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1. Introduction

ABSTRACT
In the present paper, the classical generalized Hardy type transformation depending on three
real parameters (a, b, v) defined by

Fi0) = (Crapapsf) @) = vby 172a+2v f (xy)® Co—p [b(xy)"] f(x) dx,
0

(a -B> —%) where C,_g(2) = cos(PT) Jo_p (2) + sin(pm) Y o_p (2) With J,_p(2)
and Y,_g (2) denote the Bessel type function of first and second kind of order (a — )
respectively is extended to certain spaces of generalized functions by the kernel method in
such a way that the theory of Pathak and Pandey [11] in relation with Hardy type
transformation

‘ 1
Fy) = (Capf) ) = f x Cq_p (xy) f(x) dx, ((“ -p) = —E>
0

appears then as a particular case for v = b = a = 1. By interpreting the convergence in the
weak distributional sense, an inversion theorem is established. The theory thus developed is
applied to solve certain boundary value problems.

© 2013 Elixir All rights reserved

The study of integral transforms in spaces of generalized functions has been an active area of work in the last few years. The

methods of the theory of generalized functions have permitted a generalization of the classical results with the emergence of the

theory of generalized functions, many aspects of integral transformation theory have acquired new more general treatment. Some

generalizations of the classical and the distributional Hankel type transformations.

(hapf) @) = [ Jop (xy) f() dx, (@ =) = - (.1)

and

(hapf) @) = [ X Jaop @¥) fQ) dx, (@—p) = —3 (1.2)

were given by many authors from time to time.

The generalized Hankel type transformation depending on three real parameters (a, b, v) defined by

1

(Frapabof) ) = vby 72042 [P (xy)? J,_p[b(xy)"] (%) dx, (@ —B) = — (1.3)

1

A0 (F, g p.apof ) 3) = b [ 7172042 (xy)e ], _o[b(xy)*] f(x) dix, (@ — ) = —7 (1.4)

2

which encompass (1.1) and (1.2) and a number of Hankel type transforms both known as well as unknown as special cases, has been

extended to certain class of generalized functions. (see [7,8]).

Following [2] we define the classical Hardy type transformation as

F) = (Capf)@) = J; % Casp (xy) f(x) dx (1.5)
with the inversion formula
fG) = (CopF) () = [)"x Faop (xy) F(y) dx (1.6)
where
Co_p(z) = cos (pm) Jo_p (2) + sin (pm) Y, _p (2) (1.7
Tele:
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and

(- 1)m (Z/Z)a—ﬂ+2p+2m
(p+m+1)Ir(p+m+3a+p)

(1.8)

Fop (2) = Zf;=0r = 22-(a-B)-2pg

Sia-p being Lommel’s function (see Watson; p.345 [12]) has been extended to a certain class of distributions. (see Pathak and

a—fB+2p—-1,a- (Z)’

Pandey [11]).

The Hankel type transformations (1.2) and the famous Y and its reciprocal H —transformations are particular cases of the Hardy type
transformations (1.5). However the transformation of the type (1.1) and related Y and its reciprocal H-transformations cannot be
reduced as a particular case of (1.5). This and the work of Malgonde [8] initiated us to work on the generalized Hardy type

transformation defined by

Fi ) = (Coapapof) ) = vhy 172042 [Z(xy) C,_p [b (xy)”] f(x) dx (1.9)
and
Fo(0) = (Coapapsf) @) =vb [” x7172%42 (x3)2 Fo_g [b(xy)”] f(x) dx (1.10)

where C,_g (z) and F,_g(z) are as defined in (1.7) and (1.8) respectively, in the classical as well as in the distributional sense of
which (1.5) is a particular case.

Following Erdelyi [4, p.22, 74, 40, 41, 85 ], Babister [1, p.83], Watson [12, p.457], we have following well-known results.

In our analysis p and (a — B) will be assumed to be real. If (a — B) is an integer, we assume that the expression on the right of (1.11)

is defined by its limiting values of (a¢ — B) tends towards an integer.

