B(x, q)\} \vee\{A(y, q) \wedge B(y, q)\}=$
$C(x, q) \vee C(y, q)$. Therefore, $\quad C(x y, q) \geq C(x, q) \vee C(y, q)$, for all x and y in R and q in Q. Hence $A \cap B$ is a (Q, L)-fuzzy ideal of the ring R.

Theorem: The intersection of a family of (Q, L)-fuzzy ideals of a ring R is a (Q, L)-fuzzy ideal of R .
Proof: Let $\left\{\mathrm{A}_{\mathrm{i}}\right\}_{\mathrm{i} \in \mathrm{I}}$ be a family of (Q, L)-fuzzy ideals of a ring R and $\mathrm{A}=\bigcap_{i \in I} \mathrm{~A}_{\mathrm{i}}$. Then for x and y belongs to R and q in Q , we have
(i) $\mathrm{A}(\mathrm{x}+\mathrm{y}, \mathrm{q})=\inf _{i \in I} A_{i}(x+y, q) \geq \inf _{i \in I}\left\{\mathrm{~A}_{\mathrm{i}}(\mathrm{x}, \mathrm{q}) \wedge \mathrm{A}_{\mathrm{i}}(\mathrm{y}, \mathrm{q})\right\} \geq \inf _{i \in I}\left(A_{i}(x, q)\right) \wedge \inf _{i \in I}\left(A_{i}(y, q)\right)=\mathrm{A}(\mathrm{x}, \mathrm{q}) \wedge \mathrm{A}(\mathrm{y}, \mathrm{q})$. Therefore, $\mathrm{A}(\mathrm{x}+\mathrm{y}, \mathrm{q}) \geq \mathrm{A}(\mathrm{x}, \mathrm{q}) \wedge \mathrm{A}(\mathrm{y}, \mathrm{q})$, for all x and y in R and q in Q . (ii) $\mathrm{A}(-\mathrm{x}, \mathrm{q})=\inf _{i \in I} A_{i}(-x, q) \geq \inf _{i \in I} A_{i}(x, q)=\mathrm{A}(\mathrm{x}, \mathrm{q})$. Therefore, $\mathrm{A}(-\mathrm{x}, \mathrm{q}) \geq \mathrm{A}(\mathrm{x}, \mathrm{q})$, for all x in R and q in Q . (iii) $\mathrm{A}(\mathrm{xy}, \mathrm{q})=\inf _{i \in I} A_{i}(x y, q) \geq \inf _{i \in I}\left\{\mathrm{~A}_{\mathrm{i}}(\mathrm{x}, \mathrm{q}) \vee \mathrm{A}_{\mathrm{i}}(\mathrm{y}, \mathrm{q})\right\} \geq \inf _{i \in I}\left(A_{i}(x, q)\right) \vee$ $\inf _{i \in I}\left(A_{i}(y, q)\right)=\mathrm{A}(\mathrm{x}, \mathrm{q}) \vee \mathrm{A}(\mathrm{y}, \mathrm{q})$. Therefore, $\mathrm{A}(\mathrm{xy}, \mathrm{q}) \geq \mathrm{A}(\mathrm{x}, \mathrm{q}) \vee \mathrm{A}(\mathrm{y}, \mathrm{q})$, for all x and y in R and q in Q . Hence the intersection of a family of (Q, L)-fuzzy ideals of the ring R is a (Q, L)-fuzzy ideal of R .
Theorem: Let A be a (Q, L)-fuzzy ideal of a ring R. If $A(x, q)<A(y, q)$, for some x and y in R and q in Q, then $A(x+y, q)=A(x, q)=$ $A(y+x, q)$, for all x and y in R and q in Q.

Proof: Let A be a (Q, L)-fuzzy ideal of a ring R. Also we have $A(x, q)<A(y, q)$, for some x and y in R and q in $Q, A(x+y, q) \geq A(x$, $q) \wedge A(y, q)=A(x, q)$; and $A(x, q)=A(x+y-y, q) \geq A(x+y, q) \wedge A(-y, q) \geq A(x+y, q) \wedge A(y, q)\}=A(x+y, q)$. Therefore, $A(x+y, q)=A(x, q)$, for all x and y in R and q in Q. Hence $A(x+y, q)=A(x, q)=A(y+x, q)$, for all x and y in R and q in Q.
