An n-dimensional pseudo-differential type operator involving Hankel type transformation

B.B.Waphare

MIT ACSC, Alandi, Haveli, Pune, Maharashtra, India.

ARTICLE INFO

Article history:

Received: 11 September 2013;
Received in revised form:
1 November 2013;
Accepted: 7 November 2013;

Keywords

Hankel type transformation,
Hankel type convolution,
Pseudo-differential type operator.

Abstract

In this paper Bessel type differential operator $\Delta_{\alpha, \beta}$ and an n-dimensional pseudo-differential type operator involving the n -dimensional Hankel type transformation is defined. The symbol class H^{m} is introduced. It is shown that pseudo-differential type operators associated with symbols belonging to this class are continuous linear mappings of the n dimensional Zemanian space $H_{\alpha, \beta}\left(I^{n}\right)$ into itself. An integral representation for the pseudo-differential operator is obtained. By using the Hankel type convolution, it is shown that the pseudo-differential type operator satisfies a certain $L^{1}-$ norm inequality.

© 2013 Elixir All rights reserved

1. Introduction

In this paper, we shall use the following notations:
\mathbb{R}^{n} and \mathbb{C}^{n} are respectively the real and complex n-dimensional Euclidean spaces. An n-tuple is denoted by $x=\left(x_{1}, \ldots \ldots, x_{n}\right)$. We shall restrict x and y to the first orthant of \mathbb{R}^{n} which we denote by I^{n}. Thus $I^{n}=\left\{x \in \mathbb{R}^{n}: 0<x_{i}<\infty, i=1, \ldots \ldots, n\right\}$ and the Euclidean norm $|x|=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}}$. A function on a subset of \mathbb{R}^{n} is denoted by $\phi(x)=\phi\left(x_{1}, \ldots \ldots, x_{n}\right)$. By $[x]$ we mean the product $x_{1} \ldots \ldots x_{n}$. Thus $\left[x^{q}\right]=x_{1}^{q_{1}} \ldots x_{n}^{q_{n}}$, where $q=\left(q_{1}, \ldots, q_{n}\right)$. The notation $x \leq y$ means $x_{i} \leq$ $y_{i}(i=1,2, \ldots, n)$. In what follows, the letters $k^{\text {and }} q$ are denoted by non-negative integers in \mathbb{R}^{n} i.e. k_{i} and $q_{i}(i=$ $1,2, \ldots . n)$ are non-negative integers. Letting $|k|=k_{1}+k_{2}+\cdots+k_{n}$,

We shall write

$$
D_{x}^{k}=\frac{\partial^{|k|}}{\partial x_{1}^{k_{i}} \ldots \ldots \partial x_{n}^{k_{n}}}
$$

and denote

$$
\left(x^{-1} D_{x}\right)^{k}=\prod_{i=1}^{n}\left(x_{i}^{-1} \frac{\partial}{\partial x_{i}}\right)^{k_{i}}
$$

Here we use the notations and terminology of $[5,3]$. For $(\alpha-\beta) \in \mathbb{R}$, the differential operators $N_{\alpha, \beta}, M_{\alpha, \beta}$ and $\Delta_{\alpha, \beta}$ are defined by

$$
\begin{aligned}
& N_{i \alpha, i \beta}=x_{i}^{2 \alpha} \frac{\partial}{\partial x_{i}} x_{i}^{2 \beta-1} \\
& \quad N_{\alpha, \beta}=N_{1 \alpha, 1 \beta} \ldots \ldots N_{n \alpha, n \beta}=[x]^{2 \alpha} \frac{\partial^{n}}{\partial x_{1} \ldots . \partial x_{n}}[x]^{2 \beta-1}
\end{aligned}
$$

$M_{i \alpha, i \beta}=x_{i}^{2 \beta-1} \frac{\partial}{\partial x_{i}} x_{i}^{2 \alpha}$,
$M_{\alpha, \beta}=M_{1 \alpha, 1 \beta} \ldots . M_{n \alpha, n \beta}=[x]^{2 \beta-1} \frac{\partial^{n}}{\partial x_{1} \ldots \ldots \partial x_{n}}[x]^{2 \alpha}$
and
$\Delta_{\alpha, \beta}=M_{\alpha, \beta} N_{\alpha, \beta}=[x]^{2 \beta-1} \frac{\partial^{n}}{\partial x_{1} \ldots \ldots \partial x_{n}}[x]^{4 \alpha} \frac{\partial^{n}}{\partial x_{1} \ldots \ldots \partial x_{n}}[x]^{2 \beta-1}$
$\Delta_{\alpha, \beta}=\prod_{i=1}^{n} x_{i}^{4 \alpha+4 \beta-2}\left[\frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{4 \alpha+4 \beta-2}{x_{i}} \frac{\partial}{\partial x_{i}}+\frac{(2 \beta-1)(4 \alpha+2 \beta-2)}{x_{i}^{2}}\right]$.
Now, we define the test function space $H_{\alpha, \beta}\left(I^{n}\right)$ to be the space of all smooth complex valued functions $\phi(x)$ which are defined on I^{n} such that for each pair of non-negative integers q and k in \mathbb{N}_{o}^{n}.

$$
\begin{equation*}
\rho_{q, k}^{\alpha, \beta}(\phi)=\operatorname{Sup}_{x \in I^{n}}\left|\left[x^{q}\right]\left(x^{-1} D_{x}\right)^{k}[x]^{2 \beta-1} \phi(x)\right|<\infty \tag{1.1}
\end{equation*}
$$

The space $H_{\alpha, \beta}\left(I^{n}\right)$ is topologized by the family of seminorms $\left\{\rho_{q, k}^{\alpha, \beta}\right\}_{q, k, \epsilon \mathbb{N}_{0}^{n}}$.
The n -dimensional classical $(\alpha-\beta)^{\text {th }}$ order Hankel type transformation $h_{\alpha, \beta}$ is defined by

$$
\begin{array}{r}
\hat{\phi}(y)=\left(h_{\alpha, \beta} \phi\right)(y)=\int_{0}^{\infty} \ldots \int_{0}^{\infty} \phi\left(x_{1}, x_{2} \ldots ., x_{n}\right) \\
\times\left(\prod_{i=1}^{n}\left(x_{i} y_{i}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x_{i} y_{i}\right)\right) d x_{1} \ldots . d x_{n}, \phi \in H_{\alpha, \beta}\left(I^{n}\right), \tag{1.2}
\end{array}
$$

where $y \in I^{n}$ and $J_{\alpha-\beta}$ is the Bessel type function of the first kind and order $(\alpha-\beta)$ can be extended by transposition to distributions belonging to $H_{\alpha-\beta}^{\prime}\left(I^{n}\right)$ the dual of the test function space $H_{\alpha, \beta}\left(I^{n}\right)$, provided that $(\alpha-\beta) \geq-\frac{1}{2}$ [5]. The inversion formula for (1.2) is given by

$$
\begin{equation*}
\phi(x)=\int_{0}^{\infty} \ldots \int_{0}^{\infty} \hat{\phi}\left(y_{1} \ldots . . y_{n}\right)\left(\prod_{i=1}^{n}\left(x_{i} y_{i}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x_{i} y_{i}\right)\right) d y_{1} \ldots . d y_{n}, x \in I^{n} \tag{1.3}
\end{equation*}
$$

From [5] we have the following relations for any $\phi \in H_{\alpha, \beta}\left(I^{n}\right)$ and , $y \in I^{n}$:

$$
\begin{align*}
& h_{\alpha, \beta, 1}([-x] \phi)=N_{\alpha, \beta} h_{\alpha, \beta} \phi \tag{1.4}\\
& h_{\alpha, \beta, 1}\left(N_{\alpha, \beta} \phi\right)=[-y] h_{\alpha, \beta} \phi \tag{1.5}\\
& h_{\alpha, \beta}\left(\Delta_{\alpha, \beta} \phi\right)=(-1)^{n}[y]^{2} h_{\alpha, \beta} \phi \tag{1.6}
\end{align*}
$$

We have the Leibniz formula and Bessel type differential operator of the $r^{t h}$ _order in \mathbb{R}^{n} respectively as follows:

$$
\begin{gather*}
\prod_{i=1}^{n}\left(\left(x_{i}^{-1} \frac{\partial}{\partial x_{i}}\right)^{k_{i}}\left(x_{i}^{2 \beta-1}(\psi \phi)\left(x_{1} \ldots \ldots x_{n}\right)\right)\right) \\
=\prod_{i=1}^{n}\left(\sum_{v_{i}=0}^{k_{i}}\binom{k_{i}}{v_{i}}\left(x_{i}^{-1} \frac{\partial}{\partial x_{i}}\right)^{v_{i}} \psi\left(x_{1} \ldots . . x_{n}\right)\left(x_{i}^{-1} \frac{\partial}{\partial x_{i}}\right)^{k_{i}-v_{i}}\left(x_{i}^{2 \beta-1} \phi\left(x_{1} \ldots . x_{n}\right)\right)\right) \tag{1.7}\\
\Delta_{\alpha, \beta, x}^{r} \phi\left(x_{1}, \ldots \ldots x_{n}\right)=\prod_{i=1}^{n}\left(\sum_{j_{i}=0}^{r_{i}} b j_{i} x_{i}^{2 j_{i}+2 \alpha}\left(x_{i}^{-1} \frac{\partial}{\partial x_{i}}\right)^{r_{i}+j_{i}}\left(x_{i}^{2 \beta-1} \phi\left(x_{1} \ldots . . x_{n}\right)\right)\right) \tag{1.8}
\end{gather*}
$$

where $b j_{i}$ are constants depending only on $\alpha-\beta$.