Cop (2) = BTy () 200 (2) (1.11)

sin(a-B)w sin(a-B) w
S1ap = S1a-p(@) —27T((1 + a + 38)/2) T(1 + 3a + B)/2] cosec vr (1.12)
X [cosec n(a+3B)/2 Jg_a(2) —cosect(Ba+ B)/2]qp (z)]
Stap @ ~2"H{A-[A1-1?=(@-p)?]z? +[A-1D* - (a-P*][1 -3 -(a-p)*]z*....}

(1.13)
Jap[bx"] = [FA+W)] ' (bx"/2)*F,asx-> 0 (1.14)
20\z (1.15)

Ja-p [bx¥] = (E) x"/2 cos[b x* — (m/2)(2a)] + O(bx¥)~3/2, asx — oo
& [Camp®2)] = L Cop (b2) = b C30.5(b2) (1.16)
= [S1a-p ®D)] = =L S35 (b2) = b(1 = 3a — B) S1_1 3045 (b2) (217)
St Jap@® dt = 0 — @ —3B) T o p()Sp-1-a-35(t) = T J_q_35() Sy p(r) (1.18)

f(: t’ ]ﬂ—a(t) dt = ('U —a-— 33) r]ﬂ—a(r)sv—l,—a—3ﬂ(r) + r]a+3ﬂ(r)sv,a—[i(r)'
Following Watson [12], Cook [2] and Pathak and Pandey [11], we have following well known classical theorems:
Theorem 1.1 (Convergence Theorem):

For any arbitrary real parameters a, b, v and (@a—pB) > _Lif f(x) is alocally integrable function on 0 < x < oo such that
2-

f(x)= 0(x"), x> 0and
f(x):()(xf), x—)OO,

then the integral

J x% Co_p (bx?) f(x) dx
0
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defining the transformation (1.9) is absolutely convergent according to asymptotic expansions of C,_g (z) when 5 > (—a —
(a—pPv—1andé < (—a+v/2-1).

Theorem 1.2: (Inversion formula) :

If@p>-1,p+a—B>-1,la—B+2p| <3/2,

(i) x? f (x) is integrable over (0,4), 6 = min (a + 3 —2p,1— (a— B), 1/2), § > 0,

(i) xo-v/2 f(x) is integrable over (0, 8); and

(iv) f(x) is of bounded variation into a neighborhood of the point x = x, > 0, then

) R
B wb gt [ £ [y ) o b)) (ko) Fag bCxoy)ldydx
0 0
= % {f (xo +0)+ f (xo—0)} 20
or
' R
B vbag 2 [ gy) Fo g b(xoy)’] FO) dy dx
0

=% {f(xo+0) + f(xo — 0)}

where F, (y) is defined by (1.9).
Theorem 1.3: (Operational calculus):
(i) If y = x® C,_p (b x7) then it satisfies the differential equation

x2y" + (1 —2a) xy' + [b*v?*x?” + (a®> — (a — B)* v¥)]y =0
(i) Ify = x—l—a+2VFa_ﬁ (b x*) then it satisfies the differential equation

x2y" — (v —-2a-3)xy —{(a— B)*v* — (a+1-2v)% + b*v*x?"}y = p"Tlp?xvtvitZv-a-l  where p=a-p+
2p — 1.
(iii) % [x(a—p)v Cop (bxv)] = phx?@ B +v-1 C—a3p (bX")

(iV) % [x—(ot—ﬁ)vca_‘6 (be)] — _va—v(a—ﬁ)ﬂf—l C3a+[} (be)
(V) If Aa,a,ﬁ,v = y~(@e-Pv+a+i-2v D, yx2(a-pv+1 D, x—a-(a=B)v

= x> D2+ (1 - 2a)x'"?" D, + (a® — (a — B)*v?) x~ %, and

— x—a—(a—B)vD x2(a—[i’)v+1D x—(a—B)v+a+1—2v
x x

A

Z,a,ﬁ,v
= x2D:i - (w-2a-3)x"?"D,— [(a—B)*v?—(a+1-2v)* ] x %

denote the Bessel type differential operators then for (a — B) > — 1/2 and for any arbitrary real numbers a, b, v