Theorem: Let A be a (Q, L)-fuzzy ideal of a ring R. If $A(x, q)>A(y, q)$, for some x and y in R and q in Q, then $A(x+y, q)=A(y, q)=$ $A(y+x, q)$, for all x and y in R and q in Q.
Proof: It is trivial.
Theorem: Let A be a (Q, L)-fuzzy ideal of a ring R such that $\operatorname{Im} A=\{\alpha\}$, where α in L. If $A=B \cup C$, where B and C are (Q, L)-fuzzy ideals of R , then either $\mathrm{B} \subseteq \mathrm{C}$ or $\mathrm{C} \subseteq \mathrm{B}$.

Proof: Let $\mathrm{A}=\mathrm{B} \cup \mathrm{C}=\{\langle(\mathrm{x}, \mathrm{q}), \mathrm{A}(\mathrm{x}, \mathrm{q})\rangle / \mathrm{x}$ in R and q in Q$\}, \mathrm{B}=\{\langle(\mathrm{x}, \mathrm{q}), \mathrm{B}(\mathrm{x}, \mathrm{q})\rangle / \mathrm{x}$ in R and q in Q$\}$ and $\mathrm{C}=\{\langle(\mathrm{x}, \mathrm{q}), \mathrm{C}(\mathrm{x}$, $q)\rangle / x$ in R and q in $Q\}$. Suppose that neither $B \subseteq C$ nor $C \subseteq B$. Assume that $B(x, q)>C(x, q)$ and $B(y, q)<C(y, q)$, for some x and y in R and q in Q. Then, $\alpha=A(x, q)=(B \cup C)(x, q)=B(x, q) \vee C(x, q)=B(x, q)>C(x, q)$. Therefore, $\alpha>C(x, q)$. And, $\alpha=A(y, q)=$ $(B \cup C)(y, q)=B(y, q) \vee C(y, q)=C(y, q)>B(y, q)$. Therefore, $\alpha>B(y, q)$. So that, $C(y, q)>C(x, q)$ and $B(x, q)>B(y, q)$.
Hence $B(x+y, q)=B(y, q)$ and $C(x+y, q)=C(x, q)$, by Theorem 2.11 and 2.12. But then, $\alpha=A(x+y, q)=(B \cup C)(x+y, q)=B(x+y, q)$ $\vee \mathrm{C}(\mathrm{x}+\mathrm{y}, \mathrm{q})\}=\mathrm{B}(\mathrm{y}, \mathrm{q}) \vee \mathrm{C}(\mathrm{x}, \mathrm{q})<\alpha-\cdots----(1)$. It is a contradiction by (1). Therefore, either $\mathrm{B} \subseteq \mathrm{C}$ or $\mathrm{C} \subseteq \mathrm{B}$ is true.
Theorem: If A and B are (Q, L)-fuzzy ideals of the rings R and H, respectively, then $A \times B$ is a (Q, L)-fuzzy ideal of $\mathrm{R} \times \mathrm{H}$.
Proof: Let A and B be (Q, L)-fuzzy ideals of the rings R and H respectively. Let x_{1} and x_{2} be in R, y_{1} and y_{2} be in H. Then (x_{1}, y_{1}) and $\left(x_{2}, y_{2}\right)$ are in $R \times H$ and q in Q. Now, $A \times B\left[\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right), q\right]=A \times B\left(\left(x_{1}+x_{2}, y_{1}+y_{2}\right), q\right)=A\left(x_{1}+x_{2}, q\right) \wedge B\left(y_{1}+y_{2}, q\right)$ $\geq\left\{A\left(x_{1}, q\right) \wedge A\left(x_{2}, q\right)\right\} \wedge\left\{B\left(y_{1}, q\right) \wedge B\left(y_{2}, q\right)\right\}=\left\{A\left(x_{1}, q\right) \wedge B\left(y_{1}, q\right)\right\} \wedge\left\{A\left(x_{2}, q\right) \wedge B\left(y_{2}, q\right)\right\}=A \times B\left(\left(x_{1}, y_{1}\right), q\right) \wedge A \times B\left(\left(x_{2}, y_{2}\right), q\right)$. Therefore, $A \times B\left[\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right), q\right] \geq A \times B\left(\left(x_{1}, y_{1}\right), q\right) \wedge A \times B\left(\left(x_{2}, y_{2}\right), q\right)$. $A n d A \times B\left[-\left(x_{1}, y_{1}\right), q\right]=A \times B\left(\left(-x_{1},-y_{1}\right), q\right)=A\left(-x_{1}\right.