For $i=1,2, \cdots . . . \mathrm{n}$, let $\Delta\left(x_{i}, y_{i}, z_{i}\right)$ be the area of a triangle with sides x_{i}, y_{i}, z_{i} if such a triangle exists and zero otherwise For fixed $a-b>-\frac{1}{2}$, set

$$
\begin{aligned}
D_{a, b}(x, y, z) & =\prod_{i=1}^{n} D_{a, b}\left(x_{i}, y_{i}, z_{i}\right) \\
& =2^{n\left(-2 a-8 b+\frac{3}{2}\right)} \pi^{-\frac{n}{2}}(\Gamma(3 a+b))^{2 n}\left(\Gamma\left(a-b+\frac{1}{2}\right)\right)^{-n} \\
& \times \prod_{i=1}^{n}\left(\left(x_{i} y_{i} z_{i}\right)^{4 b-1}\left\{\Delta\left(x_{i}, y_{i}, z_{i}\right)\right\}^{-2 a-6 b+1}\right)
\end{aligned}
$$

We note that the n-dimensional Delsarte Kernel $D_{a-b}(x, y, z)$ is non-negative and symmetric in x, y, z. We have the formula

$$
\begin{align*}
& \int_{0}^{\infty} \ldots \int_{0}^{\infty} \prod_{i=1}^{n}\left(j_{a-b}\left(z_{i} t_{i}\right) D_{a-b}\left(x_{i}, y_{i}, z_{i}\right) d \sigma\left(z_{i}\right)\right) \\
& \quad=\prod_{i=1}^{n}\left(j_{a-b}\left(x_{i} t_{i}\right) j_{a-b}\left(y_{i} t_{i}\right)\right) \tag{1.9}
\end{align*}
$$

where

$$
\begin{align*}
& \prod_{i=1}^{n} d \sigma\left(x_{i}\right)=\left(2^{a-b} \Gamma(3 a+b)\right)^{-n} \prod_{i=1}^{n}\left(x_{i}^{2(a-b)+1} d x_{i}\right) \tag{1.10}\\
& \prod_{i=1}^{n} j_{a-b}\left(x_{i}\right)=\left(2^{a-b} \Gamma(3 a+b)\right)^{n} \prod_{i=1}^{n}\left(x_{i}^{-(a-b)} J_{a-b}\left(x_{i}\right)\right) \tag{1.11}
\end{align*}
$$

Let $f \in L^{1}\left(I^{n}\right)$. Then the n -dimensional Hankel type translate $T_{x} f$ of f by $x=\left(x_{1}, \ldots . ., x_{n}\right)$ is defined by

$$
\begin{equation*}
\left(\tau_{x} f\right)(y)=\int_{0}^{\infty} \ldots . . \int_{0}^{\infty} f\left(z_{1}, \ldots \ldots, z_{n}\right) \prod_{i=1}^{n}\left(D_{a-b}\left(x_{i}, y_{i}, z_{i}\right) d \sigma\left(z_{i}\right)\right), x_{1} y \in I^{n} \tag{1.12}
\end{equation*}
$$

Let f and g be functions in $L^{1}\left(I^{n}\right)$ and let their n-dimensional Hankel type convolution $f \# g$ be defined by
$(f \# g)(x)=\int_{0}^{\infty} \ldots \int_{0}^{\infty}\left(\tau_{x} f\right)\left(y_{1} \ldots . . y_{n}\right) g\left(y_{1}, \ldots \ldots, y_{n}\right) d \sigma\left(y_{1}\right) \ldots . d \sigma\left(y_{n}\right), x \in I^{n}$
The integral defining $(f \# g)(x)$ converges for almost all $x \in I^{n}$ and

$$
\begin{equation*}
\|f \# g\|_{L^{1}} \leq\|f\|_{L^{1}}\|g\|_{L^{1}} \tag{1.14}
\end{equation*}
$$

The above result is a generalization of the corresponding one-dimensional case investigated by Hirschman in pp. 309-311 of [1]. Schwartz's theory of the Fourier transform of distributions in $S^{\prime}\left(\mathbb{R}^{n}\right)$ has been exploited by many authors in the study of pseudodifferential operators, see for instance, Zaidman [7,6]. In this paper we have used the Zemanian's theory of the Hankel type transform of distributions in $H_{\alpha, \beta}^{\prime}\left(I^{n}\right)$ to develop a theory of n-dimensional pseudo-differential operators corresponding to [4]. Unless otherwise stated, we shall always assume $(\alpha-\beta) \geq-\frac{1}{2}$.

2. The pseudo differential type operator $\boldsymbol{h}_{\alpha, \beta, a}$:

Definition 2.1:

Let $a\left(x_{1}, \ldots x_{n} ; y_{1}, \ldots . y_{n}\right)$ be a complex-valued function belonging to the space $C^{\infty}\left(I^{n} \times I^{n}\right)$, where $I=(0, \infty)$ and let its derivatives satisfy certain growth conditions such as (2.1) below. Then the pseudo-differential type operator $h_{\alpha, \beta, a}$ associated with the symbol $a\left(x_{1} \ldots ., x_{n} ; y_{1}, \ldots . y_{n}\right)$ is defined by

$$
\begin{aligned}
& \left(h_{\alpha, \beta, a} \phi\right)\left(y_{1}, \ldots . . y_{n}\right)=\int_{0}^{\infty} \ldots \int_{0}^{\infty}\left(\prod_{i=1}^{n}\left(x_{i} y_{i}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x_{i} y_{i}\right)\right) \\
& \times a\left(x_{1} \ldots x_{n} ; y_{1}, \ldots \ldots, y_{n}\right)\left(\left(h_{\alpha, \beta} \phi\right)\left(x_{1}, \ldots . x_{n}\right)\right) d x_{1} \ldots . . d x_{n} .
\end{aligned}
$$

Definition 2.2: Let $m \in(-\infty, \infty)$. The function $a\left(x_{1}, \ldots \ldots x_{n} ; y_{1}, \ldots ., y_{n}\right) \in C^{\infty}\left(I^{n} \times I^{n}\right)$ is said to belong to the class H^{m} if and only if for all $q, v, \delta \in \mathbb{N}_{0}^{n}$, there exists $D>0$ such that

$$
\begin{equation*}
\prod_{i=1}^{n}\left(1+x_{i}\right)^{q_{i}}\left|\left(x_{i}^{-1} \frac{\partial}{\partial x_{i}}\right)^{v_{i}}\left(y_{i}^{-1} \frac{\partial}{\partial y_{i}}\right)^{\delta_{i}} a\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots ., y_{n}\right)\right| \leq D\left(1+\prod_{i=1}^{n} y_{i}\right)^{m-|\delta|} \tag{2.1}
\end{equation*}
$$

Theorem 2.1: Let the symbol $a\left(x_{1}, \ldots \ldots, x_{n} ; y_{1}, \ldots, y_{n}\right)$ belong to H^{m}. Then for $(\alpha-\beta) \geq-\frac{1}{2}$ the pseudo-differential operator $h_{\alpha, \beta, a}$ is a continuous linear mapping of $H_{\alpha, \beta}\left(I^{n}\right)$ into itself.
Proof: Let $\Phi\left(y_{1}, \ldots, y_{n}\right)=\left(h_{\alpha, \beta, a} \phi\right)\left(y_{1}, \ldots . y_{n}\right), \phi \in H_{\alpha, \beta}\left(I^{n}\right)$. Then by using formulas (1.4) and (1.5) and using Zemanian's technique ($p .141$ of [9]), for $i=1,2, \ldots ., n$, we have

$$
\begin{aligned}
N_{i \alpha, i \beta} \Phi\left(y_{1}, \ldots ., y_{n}\right) & =y_{i}^{2 \alpha}\left(\frac{\partial}{\partial y i}\right) y_{i}^{2 \beta-1} \Phi\left(y_{1}, \ldots ., y_{n}\right) \\
& =y_{i}^{2 \alpha+1}\left(y_{i}^{-1} \frac{\partial}{\partial y i}\right) y_{i}^{2 \beta-1} \Phi\left(y_{1}, \ldots ., y_{n}\right) ; \\
N_{i \alpha, i \beta, i} N_{i \alpha, i \beta} \Phi\left(y_{1}, \ldots, y_{n}\right) & =y_{i}^{\alpha-\beta+\frac{1}{2}}\left(\frac{\partial}{\partial y_{i}}\right) y_{i}^{-(3 \alpha+\beta)-\frac{1}{2}} N_{i \alpha, i \beta} \Phi\left(y_{1}, \ldots, y_{n}\right) \\
& =y_{i}^{\alpha-\beta+2+\frac{1}{2}}\left(y_{i}^{-1} \frac{\partial}{\partial y_{i}}\right) y_{i}^{2 \beta-2} \\
& \times\left[y_{i}^{4 \alpha+2 \beta}\left(y_{i}^{-1} \frac{\partial}{\partial y_{i}}\right) y_{i}^{2 \beta-1} \Phi\left(y_{1}, \ldots \ldots y_{n}\right)\right] \\
& =y_{i}^{5 \alpha+3 \beta+\frac{1}{2}}\left(y_{i}^{-1} \frac{\partial}{\partial y_{i}}\right)^{2} y_{i}^{2 \beta-1} \Phi\left(y_{1}, \ldots \ldots, y_{n}\right) .
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& N_{i \alpha, i \beta, i\left(k_{i}-1\right) \ldots \ldots . .} N_{i \alpha, i \beta} \Phi\left(y_{1}, \ldots \ldots, y_{n}\right) \\
& =y_{i}^{\alpha-\beta+k_{i}+\frac{1}{2}}\left(y_{i}^{-1} \frac{\partial}{\partial y_{i}}\right)^{k_{i}} y_{i}^{2 \beta-1} \Phi\left(y_{1}, \ldots \ldots, y_{n}\right)
\end{aligned}
$$

Now, we have

$$
\begin{aligned}
& \left(N_{1 \alpha, 1 \beta, k_{1-1}} \ldots . N_{1 \alpha, 1 \beta}\right) \ldots\left(N_{n \alpha, n \beta, k_{n}-1} \ldots \ldots N_{n \alpha, n \beta}\right) \Phi\left(y_{1}, \ldots \ldots, y_{n}\right) . \\
& \quad=\left(y_{1}^{\alpha-\beta+k_{1}+\frac{1}{2}} \ldots y_{n}^{\alpha-\beta+k_{n}+\frac{1}{2}}\right)\left(\left(y_{1}^{-1} \frac{\partial}{\partial y_{1}}\right)^{k_{1}} \ldots \ldots\left(y_{n}^{-1} \frac{\partial}{\partial y_{n}}\right)^{k_{n}}\right) \\
& \times\left(y_{1}^{2 \beta-1} \ldots y_{n}^{2 \beta-1}\right) \Phi\left(y_{1}, \ldots ., y_{n}\right)
\end{aligned}
$$