A’(;,a,ﬂ,v [K{(x,y)] = (—v?b*)k }’ZVk K, (x,y). (1.21)
and
Daipw Kz (1, = (—=v*b)* y™* K, (x,y) — P(x,)- (1.22)
where
k
P(x,y) = y@ Bv+2zpv-a+2v-1 Z a; x@Bv+2pv-a+1-2i y2vk-2vi
i=1
Ky (x,y) = vby 17242 (xy)@ Co_g [b (xy)"]
and

K, (x,y) = vbx 17292 (xy)* F,_g [b (xy)"]

are the Kernels of the transformations (1.9) and (1.10) respectively.
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(vi) The transformation (1.9) satisfies the operational rule
F 1,a,ﬁ,a,b,v{A:;,a,p,v fFGO} @) = (—v*b) y*° Fiapapy [F(0] ()
where f(x) is a suitable function.

Theoreml4: f (a-B)=—-1/2 ,p>—-1, a—B+p>-1, 1+|a—B|+1>0, 1=a— B+ 2p—1,then
R'II

b f Y12 Co_g [b (ty)7] Fop [b(xy)*] d

t‘l]
[ @uorom sinta —pym L=~ 3B) [sin@ + a— o plb(R)" ] |

= ZVR—VZV -sinpm Jg_o [b(tR)"] S1_1,-q-35 [b ((R)"] — (sin(p + a — B)m) J_q_35 [b (tR)"]
ot +SINPT 413 [D(tR)"] Syq_p [B(ER)"] — A [x* (@ + 38 — 1)
X Co_pg [b(LR)"] S1_13a+p [b (XR)"] + ¥ C34,p [b(ER)"]S1o—p [b(XxR)"]
where 1= a—p+2p—1and , _ 23atSh-2p (1.23)

" I(p) T(a-B+p)

Proof : We know that u = F,_g (ax) and v = C,_g (bx) are solutions of the differential equations

ldu . 53 12,2 1+1 ,1+1 and
4 -1 u= a
dy y gy (a /y%) y

E+lﬂ+(a -1%/y*)v=0

respectively.

From above two equations, we get
RY RY d d R
u v
(a® — b?) f uvdy = f La'*ly dy — [ (v —— —)]
J y y J y y— |y dy dy

where p > —1 and < @ — B + p > —1. Using change of variables and the results (1.11), (1.15) —(1.19) this can easily be shown to

be equivalent to
Rv
b [ ¥ Coy b(e9)") P b G3)"] dy

(/"D e (1= @ = 3B) [sin( + a — B)m J oy [B(tR)"]
v -sinpm Jg_o [b(tR)"]) S1-1,-a-35 [D(ER)"] — (sin(p + a — B)m)
= o g X J-a-3p [D(tR)"] + Sin pT J413p [D(ER)"]) S1,0-p [D(ER)"]]

-4 [x" (A~ a—3B) Cay [DUR)"] S1-150-5 DGR)"]]
+t" C304p [b(ER)"] S1,4-p [D(LR)]]

where 4 is the same as given in (1.23), p > —1 and @ — B + p > —1. Thus proof is completed.
In this paper we extend the F, —transformation (1.9) to other spaces of generalized functions following a different procedure

called the kernel method. For any real numbers a, &« — 8, v, and ¢ > 0, we construct a testing function space H which contains

a,a,pv,c
the kernel K, (x,y), as function on 0 < x < oo, for each fixed positive real y. The F; —transformation is now defined on the dual

space H! as follows: For

a,a,Bv,c

feH

aapBuvc ’

Fi{f} @) = (f(x), Ky (x,y)), fory>0. (1.24)
This definition is more convenient for specific computation, e.g.

Fi{8(t — b)} = (8(t — b), K, (,y)) = vby ' 72**?” (by)* Co_g [b(bY)"]
=vby 1"*% d* C,_g [b(dy)"] ford > 0.
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Theorems on smoothness, boundedness, inversion and uniqueness, together with an operation-transform formula for a Bessel-type
differential operator are given and the theory is illustrated solving certain distributional differential equation by our distributional
generalized Hardy type transformation. The arbitrariness of the parameters (a, b, v) facilitates this work and allow us to obtain
particularly the results of Pathak and Pandey [11], Koh and Zemanian [5] and Malgonde [8] in relation with the transformations (1.5),
(1.1) and (1.3), respectively, and other known and unknown Hankel type integral transformations (see [3] and [10]).