$, $q) \wedge B\left(-y_{1}, q\right) \geq A\left(x_{1}, q\right) \wedge B\left(y_{1}, q\right)=A \times B\left(\left(x_{1}, y_{1}\right), q\right)$. Therefore, $A \times B\left[-\left(x_{1}, y_{1}\right), q\right] \geq A \times B\left(\left(x_{1}, y_{1}\right), q\right)$. Now, $A \times B\left[\left(x_{1}, y_{1}\right)\left(x_{2}\right.\right.$, $\left.\left.\mathrm{y}_{2}\right), \mathrm{q}\right]=\mathrm{A} \times \mathrm{B}\left(\left(\mathrm{x}_{1} \mathrm{x}_{2}, \mathrm{y}_{1} \mathrm{y}_{2}\right), \mathrm{q}\right)=\mathrm{A}\left(\mathrm{x}_{1} \mathrm{x}_{2}, \mathrm{q}\right) \wedge \mathrm{B}\left(\mathrm{y}_{1} \mathrm{y}_{2}, \mathrm{q}\right) \geq\left\{\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{q}\right) \vee \mathrm{A}\left(\mathrm{x}_{2}, \mathrm{q}\right)\right\} \wedge\left\{\mathrm{B}\left(\mathrm{y}_{1}, \mathrm{q}\right) \vee \mathrm{B}\left(\mathrm{y}_{2}, \mathrm{q}\right)\right\}=\left\{\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{q}\right) \wedge \mathrm{B}\left(\mathrm{y}_{1}, \mathrm{q}\right)\right\} \vee\left\{\mathrm{A}\left(\mathrm{x}_{2}, \mathrm{q}\right)\right.$ $\left.\wedge B\left(y_{2}, q\right)\right\}=A \times B\left(\left(x_{1}, y_{1}\right), q\right) \vee A \times B\left(\left(x_{2}, y_{2}\right), q\right)$. Therefore, $A \times B\left[\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right), q\right] \geq A \times B\left(\left(x_{1}, y_{1}\right), q\right) \vee A \times B\left(\left(x_{2}, y_{2}\right)\right.$, $\left.q\right)$. Hence $A \times B$ is a (Q, L)-fuzzy ideal of $\mathrm{R} \times \mathrm{H}$.
Theorem: Let A and B be (Q, L)-fuzzy subsets of the rings R and H , respectively. Suppose that e and e^{\prime} are the identity element of R and H, respectively. If $A \times B$ is a (Q, L)-fuzzy ideal of $R \times H$, then at least one of the following two statements must hold.
(i) $B\left(e^{\prime}, q\right) \geq A(x, q)$, for all x in R and q in Q,
(ii) $\mathrm{A}(\mathrm{e}, \mathrm{q}) \geq \mathrm{B}(\mathrm{y}, \mathrm{q})$, for all y in H and q in Q .

Proof: Let $\mathrm{A} \times \mathrm{B}$ be a (Q, L)-fuzzy ideal of $\mathrm{R} \times \mathrm{H}$.
By contra positive, suppose that none of the statements (i) and (ii) holds. Then we can find a in R and b in H such that $A(a, q)>B\left(e^{\prime}\right.$, $q)$ and $B(b, q)>A(e, q), q$ in Q. We have, $A \times B((a, b), q)=A(a, q) \wedge B(b, q)>A(e, q) \wedge B\left(e^{1}, q\right)=A \times B\left(\left(e, e^{1}\right)\right.$, $\left.q\right)$. Thus $A \times B$ is not a (Q, L)-fuzzy ideal of $\mathrm{R} \times \mathrm{H}$. Hence either $\mathrm{B}\left(\mathrm{e}^{\prime}, \mathrm{q}\right) \geq \mathrm{A}(\mathrm{x}, \mathrm{q})$, for all x in R and q in Q or $\mathrm{A}(\mathrm{e}, \mathrm{q}) \geq \mathrm{B}(\mathrm{y}, \mathrm{q})$, for all y in H and q in Q .

Theorem: Let A and B be (Q, L)-fuzzy subsets of the rings R and H , respectively and $\mathrm{A} \times \mathrm{B}$ is a (Q, L)-fuzzy ideal of $\mathrm{R} \times \mathrm{H}$. Then the following are true:
(i) if $\mathrm{A}(\mathrm{x}, \mathrm{q}) \leq \mathrm{B}\left(\mathrm{e}^{\prime}, \mathrm{q}\right)$, then A is a (Q, L)-fuzzy ideal of R .