Therefore, using (1.3) and (1.7), we get

$$
\prod_{i=1}^{n}\left(N_{i \alpha, i \beta, i\left(k_{i}-1\right)} \ldots . N_{i \alpha, i \beta}\right) \Phi\left(y_{1}, \ldots, y_{n}\right)
$$

$$
\begin{aligned}
& =\left[y^{\alpha-\beta+k+\frac{1}{2}}\right]\left(y^{-1} D_{y}\right)^{k}[y]^{2 \beta-1} \Phi(y) \\
& =\left[y^{\alpha-\beta+k+\frac{1}{2}}\right]\left(y^{-1} D_{y}\right)^{k}[y]^{2 \beta-1} \int_{0}^{\infty} \ldots \int_{0}^{\infty} \prod_{i=1}^{n}\left(x_{i} y_{i}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x_{i} y_{i}\right) \\
& \times a\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n}\right) \widehat{\phi}\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots . d x_{n} \\
& =\left[y^{\alpha-\beta+k+\frac{1}{2}}\right]\left(y^{-1} D_{y}\right)^{k} \int_{0}^{\infty} \ldots \int_{0}^{\infty} \prod_{i=1}^{n}\left(x_{i}\right)^{\alpha+\beta}\left(y_{i}\right)^{-(\alpha-\beta)} J_{\alpha-\beta}\left(x_{i} y_{i}\right)
\end{aligned}
$$

$$
\times a\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n}\right) \hat{\phi}\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots . . d x_{n}
$$

$$
=\left[y^{\alpha-\beta+k+\frac{1}{2}}\right] \int_{0}^{\infty} \ldots . \int_{0}^{\infty}\left(\prod_{i=1}^{n}\left(x_{i}\right)^{\alpha+\beta} \sum_{r_{i}=0}^{k_{i}}\binom{k_{i}}{r_{i}}\left(y_{i}^{-1} \frac{\partial}{\partial y_{i}}\right)^{k_{i}-r_{i}}\left(y_{i}\right)^{-(\alpha-\beta)}\right)
$$

$$
\times J_{\alpha-\beta}\left(x_{i} y_{i}\right)\left(y_{i}^{-1} \frac{\partial}{\partial y_{i}}\right)^{r_{i}} a\left(x_{1}, \ldots x_{n} ; y_{1}, \ldots, y_{n}\right) \hat{\phi}\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots . . d x_{n}
$$

$$
=\left[y^{\alpha-\beta+k+\frac{1}{2}}\right] \int_{0}^{\infty} \ldots . . \int_{0}^{\infty}[x]^{\alpha+\beta}\left(\prod_{i=1}^{n} \sum_{r_{i}=0}^{k_{i}}\binom{k_{i}}{r_{i}}(-x i)^{k_{i}-r_{i}}\left(y_{i}\right)^{-(\alpha-\beta)-k_{i}-r_{i}}\right)
$$

$$
\begin{equation*}
\times J_{\alpha-\beta+k_{i}-r_{i}}\left(x_{i} y_{i}\right)\left(y_{i}^{-1} \frac{\partial}{\partial y_{i}}\right)^{r_{i}} a\left(x_{1}, \ldots . x_{n} ; y_{1}, \ldots ., y_{n}\right) \widehat{\phi}\left(x_{1}, \ldots ., x_{n}\right) d x_{1} \ldots . d x_{n} \tag{2.2}
\end{equation*}
$$

Therefore

$$
\prod_{i=1}^{n} N_{i \alpha, i \beta, i(k i-1)} \ldots \ldots N_{i \alpha, i \beta} \Phi\left(y_{1}, \ldots ., y_{n}\right)
$$

$$
=\sum_{r_{1}=0}^{k_{1}} \ldots \sum_{r_{n}=0}^{k_{n}}\binom{k_{1}}{r_{1}} \ldots .\binom{k_{n}}{r_{n}} \int_{0}^{\infty} \ldots . \int_{0}^{\infty}\left[y^{r+\frac{1}{2}}\right][x]^{\alpha+\beta}\left(y^{-1} D_{y}\right)^{r}
$$

$$
\times a\left(x_{1}, \ldots . x_{n} ; y_{1}, \ldots ., y_{n}\right) \widehat{\phi}\left(x_{1}, \ldots . . x_{n}\right)\left[-x^{k-r}\right] \prod_{i=1}^{n} J_{\alpha-\beta+k_{i}-r_{i}}\left(x_{i} y_{i}\right) d x_{1} \ldots . . d x_{n}
$$

$$
=\sum_{r_{1}=0}^{k_{i}} \ldots . . \sum_{r_{n}=0}^{k_{n}}\binom{k_{1}}{r_{1}} \ldots .\binom{k_{n}}{r_{n}}\left[y^{r}\right] \int_{0}^{\infty} \ldots . \int_{0}^{\infty} \prod_{i=1}^{n}\left(x_{i} y_{i}\right)^{\alpha+\beta} J_{\alpha-\beta+k_{i}-r_{i}}\left(x_{i} y_{i}\right)
$$

$$
\times\left(y^{-1} D_{y}\right)^{r} a\left(x_{1}, \ldots ., x_{n} ; y_{1}, \ldots, y_{n}\right)\left[-x^{k-r}\right] \hat{\phi}\left(x_{1}, \ldots ., x_{n}\right) d x_{1} \ldots . d x_{n}
$$

$$
=\sum_{r_{1}=0}^{k_{1}} \ldots . . \sum_{r_{n}=0}^{k_{n}}\binom{k_{1}}{r_{1}} \ldots .\binom{k_{n}}{r_{n}} h_{\alpha, \beta, k-r}\left(\left[y^{r}\right]\left(y^{-1} D_{y}\right)^{r}\right)
$$

$$
\times a\left(x_{1}, \ldots ., x_{n} ; y_{1}, \ldots ., y_{n}\right)\left[-x^{k-r}\right] \hat{\phi}\left(x_{1}, \ldots, x_{n}\right)\left(y_{1}, \ldots . ., y_{n}\right) .
$$

From equation (2.2) for $i=1$,
$\left(N_{1 \alpha, 1 \beta, k_{1}-1} \ldots \ldots N_{1 \alpha, 1 \beta}\right) \Phi\left(y_{1}, \ldots . ., y_{n}\right)$

$$
\begin{aligned}
& =y_{1}^{\alpha-\beta+k_{1}+\frac{1}{2}}\left(y_{1}^{-1} \frac{\partial}{\partial y_{1}}\right)^{k_{1}} y_{1}^{2 \beta-1} \Phi\left(y_{1}, \ldots ., y_{n}\right) \\
& =y_{1}^{\alpha-\beta+k_{1}+\frac{1}{2}}\left(y_{1}^{-1} \frac{\partial}{\partial y_{1}}\right)^{k_{1}} \int_{0}^{\infty}\left(x_{1}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x_{1} y_{1}\right) a\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots \ldots, y_{n}\right)
\end{aligned}
$$

$\times \hat{\phi}\left(x_{1}, \ldots, x_{n}\right) d x_{1}$
$=y_{1}^{\alpha-\beta+k_{1}+\frac{1}{2}}\left(y_{1}^{-1} \frac{\partial}{\partial y_{1}}\right)^{k_{1}} \int_{0}^{\infty} x_{1}\left(y_{1}\right)^{-(\alpha+\beta)} J_{\alpha-\beta}\left(x_{1} y_{1}\right) a\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots ., y_{n}\right)$
$\times \hat{\phi}\left(x_{1}, \ldots, x_{n}\right) d x_{1}$
$=y_{1}^{\alpha-\beta+k_{1}+\frac{1}{2}} \int_{0}^{\infty} x_{1}^{\alpha+\beta} \sum_{r_{1}=0}^{k_{1}}\binom{k_{1}}{r_{1}}\left(y_{1}^{-1} \frac{\partial}{\partial y_{1}}\right)^{k_{1}-n}\left(y_{1}\right)^{-(\alpha-\beta)} J_{\alpha-\beta}\left(x_{1} y_{1}\right)$
$\times\left(y_{1}^{-1} \frac{\partial}{\partial y_{1}}\right)^{r_{1}} a\left(x_{1}, \ldots ., x_{n} ; y_{1}, \ldots, y_{n}\right) \hat{\phi}\left(x_{1}, \ldots, x_{n}\right) d x_{1}$
$=y_{1}^{\alpha-\beta+k+\frac{1}{2}} \int_{0}^{\infty} x_{1}^{\alpha+\beta} \sum_{r_{1}=0}^{k_{1}}\binom{k_{1}}{r_{1}}\left(-x_{1}\right)^{k_{1}-n} y_{1}^{-(\alpha-\beta)-k_{1}-n} J_{\alpha-\beta+k_{1}+r_{1}}\left(x_{1} y_{1}\right)$
$\times\left(y_{1}^{-1} \frac{\partial}{\partial y_{1}}\right)^{r_{1}} a\left(x_{1}, \ldots . ., x_{n} ; y_{1}, \ldots, y_{n}\right) \hat{\phi}\left(x_{1}, \ldots ., x_{n}\right) d x_{1}$
$=\sum_{r_{1}=0}^{k_{1}}\binom{k_{1}}{r_{1}} \int_{0}^{\infty} y_{1}^{r_{1}+\frac{1}{2}} x_{1}^{\alpha+\beta}\left(y_{1}^{-1} \frac{\partial}{\partial y_{1}}\right)^{r_{1}} a\left(x_{1} \ldots ., x_{n} ; y_{1}, \ldots, y_{n}\right)$
$\times \hat{\phi}\left(x_{1}, \ldots x_{n}\right)\left(-x_{1}\right)^{k_{1}-r_{1}} J_{\alpha-\beta+k_{1}-r_{1}}\left(x_{1} y_{1}\right) d x_{1}$
$=\sum_{r_{1}=0}^{k_{1}}\binom{k_{1}}{r_{1}} y_{1}{ }^{r_{1}} \int_{0}^{\infty}\left(x_{1} y_{1}\right)^{\alpha+\beta} J_{\alpha-\beta+k_{i}-r_{1}}\left(x_{1} y_{1}\right)\left(y_{1}^{-1} \frac{\partial}{\partial y_{1}}\right)^{r_{1}}$
$\times a\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n}\right)\left(-x_{1}\right)^{k_{1}-r_{1}} \hat{\phi}\left(x_{1}, \ldots . ., x_{n}\right) d x_{1}$
$=\sum_{r_{1}=0}^{k_{1}}\binom{k_{1}}{r_{1}} h_{\alpha, \beta, k_{1}-r_{1}}\left\{\left(y_{1}^{r_{1}}\right)\left(y_{1}^{-1} \frac{\partial}{\partial y_{1}}\right)^{r_{1}} a\left(x_{1}, \ldots ., x_{n} ; y_{1} \ldots . y_{n}\right)\right.$
$\left.\times\left(\left(-x_{1}\right)^{k_{1}-r_{1}} \hat{\phi}\left(x_{1}, \ldots ., x_{n}\right)\right)\left(y_{1}, \ldots, y_{n}\right)\right\}$
Using the formula $\left(-y_{1}\right) h_{\alpha, \beta} \Phi=h_{\alpha, \beta, 1}\left(N_{\alpha, \beta} \Phi\right)$ in the above, we have
$\left(-y_{1}\right)\left(N_{1 \alpha, 1 \beta, k_{1}-1} \ldots . . N_{1 \alpha, 1 \beta}\right) \Phi\left(y_{1}, \ldots ., y_{n}\right)$
$=\sum_{r_{1}=0}^{k_{1}}\binom{k_{1}}{r_{1}}\left(-y_{1}\right) h_{\alpha, \beta, k_{1}-r_{1}}\left(y_{1}^{r_{1}}\left(y_{1}^{-1}\right)\right)^{r_{1}} a\left(x_{1}, \ldots . x_{n} ; y_{1}, \ldots, y_{n}\right)$
$\times\left(-x_{1}\right)^{k_{1}-r_{1}} \hat{\phi}\left(\left(x_{1}, \ldots . x_{n}\right) y_{1}, \ldots, y_{n}\right)$