We follow the notations and terminology of [13] and [8].

2. The testing function spaces H, o 5, and g Igd) and their duals:
P aap,v

Let a be a positive real number and a, @ — B, v be any arbitrary real parameters. Then we define H as the space of testing

a,aBv.c
functions ¢ (x) which are defined on 0 < x < oo and for which

Sup
0<x<oo

pz,u,ﬁ,v,c (I)(.X') — (21)

fork=0,1,2,3, ...

|e—cx x—a—(u—ﬁ)v Ak ¢(X)| < oo"

aapv

Now we list some properties of these spaces:

(@ Let(a—pB) = —1/2, ¢ > 0and a,v be any arbitrary real parameters. For a fixed positive real number y,

m
ay_m [K1(x,¥)] € Hygpre,m=0,1,2,3,.....
It can be easily verified that
o™ o™ -1-2a+2v a v
gy i@ = 5 [vby (x9)" Cap [ Cxy)"]]

m
=vb ) a;(@a—B,v) Bv) y I €y [b(xy)’]
j=0

m

— Z a; (a' o — ﬁ; b, ‘U) y—l—a+2v—m+vj xa+vj Ca—B—j [b(xy)v]
j=0

where the a; (a,a@ — B, b,v) are constants depending upon (a,a — B8,v) and b. By the series and asymptotic expansions of
Co-p—j [b (xy)”] it follows that the quantities
nz,a—ﬁ,v.c [y—l—a+2v X+ Cap_j [b(xy)v]]

existsforall k =0,1,2,3,....,and (a — B) = —1/2.Hence

pve (O™
aap,v.c
P o K oyl

m
< Z a; (a,a — B, b,v) yvj—m pz.a,ﬁ.v,c{y—l—a+2vxa+vj Ca—[i—j [b(xy)v]} < o
j=0
for any fixed y > 0.
(b) Hy o . 18 Sequentially complete and therefore a Frechet space. Hence Hyopve is also sequentially complete.

©Ifc>d>0,thenH,op,q © Hgypy, and the topology of H,, , 5 ,, 4 is tronger than that induced on it by H

aapfuvct

(d) DU) © Hggpy, and the topology of D(I) is stronger than that induced on it by H Hence, the restriction of any f €

aapfyc
Hy o pvc 10 D(I) isin D'(I), and convergence in Hy , 5., . implies weak convergence in D'(I).
(e) For every choice of a,a,B,vandc, Hyqp, . < E(I). Moreover, it is dense in E(I) because D (I) © Hyq4p,430d D (I) is

dense in E(I). The topology of H is stronger than that induced on it by E(I). Hence E'(I) can be identified with a subspace of

a,a,pv.c

H

!
aapBuc’

(f) The operation ¢p > A ¢ is a continuous linear mapping of H into itself because

a,aBv a,apv.c
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PP (Baapo®) = Pret " (P),  for k=0,1,2,....
(g) Foreach f € H, there exist a non-negative integer r and a positive constant ¢ such that, forall ¢ € H

aapv.c’ aapBv.c

|<fr ¢)| <cCc 5)’5[&%" le“rﬁvV.C (¢) .

(h) Let f(x) be a locally integrable on 0 < x < o and such that
f |f (x) xa+ (@B ¢*| dx < oo,
0

Then f(x) generates a regular generalized function in Hy, , . defined by

. b) = f F() () dx, ¢ € Hogpoe-
0

Next, we give a structure formula for the restriction of element in Hy, , 5, . to D(I).

(i) Let £ be an arbitrary element of Hy , 5, .. Then there exist bounded measurable functions g;(x) defined for x > 0 for i =

0,1,2,....r where r is some non-negative integer depending upon £ such that for an arbitrary ¢p € D(I) we have

,
.80 = O (Buaps) {7 ¥ @ (-D) g, @)}, $(0))
i=0
By note (g) for every f € H,, 4, there exist a non-negative r and a positive constant ¢ such that for all ¢ € D(I) © Hyqpyc

one has

Kf. ) < € maxoe, ng " (@)
< C max |D {e=* x~*~(@=P)v A’é,a,p,v o}

O<ksr L1 (0,0)

where L, (0, o) is the space of equivalence classes of Lebesgue integrable functions on (0, «) whose topology is defined by the norm