(ii) if $B(x, q) \leq A(e, q)$, then B is a (Q, L)-fuzzy ideal of H.
(iii) either A is a (Q, L)-fuzzy ideal of R or B is a (Q, L)-fuzzy ideal of H .

Proof: Let $A \times B$ be a (Q, L)-fuzzy ideal of $R \times H$, x and y in R and q in Q. Then (x, e^{\prime}) and (y, e^{\prime}) are in $R \times H$. Now, using the property $A(x, q) \leq B\left(e^{\prime}, q\right)$, for all x in R and q in Q, we get, $A(x-y, q)=A(x-y, q) \wedge B\left(e^{\prime} e^{\prime}, q\right)=A \times B\left(\left((x-y),\left(e^{\prime} e^{l}\right)\right), q\right)=A \times B\left[\left(x, e^{\prime}\right)+\right.$ $\left.\left(-y, e^{\prime}\right), q\right] \geq A \times B\left(\left(x, e^{\prime}\right), q\right) \wedge A \times B\left(\left(-y, e^{\prime}\right), q\right)=\left\{A(x, q) \wedge B\left(e^{\prime}, q\right)\right\} \wedge\left\{A(-y, q) \wedge B\left(e^{\prime}, q\right)\right\}=A(x, q) \wedge A(-y, q) \geq A(x, q) \wedge A(y$, $q)$. Therefore, $A(x-y, q) \geq A(x, q) \wedge A(y, q)$, for all x, y in R and q in Q. $\left.A n d, A(x y, q)=A(x y, q) \wedge B\left(e^{\prime} e^{\prime}, q\right)\right\}=A \times B\left(\left((x y)\right.\right.$, ($\left.\left.\left.e^{\prime} e^{\prime}\right)\right), q\right)$ $=A \times B\left[\left(x, e^{l}\right)\left(y, e^{l}\right), q\right] \geq A \times B\left(\left(x, e^{l}\right), q\right) \vee A \times B\left(\left(y, e^{l}\right), q\right)=\left\{A(x, q) \wedge B\left(e^{\prime}, q\right)\right\} \vee\left\{A(y, q) \wedge B\left(e^{\prime}, q\right)\right\}=A(x, q) \vee A(y, q)$. Therefore, $A(x y, q) \geq A(x, q) \vee A(y, q)$, for all x, y in R and q in Q. Hence A is a (Q, L)-fuzzy ideal of R. Thus (i) is proved. Now, using the property $B(x, q) \leq A(e, q)$, for all x in H and q in Q, we get, $B(x-y, q)=B(x-y, q) \wedge A(e e, q)=A \times B(((e e),(x-y)), q)=A \times B[(e, x)+(e$, $-y), q] \geq A \times B((e, x), q) \wedge A \times B((e,-y), q)=\{B(x, q) \wedge A(e, q)\} \wedge\{B(-y, q) \wedge A(e, q)\}=B(x, q) \wedge B(-y, q) \geq B(x, q) \wedge B(y, q)$. Therefore, $B(x-y, q) \geq B(x, q) \wedge B(y, q)$, for all x and y in H and q in Q. And, $B(x y, q)=B(x y, q) \wedge A(e e, q)=A \times B(((e e),(x y))$, $q)=A \times B[(e, x)(e, y), q] \geq A \times B((e, x), q) \vee A \times B((e, y), q)=\{B(x, q) \wedge A(e, q)\} \vee\{B(y, q) \wedge A(e, q)\}=B(x, q) \vee B(y, q)$. Therefore, $\mathrm{B}(\mathrm{xy}, \mathrm{q}) \geq \mathrm{B}(\mathrm{x}, \mathrm{q}) \vee \mathrm{B}(\mathrm{y}, \mathrm{q})$, for all x and y in H and q in Q . Hence B is a (Q, L)-fuzzy ideal of H . Thus (ii) is proved. (iii) is clear.

Theorem: Let A be a (Q, L)-fuzzy subset of a ring R and V be the strongest (Q, L)-fuzzy relation of R with respect to A . Then A is a (Q, L)-fuzzy ideal of R if and only if V is a (Q, L)-fuzzy ideal of $\mathrm{R} \times \mathrm{R}$.