$$
\begin{aligned}
& =\sum_{r_{1}=0}^{k_{1}}\binom{k_{1}}{r_{1}} h_{\alpha, \beta, k_{1}-r_{1}+1} N_{\alpha, \beta, k_{1}-r_{1}}\left(y_{1}^{r_{1}}\left(y_{1}^{-1} \frac{\partial}{\partial y_{1}}\right)\right)^{r_{1}} \\
& \times a\left(x_{1}, \ldots . x_{n} ; y_{1}, \ldots ., y_{n}\right)\left(-x_{1}\right)^{k_{1}-r_{1}} \hat{\phi}\left(\left(x_{1}, \ldots . x_{n}\right) y_{1}, \ldots ., y_{n}\right) \\
& =\sum_{r_{1}=0}^{k_{1}}\binom{k_{1}}{r_{1}}\left(y_{1}^{r_{1}}\right) \int_{0}^{\infty}\left(x_{1} y_{1}\right)^{\alpha+\beta} J_{\alpha-\beta+k_{1}-r_{1}+1} N_{\alpha, \beta, k_{1}-r_{1}} \\
& \times\left(\left(y_{1}^{-1} \frac{\partial}{\partial y_{1}}\right)^{r_{1}} a\left(x_{1}, \ldots x_{n} ; y_{1}, \ldots . y_{n}\right)\left(-x_{1}\right)^{k_{1}-r_{1}} \hat{\phi}\left(x_{1}, \ldots x_{n}\right) d x_{1}\right) \\
& =\sum_{r_{1}=0}^{k_{1}}\binom{k_{1}}{r_{1}} \int_{0}^{\infty}\left(y_{1}^{r_{1}}\right)\left(x_{1} y_{1}\right)^{\alpha+\beta} J_{\alpha-\beta+k_{i}-r_{1}}\left(x_{1} y_{1}\right) x_{1}^{\alpha-\beta+k_{1}-r_{1}+\frac{1}{2}}\left(\frac{\partial}{\partial x_{1}}\right) x_{1}^{-(\alpha-\beta)-k_{1}+r_{1}-\frac{1}{2}} \\
& \times\left(\left(y_{1}^{-1} \frac{\partial}{\partial y_{1}}\right)^{r_{1}} a\left(x_{1}, \ldots x_{n} ; y_{1}, \ldots y_{n}\right)\left(-x_{1}\right)^{k_{1}-r_{1}} \hat{\phi}\left(x_{1}, \ldots x_{n}\right)\right) d x_{1} \\
& =\sum_{r_{1}=0}^{k_{1}}\binom{k_{1}}{r_{1}}(-1)^{k_{1}-r_{1}} \int_{0}^{\infty} y_{1}^{r_{1}+\frac{1}{2}} x_{1}^{\alpha-\beta+k_{1}-r_{1}+2}\left(x_{1}^{-1} \frac{\partial}{\partial x_{1}}\right) \\
& \times\left(x_{1}^{2 \beta-1}\left(y_{1}^{-1} \frac{\partial}{\partial y_{1}}\right)^{r_{1}} a\left(x_{1}, \ldots x_{n} ; y_{1}, \ldots . y_{n}\right)\left(-x_{1}\right)^{k_{1}-r_{1}} \hat{\phi}\left(x_{1}, \ldots x_{n}\right) J_{\alpha-\beta+k_{1}-r_{1}+1}\left(x_{1} y_{1}\right)\right) d x_{1} \\
& =\sum_{r_{1}=0}^{k_{1}}\binom{k_{1}}{r_{1}}(-1)^{k_{1}-r_{1}} y_{1} r_{1} \int_{0}^{\infty}\left(x_{1} y_{1}\right)^{\alpha+\beta} J_{\alpha-\beta+k_{1}-r_{1}+1}\left(x_{1} y_{1}\right) x_{1}^{\alpha-\beta+k_{1}-r_{1}+\frac{1}{2}}\left(x_{1}^{-1} \frac{\partial}{\partial x_{1}}\right) \\
& \times\left(x_{1}^{2 \beta-1}\left(y_{1}^{-1} \frac{\partial}{\partial x_{1}}\right)^{r_{1}} a\left(x_{1}, \ldots x_{n} ; y_{1}, \ldots y_{n}\right)\left(-x_{1}\right)^{k_{1}-r_{1}} \hat{\phi}\left(x_{1}, \ldots x_{n}\right)\right) d x_{1} \\
& =\sum_{r_{1}=0}^{k_{1}}\binom{k_{1}}{r_{1}}(-1)^{k_{1}-r_{1}} y_{1}^{r_{1}} h_{\alpha, \beta, k_{1}-r_{1}+1}\left\{x_{1}^{\alpha-\beta+k_{1}-r_{1}+\frac{1}{2}}\left(x_{1}^{-1} \frac{\partial}{\partial x_{1}}\right)\right. \\
& \left.\times\left(x_{1}^{2 \beta-1}\left(y_{1}^{-1} \frac{\partial}{\partial x_{1}}\right)^{r_{1}} a\left(x_{1}, \ldots x_{n} ; y_{1}, \ldots . y_{n}\right)\left(-x_{1}\right)^{k_{1}-r_{1}} \hat{\phi}\left(x_{1}, \ldots x_{n}\right)\right)\right\} .
\end{aligned}
$$

Using the formula $\left(-y_{1}\right) h_{\alpha, \beta} \Phi=h_{\alpha, \beta, 1} N_{\alpha, \beta} \Phi$ repeatedly, we obtain
$\left(-y_{1}\right)^{t_{1}}\left(N_{1 \alpha, 1 \beta, k_{1}-1} \ldots . N_{1 \alpha, 1 \beta}\right) \Phi\left(y_{1}, \ldots ., y_{n}\right)$
$=\sum_{r_{1}=0}^{k_{1}}\binom{k_{1}}{r_{1}}(-1)^{k_{1}-r_{1}} \int_{0}^{\infty} y_{1}^{r_{1}+\frac{1}{2}} x_{1}^{\alpha-\beta+k_{1}-r_{1}+t_{1}+1}\left(x_{1}^{-1} \frac{\partial}{\partial x_{1}}\right)^{t_{1}}$
$\times\left(x_{1}^{2 \beta-1}\left(y_{1}^{-1} \frac{\partial}{\partial y_{1}}\right)^{r_{1}} a\left(x_{1}, \ldots x_{n} ; y_{1}, \ldots y_{n}\right)\left(-x_{1}\right)^{k_{1}-r_{1}} \hat{\phi}\left(x_{1}, \ldots x_{n}\right) J_{\alpha-\beta+k_{1}-r_{1}+t_{1}}\left(x_{1} y_{1}\right)\right) d x_{1}$ Similarly, for $i=2, \ldots \ldots, n$,

$$
\begin{aligned}
& \left(-y_{1}\right)^{t_{i}}\left(N_{i \alpha, i \beta, i\left(k_{i}-1\right)} \ldots . N_{i \alpha, i \beta}\right) \Phi\left(y_{1}, \ldots . . y_{n}\right) \\
= & \sum_{r_{i}=0}^{k_{i}}\binom{k_{1}}{r_{1}}(-1)^{k_{1}-r_{1}} \int_{0}^{\infty} y_{i}^{r_{i}+\frac{1}{2}} x_{i}^{\alpha-\beta+k_{i}-r_{i}+t_{i}+1}\left(x_{i}^{-1} \frac{\partial}{\partial x_{i}}\right)^{t_{i}} \\
\times & \left(x_{i}^{2 \beta-1}\left(y_{i}^{-1} \frac{\partial}{\partial y_{i}}\right)^{r_{i}} a\left(x_{1}, \ldots x_{n} ; y_{1}, \ldots y_{n}\right)\left(-x_{i}\right)^{k_{i}-r_{i}} \hat{\phi}\left(x_{1}, \ldots x_{n}\right)\right) J_{\alpha-\beta+k_{i}-r_{i}+t_{i}}\left(x_{i} y_{i}\right) d x_{i}
\end{aligned}
$$