IFllLy 000) = f0°°|f(x)| dx, f € L, (0,00). Hence in view of the Hahn-Banach theorem and since the dual of L, (0,c0) is

isomorphic with L., (0, o), the space of all equivalence classes of complex-valued integrable functions on (0, o) such that for every
f € L (0,00) there exist a constant M such that |f(x)| < M a e., there are functions g; € L, (0, ),

0 < i < rsuch that

F.0) = O (Do) {7 @Y (-D) g, @), $())
i=0

where A* is the adjoint operator of A

wapv as defined in (v) of Theorem 1.3. This proves our assertion.

a,aBv

Our subsequent discussion takes on a simpler form when the H (o) spaces are used in place of the H spaces (see

a,apyv aapv.c

[5]). A generalized function f is F} 44,5, - transformable if f € H,, g, (o) for some ¢ > 0 where Hy , ;. (o) is the dual of

H a,apBv (0’) .

In view of definitions of H (o) and its dual, the following lemmas are immediate.

a,apv
- H am
Lemma 2.1: For any fixed y>0, - [Ky (%,9)] € Hoapy(6), m=0,1,2,3,.., where g > 0.

Lemma 2.2: The operation ¢p —» A ¢ is a continuous linear mapping of H,, 4., (¢) into H (0). Hence the operation

a,apBv a,apv

f = Dyapy [ isacontinuous linear mapping of H;, (o) into itself (see [13]).

a,apBv
3. The distributional generalized Hardy type transformation:

Let (a —B) = —1/2 and a, v be any arbitrary real numbers. In view of note (c) of §2, to every f € Hy ., there exists an

unique real number g (possibly, ;= +oo ) such that f € Hy,p,q4 if d <oy and f & H;,q,4if d <oy Therefore, f €
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Hy o g, (0f). We define the (a — p)t" order distributional Hardy transform F , 5, ., f Of f as the application of f to the kernel of

Ki(x,y),ie.
Fi(y) = (Fll,a,p,a,b,vf) ) = (f(x), K, (x,¥)) (1)
where 0 < y < o and ;> 0. The right hand side of (3.1) has a sense because, by Lemma 2.1, K, (x,y) € Ha,a,[i',v(af) for each
y>o0anda; > 0.
Lemma 3.1: Let ¢ and o be fixed real numbers such that 0 < ¢ < a. For all fixed y > 0, for (@ — ) = —1/2andfor0 < x < oo
le=* [b(xy)*1" @B Co_p [b(xy)’]| < Agppr (3.2)
where A, g 5., IS @ constant with respect to x and y.
Proof: Following Koh and Zemanian [5], proof can be given.
Now we will show that F, (y) = (Fll,a,[?,a,b,v f) (y) is analytic.

Theorem 3.1: For y > 0, let F,(y) be defined by (3.1). Then

d a

o F1 1= {FC0, 55 K1 (6 y))

Proof: Proof is not much difficult and can be completed just by referring to Koh and Zemanian [5] again.

Theorem 3.2: Let F,(y) be defined by (3.1). Then F,(y) is bounded according to

—1-a+2v+(a—B)v + 3.3)
cy asy—-0
IFy() < {Cyzw-1—a+2v+(a—ﬁ)v

where ¢ is positive constant and r is a non-negative integer depending on f.

asy — o«

Proof: As f € Hy4p.,4, Where 0 < c < d < oy, We see from note (g) of section 2 that there exist a constant ¢ and a non-negative
integer r such that

|F1(»)] < ¢ maxsup |e=cx x~a-(@=Fw A',‘,‘a_ﬁ‘,, [ky (x1)] |-

0<ks<r 0<x<oo

By (1.21), the right-hand side is equal to

¢ maxsup |e—cx y—l—a+2v+(a—[3)v+2vk [b(xy)v]—(a—ﬂ)ca_B [b (xy)?] |

0<ksr 0<x<oo

Theorem follows from Lemma 3.1.
Now we state an inversion theorem for our distributional generalized Hankel type integral transformation
(Fyupapy — transformation).
Theorem 3.3: Let Fy(y) = (Figpapvf) 0, f € Hogp, (o) @ in (3.1) where (a — B) is as defined in section 1 and y > 0.
Then in the sense of convergence in D' (I),
. R
fG) = limg_, [y F1O) K> (x,) dy, 34)
where
K, (x,y) = vbx™ 17242V (xy)® Fo_p [b(xy)"]-
Proof: Let ¢ € D(I). We want to show that