Proof: Suppose that A is a (Q, L)-fuzzy ideal of R. Then for any $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ are in $R \times R$ and q in Q. We have, $V(x-y$, $\mathrm{q})=\mathrm{V}\left[\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)-\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right), \mathrm{q}\right]=\mathrm{V}\left(\left(\mathrm{x}_{1}-\mathrm{y}_{1}, \mathrm{x}_{2}-\mathrm{y}_{2}\right), \mathrm{q}\right)=\mathrm{A}\left(\left(\mathrm{x}_{1}-\mathrm{y}_{1}\right), \mathrm{q}\right) \wedge \mathrm{A}\left(\left(\mathrm{x}_{2}-\mathrm{y}_{2}\right), \mathrm{q}\right) \geq\left\{\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{q}\right) \wedge \mathrm{A}\left(-\mathrm{y}_{1}, \mathrm{q}\right)\right\} \wedge\left\{\mathrm{A}\left(\mathrm{x}_{2}, \mathrm{q}\right) \wedge \mathrm{A}\left(-\mathrm{y}_{2}\right.\right.$, $\left.q)\}=\left\{A\left(x_{1}, q\right) \wedge A\left(x_{2}, q\right)\right\} \wedge\left\{A\left(-y_{1}, q\right) \wedge A\left(-y_{2}, q\right)\right\}=\left\{A\left(x_{1}, q\right) \wedge A\left(x_{2}, q\right)\right\} \wedge\left\{A\left(y_{1}, q\right) \wedge A\left(y_{2}, q\right)\right\}=V\left(x_{1}, x_{2}\right), q\right) \wedge V\left(\left(y_{1}, y_{2}\right), q\right)=V(x$, $q) \wedge V(y, q)$. Therefore, $V((x-y), q) \geq V(x, q) \wedge V(y, q)$, for all x and y in $R \times R$ and q in Q. And we have, $V(x y, q)=V\left[\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)\right.$, $\mathrm{q}]=\mathrm{V}\left(\left(\mathrm{x}_{1} \mathrm{y}_{1}, \mathrm{x}_{2} \mathrm{y}_{2}\right), \mathrm{q}\right)=\mathrm{A}\left(\left(\mathrm{x}_{1} \mathrm{y}_{1}\right), \mathrm{q}\right) \wedge \mathrm{A}\left(\left(\mathrm{x}_{2} \mathrm{y}_{2}\right), \mathrm{q}\right) \geq\left\{\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{q}\right) \vee \mathrm{A}\left(\mathrm{y}_{1}, \mathrm{q}\right)\right\} \wedge\left\{\mathrm{A}\left(\mathrm{x}_{2}, \mathrm{q}\right) \vee \mathrm{A}\left(\mathrm{y}_{2}, \mathrm{q}\right)\right\}=\left\{\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{q}\right) \wedge \mathrm{A}\left(\mathrm{x}_{2}, \mathrm{q}\right)\right\} \vee\left\{\mathrm{A}\left(\mathrm{y}_{1}\right.\right.$, $\left.\mathrm{q}) \wedge \mathrm{A}\left(\mathrm{y}_{2}, \mathrm{q}\right)\right\}=\mathrm{V}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), \mathrm{q}\right) \vee \mathrm{V}\left(\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right), \mathrm{q}\right)=\mathrm{V}(\mathrm{x}, \mathrm{q}) \vee \mathrm{V}(\mathrm{y}, \mathrm{q})$. Therefore, $\mathrm{V}((\mathrm{xy}), \mathrm{q}) \geq \mathrm{V}(\mathrm{x}, \mathrm{q}) \vee \mathrm{V}(\mathrm{y}, \mathrm{q})$, for all x and y in $\mathrm{R} \times \mathrm{R}$ and q in Q. This proves that V is a (Q, L)-fuzzy ideal of $R \times R$. Conversely, assume that V is a (Q, L)-fuzzy ideal of $R \times R$, then for any $x=$ $\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ are in $R \times R$, we have $\left.A\left(x_{1}-y_{1}, q\right) \wedge A\left(x_{2}-y_{2}, q\right)=V\left(x_{1}-y_{1}, x_{2}-y_{2}\right), q\right)=V\left[\left(x_{1}, x_{2}\right)-\left(y_{1}, y_{2}\right), q\right]=V(x-y, q)$ $\geq V(x, q) \wedge V(y, q)=V\left(\left(x_{1}, x_{2}\right), q\right) \wedge V\left(\left(y_{1}, y_{2}\right), q\right)=\left\{A\left(x_{1}, q\right) \wedge