Therefore

$$
\left(\left(-y_{1}\right)^{t_{1}} N_{1 \alpha, 1 \beta, k_{1}-1} \ldots . . N_{1 \alpha, 1 \beta}\right) \ldots \ldots\left(\left(-y_{n}\right)^{t_{n}} N_{n \alpha, n \beta, n\left(k_{n}-1\right)} \ldots . . N_{n \alpha, n \beta}\right) \Phi\left(y_{1}, \ldots . y_{n}\right)
$$

$$
=\sum_{r_{1}=0}^{k_{1}}\binom{k_{1}}{r_{1}} \ldots . . \sum_{r_{n}=0}^{k_{n}}\binom{k_{n}}{r_{n}}\left((-1)^{k_{1}-r_{1}} \ldots .(-1)^{k_{n}-r_{n}}\right)
$$

$$
\times \int_{0}^{\infty} \ldots \int_{0}^{\infty}\left(y_{1}^{r_{1}+\frac{1}{2}} \ldots . . y_{n}^{r_{n}+\frac{1}{2}}\right)\left(x_{1}^{\alpha-\beta+k_{1}-r_{1}+t_{1}+1} \ldots x_{n}^{\alpha-\beta+k_{n}-r_{n}+t_{1}+1}\right)
$$

$$
\times\left(\left(x_{1}^{-1} \frac{\partial}{\partial x_{1}}\right)^{t_{1}} \ldots . .\left(x_{n}^{-1} \frac{\partial}{\partial x_{n}}\right)^{t_{n}}\right)
$$

$$
\times\binom{\left(x_{1}^{2 \beta-1} \ldots . x_{n}^{2 \beta-1}\right)\left(y_{1}^{-1} \frac{\partial}{\partial y_{1}}\right)^{r_{1}} \ldots .\left(y_{n}^{-1} \frac{\partial}{\partial y_{n}}\right)^{r_{n}} a\left(x_{1}, \ldots x_{n} ; y_{1}, \ldots y_{n}\right)}{\times\left(-x_{1}\right)^{k_{1}-r_{1}} \ldots .\left(-x_{n}\right)^{k_{n}-r_{n}} \hat{\phi}\left(x_{1}, \ldots x_{n}\right)}
$$

$$
\times J_{\alpha-\beta+k_{1}-r_{1}+t_{1}}\left(x_{1} y_{1}\right) \ldots . . J_{\alpha-\beta+k_{n}-r_{n}+t_{n}}\left(x_{n} y_{n}\right) d x_{1} \ldots \ldots d x_{n}
$$

Or

$$
\begin{align*}
& \prod_{i=1}^{n}\left(\left(-y_{i}\right)^{t_{i}} N_{i \alpha, i \beta, i\left(k_{i}-1\right)} \ldots . . N_{i \alpha, i \beta}\right) \Phi\left(y_{1}, \ldots y_{n}\right) \\
&=\prod_{i=1}^{n} \sum_{r_{i=0}}^{k_{i}}\binom{k_{i}}{r_{i}}(-1)^{k_{i}-r_{i}} \int_{0}^{\infty} \ldots \ldots \int_{0}^{\infty}\left[y^{r+\frac{1}{2}}\right]\left[x^{\alpha-\beta+k-r+t+1}\right] \\
& \times\left(x^{-1} D_{x}\right)^{t}[x]^{2 \beta-1} \hat{\phi}\left(x_{1}, \ldots x_{n}\right)\left(y^{-1} D_{y}\right)^{r} a\left(x_{1}, \ldots x_{n} ; y_{1}, \ldots . y_{n}\right) \\
& \times\left(\prod_{i=1}^{n} J_{\alpha-\beta+k_{i}-r_{i}+t_{i}}\left(x_{i} y_{i}\right)\right) d x_{1} \ldots . . d x_{n} \\
&=\prod_{i=1}^{n} \sum_{r_{i}=0}^{k_{i}}\binom{k_{i}}{r_{i}}(-1)^{k_{i}-r_{i}} \int_{0}^{\infty} \ldots . \int_{0}^{\infty}\left[y^{r+\frac{1}{2}}\right]\left[x^{\alpha-\beta+k-r+t+1}\right] \\
& \times\left(\sum_{v_{1}=0}^{t_{1}} \ldots \sum_{v_{n}=0}^{t_{n}}\binom{t_{1}}{v_{1}} \ldots \ldots\binom{t_{n}}{v_{n}}\right)\left(x^{-1} D_{x}\right)^{v}\left(y^{-1} D_{y}\right)^{r} \\
& \times a\left(x_{1}, \ldots x_{n} ; y_{1}, \ldots . y_{n}\right)\left(x^{-1} D_{x}\right)^{t-v}[x]^{2 \beta-1} \hat{\phi}\left(x_{1}, \ldots x_{n}\right) \\
& \times \prod_{i=1}^{n} J_{\alpha-\beta+k_{i}-r_{i}+t_{i}}\left(x_{i} y_{i}\right) d x_{1} \ldots . . d x_{n} . \tag{2.3}
\end{align*}
$$

Now, multiplying both sides of (2.2) by $\prod_{i=1}^{n}\left(-y_{i}\right)^{t_{i}}$, we get

$$
\begin{align*}
& \prod_{i=1}^{n}\left(\left(-y_{i}\right)^{t_{i}} N_{i \alpha, i \beta, i\left(k_{i}-1\right)} \ldots \ldots N_{i \alpha, i \beta}\right) \Phi\left(y_{1}, \ldots y_{n}\right) \\
& \quad=(-1)^{|t|}\left[y^{\alpha-\beta+k+t+\frac{1}{2}}\right]\left(y^{-1} D_{y}\right)^{k}[y]^{2 \beta-1} \Phi(y) . \tag{2.4}
\end{align*}
$$

Comparing (2.3) and (2.4), we have

$$
\begin{aligned}
& (-1)^{|t|}\left[y^{\alpha-\beta+k+t+\frac{1}{2}}\right]\left(y^{-1} D_{y}\right)^{k}[y]^{2 \beta-1} \Phi(y) \\
= & \prod_{i=1}^{n} \sum_{r_{i}=0}^{k_{i}}\binom{k_{i}}{r_{i}}(-1)^{k_{i}-r_{i}} \int_{0}^{\infty} \ldots \int_{0}^{\infty}\left[y^{r+\frac{1}{2}}\right] \\
& \times\left[x^{\alpha-\beta+k-r+t+1}\right]\left(\sum_{v_{1}=0}^{t_{1}} \ldots \sum_{v_{n}=0}^{t_{n}}\binom{t_{1}}{v_{1}} \ldots .\binom{t_{n}}{v_{n}}\right) \\
& \times\left(x^{-1} D_{x}\right)^{v} a_{r}\left(x_{1}, \ldots \ldots, x_{n} ; y_{1}, \ldots y_{n}\right)\left(x^{-1} D_{x}\right)^{t-v} \\
& \times[x]^{2 \beta-1} \hat{\phi}\left(x_{1}, \ldots ., x_{n}\right) \prod_{i=1}^{n} J_{\alpha-\beta+k_{i}-r_{i}+t_{i}}\left(x_{i} y_{i}\right) d x_{1} \ldots . . d x_{n} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& (-1)^{|t|}\left[y^{t}\right]\left(y^{-1} D_{y}\right)^{k}[y]^{2 \beta-1} \Phi(y) \\
& =\prod_{i=1}^{n} \sum_{r_{i}=0}^{k_{i}}\binom{k_{i}}{r_{i}}(-1)^{k_{i}-r_{i}} \int_{0}^{\infty} \ldots . \int_{0}^{\infty}\left[y^{-(\alpha-\beta+k-r)}\right] \\
& \times\left[x^{\alpha-\beta+k-r+t+1}\right]\left(\sum_{v_{1}=0}^{t_{1}} \ldots . . \sum_{v_{n}=0}^{t_{n}}\binom{t_{1}}{v_{1}} \ldots .\binom{t_{n}}{v_{n}}\right)
\end{aligned}
$$

$$
\times\left(x^{-1} D_{x}\right)^{v} a_{r}\left(x_{1}, \ldots \ldots, x_{n} ; y_{1}, \ldots y_{n}\right)\left(x^{-1} D_{x}\right)^{t-v}[x]^{2 \beta-1} \hat{\phi}\left(x_{1}, \ldots x_{n}\right)
$$

$$
\times \prod_{i=1}^{n} J_{\alpha-\beta+k_{i}-r_{i}+t_{i}}\left(x_{i} y_{i}\right) d x_{1} \ldots . . d x_{n}
$$

$$
=\prod_{i=1}^{n} \sum_{r_{i}=0}^{k_{i}}\binom{k_{i}}{r_{i}}(-1)^{k_{i}-r_{i}} \int_{0}^{\infty} \ldots . \int_{0}^{\infty}\left[x^{2 \lambda+t+1}\right]
$$

$$
\times\left(\sum_{v_{1}=0}^{t_{1}} \ldots . . \sum_{v_{n}=0}^{t_{n}}\binom{t_{1}}{v_{1}} \ldots . .\binom{t_{n}}{v_{n}}\right)\left(x^{-1} D_{x}\right)^{v} a_{r}\left(x_{1}, \ldots \ldots, x_{n} ; y_{1}, \ldots ., y_{n}\right)
$$

$$
\times\left(x^{-1} D_{x}\right)^{t-v}\left[x^{2 \beta-1}\right] \hat{\phi}\left(x_{1}, \ldots x_{n}\right) \prod_{i=1}^{n}\left(x_{i} y_{i}\right)^{-\lambda i} J_{\lambda_{i}+t_{i}}\left(x_{i} y_{i}\right) d x_{1} \ldots . . d x_{n}
$$

where $\lambda_{i}=\alpha-\beta+k_{i}-r_{i}, i=1,2, \ldots . n$.