U F10) Kz (e y)dy, @) = (F(x), p(0): (3.5)
as R — oo, From the smoothness of F, (y) and the fact that support of f(x) is a compact subset of I, we may write (3.5) as a repeated
integral on (x, y) having a continuous integrand and a finite domain of integration. Hence we can change the order of integration and

obtain

170 [ ) Ky (x,y) dy dx = [{f(0),K1(t,) [ () K (x,y) dxdy. (36)
By using an argument of Riemann sums for the integral

fR dy the right hand side of (3.6) can be written as
o - dy,
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R )
(@), fy Ky (0) [y d() K (x,y) dx dy) S
By using the Theorem 1.4 and the asymptotic representations of the Bessel functions and Lommel’s functions enable us to show that
for any a > 0, the testing function in (3.7) converges in H, o5, 10 ¢(t) @ R — 0. Since f € Hy, 5, . Where 0 < ¢ < gy, it

follows that (3.7) converges to (f(t), ¢(t))as R — oo. This proves the theorem.
Theorem 3.4: (Uniqueness Theorem) :
Let F1(3) = (Fiapabyf) ) fory>0 and

61(0) = (Fiapapvg) @) fory >0, fand g being in Hy o4, (0). If F1(y) = Gy(y), forevery y >0, then f = g in the

;;;;;

sense of equality in D'(I).
Proof: By Theorem 3.3

R
f-g9= }L‘E‘J[Fl(ﬁ -G1(Y]K, (x,y)dy =0.
0

4. An Operational Calculus:
In this section, we shall apply the theory so far developed in solving certain differential equations involving generalized functions. We
define the operator
aapy Hoapn(0f) = Hoapy(0y)
by the relation
Baapy FX), @)= (fx),  Agapr ()
for all f € H:I.a.ﬂ.v (af) and ¢ (x) € Houps (af) for (a — B) is as defined in section 1 and for a and v arbitrary real numbers. It

can be readily seen that

N k
(Boapn) F), @) = (F(x), Afep, d(0)
foreach k = 1,2,3,..... Incase f is a regular distribution generated by an element of D(I), then
A;aﬁvz x—a—(a—ﬁ')vD x2(a—B)v+1 D x—(a—ﬁ)v+a+1—2v
= x2D:— (4v—-2a-3)x1"?"D, — [(a — B)*v? — (a +1 - 2v)?]|x~?.
The distributional generalized Hardy type transformation is used in solving initial value problems. In fact, we now establish a theorem
that enables us to transform a differential equation of the form
PApJu=g (4.1)
where u and g posses Fll,a,[i',a,b,v - transforms and P is any polynomial having no zeros on —co < x < 0 into an algebraic equation of
the form
P[-y*]U®) =G®),
Where i (y) = (Fiapane u(®)) @) and 63) = (Fiagany 90)) ).

Theorem4.1: Fork=0,1,2,3, .....
Fll,a,ﬂ,a,b,v [A:I,a,ﬁ,vf] (}’) = (_b2v2)k yZVk Fll,a,ﬁ,a,b,vf ’ (42)
for every f € Hip, (o).

Proof: Form definition of the operator A7, , 5, in note of (f) of section 2 and from equation (1.21), we have

Fiapapy [Bdapof] ) = Baapof®),  Ki(x¥)
= (f(0),  Aapy K1 (x,)
= (b)Y (f(0),  Ki(xY))
= (=b*v®)* y*"* F} 4 g abw f-
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We can find a generalized function u € H/, (o) for some ¢ > 0 satisfying the operator equation (4.1) by invoking Theorem 4.1.

aafv
The distributional generalized Hardy type transformation Fiapapy €N be used in solving the generalized Cauchy problem as an
application of the preceding theory to generalized Cauchy problems having a generalized function like initial condition (see [7,8]).
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