A\left(x_{2}, q\right)\right\} \wedge\left\{A\left(y_{1}, q\right) \wedge A\left(y_{2}, q\right)\right\}$. If we put $x_{2}=y_{2}=e$, where e is the identity element of R. We get, $A\left(\left(x_{1}-y_{1}\right), q\right) \geq A\left(x_{1}, q\right) \wedge A\left(y_{1}, q\right)$, for all x_{1} and y_{1} in R and q in Q. $\left.A n d A\left(x_{1} y_{1}, q\right) \wedge A\left(x_{2} y_{2}, q\right)\right\}$ $=V\left(\left(x_{1} y_{1}, x_{2} y_{2}\right), q\right)=V\left[\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right), q\right]=V(x y, q) \geq V(x, q) \vee V(y, q)=V\left(\left(x_{1}, x_{2}\right), q\right) \vee V\left(\left(y_{1}, y_{2}\right), q\right)=\left\{A\left(x_{1}, q\right) \wedge A\left(x_{2}, q\right)\right.$ $\} \vee\left\{A\left(y_{1}, q\right) \wedge A\left(y_{2}, q\right)\right\}$. If we put $x_{2}=y_{2}=e$, where e is the identity element of R. We get, $A\left(\left(x_{1} y_{1}\right), q\right) \geq A\left(x_{1}, q\right) \vee A\left(y_{1}, q\right)$, for all x_{1} and y_{1} in R and q in Q. Hence A is a (Q, L)-fuzzy ideal of R.

Reference

1. Akram.M and Dar.K.H, On fuzzy d-algebras, Punjab university journal of mathematics, 37(2005), 61-76.
2. Anthony.J.M. and Sherwood.H, Fuzzy groups Redefined, Journal of mathematical analysis and applications, 69,124-130 (1979)
3. Asok Kumer Ray, On product of fuzzy subgroups, Fuzzy sets and systems, 105, 181-183 (1999).
4. Azriel Rosenfeld, Fuzzy Groups, Journal of mathematical analysis and applications, 35, 512-517 (1971).
5. Biswas.R, Fuzzy subgroups and Anti-fuzzy subgroups, Fuzzy sets and systems, 35,121-124 (1990).
6. Davvaz.B and Wieslaw.A.Dudek, Fuzzy n-ary groups as a generalization of rosenfeld fuzzy groups, ARXIV0710.3884VI(MATH.RA) 20 OCT 2007, 1-16.
7. Goguen.J.A., L-fuzzy Sets, J. Math. Anal. Appl. 18 145-147(1967).
8. Kog.A and Balkanay.E, θ-Euclidean L-fuzzy ideals of rings, Turkish journal of mathematics 26 (2002) 149-158.
9. Kumbhojkar.H.V., and Bapat.M.S., Correspondence theorem for fuzzy ideals, Fuzzy sets and systems, (1991)
10. Mohamed Asaad, Groups and fuzzy subgroups, Fuzzy sets and systems, North-Holland, (1991).
11. Mustafa Akgul, Some properties of fuzzy groups, Journal of mathematical analysis and applications, 133, 93-100 (1988).
12. Palaniappan. N \& K. Arjunan, 2007. Operation on fuzzy and anti fuzzy ideals, Antartica J. Math., 4(1): 59-64.
13. Rajesh Kumar, Fuzzy Algebra, Volume 1, University of Delhi Publication Division, July -1993.
14. Salah Abou-Zaid, On generalized characteristic fuzzy subgroups of a finite group, Fuzzy sets and systems, 235-241 (1991).
15. Sidky.F.I and Atif Mishref.M, Fuzzy cosets and cyclic and abelian fuzzy subgroups, Fuzzy sets and systems, 43(1991) 243-250.
16. Solairaju.A and Nagarajan.R, A New Structure and Construction of Q-Fuzzy Groups, Advances in fuzzy mathematics, Volume 4, Number 1 (2009) pp. 23-29.
17. Solairaju.A and Nagarajan.R, Lattice Valued Q-fuzzy left R-submodules of near rings with respect to T-norms, Advances in fuzzy mathematics, Vol 4, Num. 2, 137-145(2009).
18. Solairaju.A and Nagarajan.R, "Q-Fuzzy left R-subgroups of near rings with respect to t-norms". Antarctica Journal of Mathematics, 5(2008) 1-2, 59-63.
19. Zadeh.L.A, Fuzzy sets, Information and control, Vol.8, 338-353 (1965).