Setting $t_{i}=p_{i}+s_{i}$, respectively $t_{i}=p_{i}, i=1,2, \ldots . . n$, in the above expression and using the property (2.1) with $q=$ $(0, \ldots, 0)$ and taking into account that $(\alpha-\beta) \geq-\frac{1}{2}$, we arrive at the following estimate:
$\left(1+\left[y^{s}\right]\right)\left|\left[y^{p}\right]\left[y^{1} D_{y}\right)^{k}[y]^{2 \beta-1} \Phi(y)\right|$
$=\left|\left[y^{p}\right]\left(y^{-1} D_{y}\right)^{k}[y]^{2 \beta-1} \Phi(y)\right|+\mid\left[y^{p+s}\right]\left(y^{-1} D_{y}\right)^{k}[y]^{2 \beta-1} \Phi(y)$
$\leq D \sum_{r_{1}=0}^{k_{1}} \ldots . . \sum_{r_{n}=0}^{k_{n}}\binom{k_{1}}{r_{1}} \ldots .\binom{k_{n}}{r_{n}} \int_{0}^{\infty} \ldots . \int_{0}^{\infty}(1+[y])^{m-|r|}$
$\times\left(\left[x^{2 \lambda+p+1}\right] \sum_{v_{1}=0}^{p_{1}} \ldots . \sum_{v_{n}=0}^{p_{n}}\binom{p_{1}}{v_{1}} \ldots .\binom{p_{n}}{v_{n}}\left(x^{-1} D_{x}\right)^{p-v}[x]^{2 \beta-1} \hat{\phi}\left(x_{1}, \ldots x_{n}\right)\right.$

$$
\left.+\left[x^{2 \lambda+p+s+1}\right] \sum_{v_{1}=0}^{p_{1}+s_{1}} \ldots . . \sum_{v_{n}=0}^{p_{n}+s_{n}}\binom{p_{1}+s_{1}}{v_{1}} \ldots \ldots\binom{p_{n}+s_{n}}{v_{n}}\left(x^{-1} D_{x}\right)^{p+s-v}[x]^{2 \beta-1} \widehat{\phi}\left(x_{1}, \ldots x_{n}\right)\right)
$$

$\times d x_{1} \ldots . . d x_{n}$.
Since $(1+[y])^{m-|r|} \leq(1+[y])^{m}$, we have
$\left(1+\left[y^{s}\right]\right) \mid\left[y^{p}\right]\left(y^{-1} D_{y}\right)^{k}[y]^{2 \beta-1} \Phi(y)$
$\leq D \sum_{r_{1}=0}^{k_{1}} \ldots . . \sum_{r_{n}=0}^{k_{n}}\binom{k_{1}}{r_{1}} \ldots . .\binom{k_{n}}{r_{n}} \int_{0}^{\infty} \ldots . . \int_{0}^{\infty}(1+[y])^{m}$
$\times\left(\left[x^{2 \lambda+p+s+1}\right] \sum_{v_{1}=0}^{p_{1}+s_{1}} \ldots . . \sum_{v_{n}=0}^{p_{n}+s_{n}}\binom{p_{1}+s_{1}}{v_{1}} \ldots \ldots\binom{p_{n}+s_{n}}{v_{n}}\right.$
$\times\left(x^{-1} D_{x}\right)^{p+s-v}[x]^{2 \beta-1} \widehat{\phi}\left(x_{1}, \ldots x_{n}\right)+\left[x^{2 \lambda+p+1}\right] \sum_{v_{1}=0}^{p_{1}} \ldots . . \sum_{v_{n}=0}^{p_{n}}\binom{p_{1}}{v_{1}}$
$\times \ldots \ldots\binom{p_{n}}{v_{n}}\left(x^{-1} D_{x}\right)^{p-v}[x]^{2 \beta-1} \widehat{\phi}\left(x_{1}, \ldots x_{n}\right) d x_{1} \ldots . . d x_{n}$.
Hence
$\left|\left[y^{p}\right]\left(y^{-1} D_{y}\right)^{k}[y]^{2 \beta-1} \Phi(y)\right|$
$\leq D \sum_{r_{1}=0}^{k_{1}} \ldots . . \sum_{r_{n}=0}^{k_{n}}\binom{k_{1}}{r_{1}} \ldots .\binom{k_{n}}{r_{n}} \int_{0}^{\infty} \ldots . . \int_{0}^{\infty} \frac{(1+[y])^{m}}{(1+[s])}$
$\times\left(\left[x^{2 \lambda+p+s+1}\right] \sum_{v_{1}=0}^{p_{1}+s_{1}} \ldots . . \sum_{v_{n}=0}^{p_{n}+s_{n}}\binom{p_{1}+s_{1}}{v_{1}} \ldots \ldots\binom{p_{n}+s_{n}}{v_{n}}\right.$
$\times\left(x^{-1} D_{x}\right)^{p+s-v}[x]^{2 \beta-1} \hat{\phi}\left(x_{1}, \ldots x_{n}\right)+\left[x^{2 \lambda+p+1}\right] \sum_{v_{1}=0}^{p_{1}} \ldots . . \sum_{v_{n}=0}^{p_{n}}\binom{p_{1}}{v_{1}} \ldots . .\binom{p_{n}}{v_{n}}\left(x^{-1} D_{x}\right)^{p-v}$

$$
\begin{equation*}
\times[x]^{2 \beta 1} \widehat{\phi}\left(x_{1}, \ldots x_{n}\right) d x_{1} \ldots . . d x_{n} \tag{2.5}
\end{equation*}
$$

We note that if $m \leq 0$, we have $(1+[y])^{m}$, and then

$$
\begin{equation*}
\frac{(1+[y])^{m}}{(1+[y])} \leq 1 \tag{2.6}
\end{equation*}
$$

while if $m>0$, then

$$
\begin{equation*}
\frac{(1+[y])^{m}}{\left(1+\left[y^{s}\right]\right)} \leq 2^{m} \frac{(1+[y])^{m}}{\left(1+\left[y^{s}\right]\right)} \tag{2.7}
\end{equation*}
$$

Since S is an arbitrary n-tuple of non-negative integers we can choose $s=\left(s_{1}, \ldots, s_{n}\right)$ such that

$$
\begin{equation*}
\frac{(1+[y])^{m}}{\left(1+\left[y^{s}\right]\right)} \leq 1 \tag{2.8}
\end{equation*}
$$

From equations (2.7) and (2.8), we have

$$
\begin{equation*}
\frac{(1+[y])^{m}}{\left(1+\left[y^{s}\right]\right)} \leq 2^{m} \tag{2.9}
\end{equation*}
$$

so that from (2.6) and (2.9), we get

$$
\begin{equation*}
\frac{(1+[y])^{m}}{\left(1+\left[y^{s}\right]\right)} \leq \max \left(1,2^{m}\right)=D_{m} \tag{2.10}
\end{equation*}
$$

Using (2.10) in (2.5), we have
$\left|\left[y^{p}\right]\left(y^{-1} D_{y}\right)^{k}[y]^{2 \beta-1} \Phi(y)\right|$
$\leq D_{m} D \sum_{r_{1}=0}^{k_{1}} \ldots . . \sum_{r_{n}=0}^{k_{n}}\binom{k_{1}}{r_{1}} \ldots \ldots .\binom{k_{n}}{r_{n}}$
$\times \int_{0}^{\infty} \ldots . \int_{0}^{\infty}\left(\left[x^{2 \lambda+p+s+1}\right] \sum_{v_{1}=0}^{p_{1}+s_{1}} \ldots . . \sum_{v_{n}=0}^{p_{n}+s_{n}}\binom{p_{1}+s_{1}}{v_{1}} \ldots \ldots\binom{p_{n}+s_{n}}{v_{n}}\right.$
$\times\left(x^{-1} D_{x}\right)^{p+s-v}[x]^{2 \beta-1} \widehat{\phi}\left(x_{1}, \ldots x_{n}\right)+\left[x^{2 \lambda+p+1}\right] \sum_{v_{1}=0}^{p_{1}} \ldots . . \sum_{v_{n}=0}^{p_{n}}\binom{p_{1}}{v_{1}} \ldots \ldots .\binom{p_{n}}{v_{n}}$
$\times\left(x^{-1} D_{x}\right)^{p-v}[x]^{2 \beta-1} \widehat{\phi}\left(x_{1}, \ldots x_{n}\right) d x_{1} \ldots . . d x_{n}$.
Now, let N_{i} be a non-negative integer such that $N_{i}>2\left(\alpha-\beta+k_{i}\right)+p_{i}+s_{i}+3, i=1,2, \ldots . n$. Then $\mid\left[y^{p}\right]\left(y^{-1} D_{y}\right)^{k}[y]^{2 \beta-1} \Phi(y)$
$\leq D^{\prime} \sum_{r_{1}=0}^{k_{1}} \ldots . . \sum_{r_{n}=0}^{k_{n}}\binom{k_{1}}{r_{1}} \ldots \ldots .\binom{k_{n}}{r_{n}} \int_{0}^{\infty} \ldots . \int_{0}^{\infty} \prod_{i=1}^{n}\left(1+x_{i}\right)^{N_{i}-2}$
$\times\left(\sum_{v_{1}=0}^{p_{1}+s_{1}} \ldots . . \sum_{v_{n}=0}^{p_{n}+s_{n}}\binom{p_{1}+s_{1}}{v_{1}} \ldots \ldots\binom{p_{n}+s_{n}}{v_{n}}\right.$
$\times\left|\left(x^{-1} D_{x}\right)^{p+s-v}[x]^{2 \beta-1} \widehat{\phi}\left(x_{1}, \ldots x_{n}\right)\right|+\sum_{v_{1}=0}^{p_{1}} \ldots . \sum_{v_{n}=0}^{p_{n}}\binom{p_{1}}{v_{1}} \ldots \ldots .\binom{p_{n}}{v_{n}}$
$\left.\times\left|\left(x^{-1} D_{x}\right)^{p-v}[x]^{2 \beta-1} \widehat{\phi}\left(x_{1}, \ldots x_{n}\right)\right|\right) d x_{1} \ldots . . d x_{n}$.

$$
\begin{aligned}
& \leq D^{\prime \prime} \sum_{r_{1}=0}^{k_{1}} \ldots . . \sum_{r_{n}=0}^{k_{n}}\binom{k_{1}}{r_{1}} \ldots \ldots \cdot\binom{k_{n}}{r_{n}}\left(\sum_{v_{1}=0}^{p_{1}+s_{1}} \ldots . \sum_{v_{n}=0}^{p_{n}+s_{n}}\binom{p_{1}+s_{1}}{v_{1}} \ldots \ldots\binom{p_{n}+s_{n}}{v_{n}}\right. \\
& \times \sum_{j_{1}=0}^{N_{1}} \ldots . \sum_{j_{n}=0}^{N_{n}}\binom{N_{1}}{j_{1}} \ldots \ldots \cdot\binom{N_{n}}{j_{n}} \rho_{j, p+s-v}^{\alpha, \beta} \widehat{\phi} \\
& \left.\quad+\sum_{v_{1}=0}^{p_{1}} \ldots . \sum_{v_{n}=0}^{p_{n}}\binom{p_{1}}{v_{1}} \ldots \ldots \cdot\binom{p_{n}}{v_{n}} \sum_{j_{1}=0}^{N_{1}} \ldots . \sum_{j_{n}=0}^{N_{n}}\binom{N_{1}}{j_{1}} \ldots \ldots \cdot\binom{N_{n}}{j_{n}} \rho_{j, p-v}^{\alpha, \beta} \widehat{\phi}\right) .
\end{aligned}
$$

Therefore in view of equation (1.1),
$\rho_{p, k}^{\alpha, \beta}(\Phi) \leq D^{\prime \prime} \sum_{r_{1}=0}^{k_{1}} \ldots . \sum_{r_{n}=0}^{k_{n}}\binom{k_{1}}{r_{1}} \ldots \ldots \cdot\binom{k_{n}}{r_{n}} \sum_{j_{1}=0}^{N_{1}} \ldots . . \sum_{j_{n}=0}^{N_{n}}\binom{N_{1}}{j_{1}} \ldots \ldots \cdot\binom{N_{n}}{j_{n}}$
$\times\left(\sum_{v_{1}=0}^{p_{1}+s_{1}} \ldots . \sum_{v_{n}=0}^{p_{n}+s_{n}}\binom{p_{1}+s_{1}}{v_{1}} \ldots \ldots\binom{p_{n}+s_{n}}{v_{n}} \rho_{j, p+s-v}^{\alpha, \beta} \widehat{\phi}+\sum_{v_{1}=0}^{p_{1}} \ldots \ldots \sum_{v_{n}=0}^{p_{n}}\binom{p_{1}}{v_{1}} \ldots \ldots\binom{p_{n}}{v_{n}} \rho_{j, p-v}^{\alpha, \beta} \hat{\phi}\right)$,
where $D^{\prime \prime}$ is a positive constant. From above, the continuity of $h_{\alpha, \beta, a}$ follows.

3. An integral representation:

The function $a_{\eta}\left(y_{1}, \ldots y_{n}\right)$, where $\eta=\left(\eta_{1}, \ldots . . \eta_{n}\right)$, associated with the symbol $a\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n}\right)$ are defined by

$$
\begin{align*}
& a_{\eta}\left(y_{1}, \ldots \ldots, y_{n}\right)=\int_{0}^{\infty} \ldots \ldots \int_{0}^{\infty} \prod_{i=1}^{n}\left(x_{i} y_{i}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x_{i} y_{i}\right) \\
& \quad \times\left\{\left(x_{i} \eta_{i}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x_{i} \eta_{i}\right) a\left(x_{1}, \ldots \ldots, x_{n} ; \eta_{1}, \ldots ., \eta_{n}\right)\right\} d x_{1} \ldots . . d x_{n} \tag{3.1}
\end{align*}
$$

will play a fundamental role in our investigation.
An estimate for $a_{\eta}\left(y_{1}, \ldots . y_{n}\right)$ is given by
Lemma 3.1: Let the symbol $a\left(x_{1}, \ldots \ldots, x_{n} ; y_{1}, \ldots, y_{n}\right)$ belongs to H^{m}.
Then the function $a_{\eta}\left(y_{1}, \ldots . y_{n}\right)$ defined by (3.1) satisfies the inequality

$$
\left|a_{\eta}\left(y_{1}, \ldots . y_{n}\right)\right| \leq A(1+[\eta])^{\alpha-\beta+m+4 r+\frac{1}{2}}(1+[y])^{2 \alpha}\left(1+\left[y^{2 r}\right]\right)^{-1}
$$

where A is a positive constant, $\eta=\left(\eta_{1}, \ldots . \eta_{n}\right)$, and $r \in \mathbb{N}_{0}^{n}$ with $r>(0,0, \ldots ., 0)$.
Proof: For $\in \mathbb{N}_{0}^{n}$, using formulas (1.6) and (1.8), we have
$\left(\left(\prod_{i=1}^{n}\left(-y_{i}^{2}\right)^{r i}\right) a_{\eta}\left(y_{1}, \ldots y_{n}\right)\right.$
$\left.=\int_{0}^{\infty} \ldots \ldots \int_{0}^{\infty}\left(\prod_{i=1}^{n}\left(x_{i} y_{i}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x_{i} y_{i}\right) \Delta_{\alpha, \beta}^{r_{i}}\left\{\left(x_{i} \eta_{i}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x_{i} \eta_{i}\right) a\left(x_{1}, \ldots \ldots, x_{n} ; \eta_{1}, \ldots, \eta_{n}\right)\right\}\right)\right)$
$\times d x_{1} \ldots \ldots d x_{n}$.
$=\int_{0}^{\infty} \ldots . . \int_{0}^{\infty} \prod_{i=1}^{n}\left\{\left(x_{i} y_{i}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x_{i} y_{i}\right)\right\}\binom{\sum_{j_{i}=0}^{r_{i}} b j_{i}\left(x_{i}\right)^{2 j_{i}+2 \alpha}\left(x_{i}^{-1} \frac{\partial}{\partial x_{i}}\right)^{r_{i}+j_{i}}}{\left(\left(x_{i}\right)^{2 \beta-1}\left\{\left(x_{i} \eta_{i}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x_{i} \eta_{i}\right)\right\} a\left(x_{1}, \ldots \ldots, x_{n} ; \eta_{1}, \ldots, \eta_{n}\right)\right)}$
$\times d x_{1} \ldots . . d x_{n}$.
Using (1.7), we get,
$\left(\prod_{i=1}^{n}\left(-y_{i}^{2}\right)^{r_{i}}\right) a_{\eta}\left(y_{1}, \ldots . . y_{n}\right)$
$=\int_{0}^{\infty} \cdots \cdots \int_{0}^{\infty} \prod_{i=1}^{n}\left\{\left(x_{i} y_{i}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x_{i} y_{i}\right)\right\}$
$\times\binom{\sum_{j_{i}=0}^{r_{i}} b j_{i}\left(x_{i}\right)^{2 j_{i}+2 \alpha} \sum_{e_{i}=0}^{r_{i}+j_{i}}\binom{r_{i}+j_{i}}{e_{i}}\left(x_{i}^{-1} \frac{\partial}{\partial x_{i}}\right)^{r_{i}+j_{i}-e_{i}}}{\times\left\{\left(x_{i}\right)^{2 \beta-1}\left(x_{i} \eta_{i}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x_{i} \eta_{i}\right)\right\}\left(x_{i}^{-1} \frac{\partial}{\partial x_{i}}\right)^{e_{i}} a\left(x_{1}, \ldots \ldots, x_{n} ; \eta_{1}, \ldots, \eta_{n}\right)}$
$\times d x_{1} \ldots . . d x_{n}$
to which an application of the formula
$\left(x_{i}^{-1} \frac{\partial}{\partial x_{i}}\right)^{q_{i}} x_{i}^{-(\alpha-\beta)} J_{\alpha-\beta}\left(x_{i} \eta_{i}\right)=\left(-\eta_{i}\right)^{q_{i}} x_{i}^{-(\alpha-\beta)-q_{i}} J_{\alpha-\beta+q_{i}}\left(x_{i} \eta_{i}\right), i=1,2, \ldots n$,
yields
$\left|\left(\prod_{i=1}^{n}\left(y_{i}^{2}\right)^{r_{i}}\right) a_{\eta}\left(y_{1}, \ldots . y_{n}\right)\right|$
$\leq \int_{0}^{\infty} \ldots . \int_{0}^{\infty} \mid \prod_{i=1}^{n}\left\{\left(x_{i} y_{i}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x_{i} y_{i}\right)\right\}$
$\times\left(\sum_{j_{i}=0}^{r_{i}} b j_{i}\left(x_{i}\right)^{2 j_{i}+2 \alpha} \sum_{e_{i}=0}^{r_{i}+j_{i}}\binom{r_{i}+j_{i}}{e_{i}}\left(x_{i}^{-1} \frac{\partial}{\partial x_{i}}\right)^{e_{i}} a_{\eta}\left(x_{1}, \ldots \ldots, x_{n} ; \eta_{1}, \ldots, \eta_{n}\right)\right)\left[\eta^{\alpha-\beta+2 r+2 j-2 i+\frac{1}{2}}\right]$
$\times \prod_{i=1}^{n}\left(x_{i} \eta_{i}\right)^{-(\alpha-\beta)-r_{i}-j_{i}+e_{i}} J_{\alpha-\beta+r_{i}+j_{i}-e_{i}}\left(x_{i} \eta_{i}\right) \mid d x_{i} \ldots . d x_{n}$
$\leq[y]^{2 \alpha} \int_{0}^{\infty} \ldots . . \int_{0}^{\infty}[x]^{2 \alpha}\left|\prod_{i=1}^{n}\left(x_{i} y_{i}\right)^{-(\alpha-\beta)} J_{\alpha-\beta}\left(x_{i} y_{i}\right)\right|$
$\times\left|\prod_{i=1}^{n} \sum_{j_{i}=0}^{r_{i}} b j_{i}\left(x_{i}\right)^{2 j_{i}+2 \alpha} \sum_{e_{i}=0}^{r_{i}+j_{i}}\binom{r_{i}+j_{i}}{e_{i}}\left(x_{i}^{-1} \frac{\partial}{\partial x_{i}}\right)^{e_{i}} a_{\eta}\left(x_{1}, \ldots \ldots, x_{n} ; \eta_{1}, \ldots, \eta_{n}\right)\left[\eta^{\alpha-\beta+2 r+2 j-2 i+\frac{1}{2}}\right]\right|$
$\times\left|\prod_{i=1}^{n}\left(x_{i} \eta_{i}\right)^{-(\alpha-\beta)-r_{i}-j_{i}+e_{i}} J_{\alpha-\beta+r_{i}+j_{i}-e_{i}}\left(x_{i} \eta_{i}\right)\right| d x_{i} \ldots . . d x_{n}$
$\leq B[y]^{2 \alpha} \prod_{i=1}^{n}\left(\sum_{j_{i}=0}^{r_{i}} \sum_{e_{i}=0}^{r_{i}+j_{i}}\binom{r_{i}+j_{i}}{e_{i}}\left|b j_{i}\right|\right)\left[\eta^{\alpha-\beta+2 r+2 j-2 i+\frac{1}{2}}\right]$
$\times D^{\prime}(1+[\eta])^{m} \int_{0}^{\infty} \ldots \int_{0}^{\infty} \prod_{i=1}^{n}\left(\left(1+x_{i}\right)^{-q_{i}} x_{i}^{2_{j}+4 \alpha}\right) d x_{i} \ldots . . d x_{n}$
$\leq B[y]^{2 \alpha} \prod_{i=1}^{n}\left(\sum_{j_{i}=0}^{r_{i}} \sum_{e_{i}}^{r_{i}+j_{i}}\binom{r_{i}+j_{i}}{e_{i}}\left|b j_{i}\right|\right)\left[\eta^{\alpha-\beta+2 r+2 j-2 i+\frac{1}{2}}\right]$
$\times D^{\prime}(1+[\eta])^{m}\left(B\left(2(\alpha-\beta)+2 j_{i}+2, q_{i}-2(\alpha-\beta)-2 j_{i}-2\right)\right)$
$\leq B[y]^{2 \alpha} \prod_{i=1}^{n}\left(\sum_{j_{i}=0}^{r_{i}} \sum_{e_{i}=0}^{r_{i}+j_{i}}\binom{r_{i}+j_{i}}{e_{i}}\left|b j_{i}\right|\right)\left[\eta^{\alpha-\beta+2 r+2 j-2 i+\frac{1}{2}}\right]$
$\times D^{\prime}(1+[\eta])^{m}\left(\frac{\Gamma\left(2(\alpha-\beta)+2 j_{i}+2\right) \Gamma\left(q_{i}-2(\alpha-\beta)-2 j_{i}-2\right)}{\Gamma\left(q_{i}\right)}\right)$.
Thus

$$
\left|a_{\eta}\left(y_{1}, \ldots . y_{n}\right)\right| \leq A(1+[y])^{2 \alpha}\left(1+\left[y^{2 r}\right]\right)^{-1}\left(1+[\eta]^{\alpha-\beta+m+4 r+\frac{1}{2}}\right.
$$

```
for all r}>(0,\ldots\ldots,0)\in\mp@subsup{\mathbb{N}}{0}{n}
```

Thus proof is completed.
Theorem 3.1: For any symbol $a\left(x_{1}, \ldots \ldots, x_{n} ; y_{1}, \ldots, y_{n}\right) \in H^{m}$ the associated operator $h_{\alpha, \beta, a}$ can be represented by $\left(h_{\alpha, \beta, a} \phi\right)\left(x_{1}, \ldots . ., x_{n}\right)$

$$
\begin{align*}
= & \int_{0}^{\infty} \ldots . . \int_{0}^{\infty}\left(\prod_{i=1}^{n}\left(x_{i} y_{i}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x_{i} y_{i}\right)\right)\left(\int_{0}^{\infty} \ldots \int_{0}^{\infty} a_{\eta}\left(y_{1}, \ldots, y_{n}\right) \hat{\phi}\left(\eta_{1}, \ldots, \eta_{n}\right)\right) \\
& \times d y_{1} \ldots . d y_{n} \quad, \quad \phi \in H_{\alpha, \beta}\left(I^{n}\right) \tag{3.2}
\end{align*}
$$

where $\hat{\phi}\left(\eta_{1}, \ldots, \eta_{n}\right)=\left(h_{\alpha, \beta} \phi\right)\left(\eta_{1}, \ldots, \eta_{n}\right)$, all integrals are convergent.
Proof: Since

$$
\begin{aligned}
a_{\eta}\left(y_{1}, \ldots, y_{n}\right) & =\int_{0}^{\infty} \ldots \int_{0}^{\infty} \prod_{i=1}^{n}\left(\left(x_{i} y_{i}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x_{i} y_{i}\right)\right) \\
& \times\left(\prod_{i=1}^{n}\left(x_{i} \eta_{i}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x_{i} \eta_{i}\right) a\left(x_{1}, \ldots \ldots, x_{n} ; \eta_{1}, \ldots, \eta_{n}\right)\right) d x_{1} \ldots . . d x_{n},
\end{aligned}
$$

by inversion, we have

$$
\begin{aligned}
& \int_{0}^{\infty} \ldots . \int_{0}^{\infty} a_{\eta}\left(y_{1}, \ldots ., y_{n}\right) \prod_{i=1}^{n}\left(x_{i} y_{i}\right)^{\alpha+\beta} d y_{1} \ldots \ldots d y_{n} \\
& =\prod_{i=1}^{n}\left(x_{i} \eta_{i}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x_{i} \eta_{i}\right) a\left(x_{1}, \ldots \ldots, x_{n} ; \eta_{1}, \ldots, \eta_{n}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \left(h_{\alpha, \beta} \phi\right)\left(x_{1}, \ldots . x_{n}\right) \\
& =\int_{0}^{\infty} \ldots \int_{0}^{\infty}\left(\prod_{i=1}^{n}\left(x_{i} \eta_{i}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x_{i} \eta_{i}\right)\right) a\left(x_{1}, \ldots \ldots, x_{n} ; \eta_{1}, \ldots ., \eta_{n}\right) \\
& \times \hat{\phi}\left(\eta_{1}, \ldots, \eta_{n}\right) d \eta_{1} \ldots . . d \eta_{n} \\
& =\int_{0}^{\infty} \ldots \ldots \int_{0}^{\infty} \hat{\phi}\left(\eta_{1}, \ldots, \eta_{n}\right) d \eta_{1} \ldots . d \eta_{n} \int_{0}^{\infty} \ldots . . \int_{0}^{\infty} a_{\eta}\left(y_{1}, \ldots ., y_{n}\right) \\
& \times\left(\prod_{i=1}^{n}\left(x_{i} y_{i}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x_{i} y_{i}\right)\right) d y_{1} \ldots . . d y_{n} \\
& =\int_{0}^{\infty} \ldots \int_{0}^{\infty}\left(\prod_{i=1}^{n}\left(x_{i} y_{i}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x_{i} y_{i}\right)\right) d y_{1} \ldots . . d y_{n} \int_{0}^{\infty} \ldots . \int_{0}^{\infty} \hat{\phi}\left(\eta_{1}, \ldots, \eta_{n}\right) \\
& \times a_{\eta}\left(y_{1}, \ldots ., y_{n}\right) d \eta_{1} \ldots \ldots d \eta_{n} .
\end{aligned}
$$

Now, using the estimate for $a_{\eta}\left(y_{1}, \ldots, y_{n}\right)$ given in Lemma 3.1, the above change in the order of integration can be justified and the existence of the last integral can be proved. Since $\hat{\phi}\left(\eta_{1}, \ldots, \eta_{n}\right) \in H_{\alpha, \beta}\left(I^{n}\right)$
we have

$$
\left|\widehat{\phi}\left(\eta_{1}, \ldots, \eta_{n}\right)\right| \leq \mathrm{C}[\eta]^{2 \alpha}(1+[\eta])^{-l}, \quad \text { for all } l>0
$$

Hence
$\left|\left(h_{\alpha, \beta, a} \phi\right)\left(x_{1}, \ldots ., x_{n}\right)\right|$
$\leq \int_{0}^{\infty} \ldots \int_{0}^{\infty}\left(\int_{0}^{\infty} \ldots . \int_{0}^{\infty}[x y]^{2 \alpha}\right)\left|\prod_{i=1}^{n}\left(x_{i} y_{i}\right)^{-(\alpha-\beta)} J_{\alpha-\beta}\left(x_{i} y_{i}\right)\right|$
$\times A C(1+[y])^{2 \alpha}\left(1+\left[y^{2 r}\right]\right)^{-1}\left(1+[\eta]^{\alpha-\beta+m+4 r+\frac{1}{2}}[\eta]^{2 \alpha}(1+[\eta])^{-l} d \eta_{1} \ldots . d \eta_{n}\right) d y_{1} \ldots . d y_{n}$.
$\leq L[x]^{2 \alpha} \int_{0}^{\infty} \ldots . \int_{0}^{\infty}(1+[y])^{4 \alpha}\left(1+\left[y^{2 r}\right]\right)^{-1} d y_{1} \ldots . d y_{n}$
$\times \int_{0}^{\infty} \ldots \int_{0}^{\infty}\left(1+[\eta]^{2(\alpha-\beta)+m+4 r+1-l} d \eta_{1} \ldots . d \eta_{n}\right.$
The above integrals are convergent since $(\alpha-\beta) \geq-\frac{1}{2}$, and $l(>r)$ can be chosen sufficiently large. Indeed, one can show that
$\int_{0}^{\infty} \ldots \int_{0}^{\infty} \frac{\left(1+\left(y_{1}, \ldots ., y_{n}\right)\right)^{4 \alpha}}{1+y_{1}^{2 r_{1}} \ldots . y_{n}^{2 r_{n}}} d y_{1} \ldots \ldots d y_{n}$
$\leq \int_{0}^{1} \ldots . \int_{0}^{1} \frac{(1+1)^{4 \alpha}}{1} d y_{1} \ldots \ldots d y_{n}+\int_{1}^{\infty} \ldots . . \int_{1}^{\infty} \frac{\left(2 y_{1} \ldots \ldots y_{n}\right)^{4 \alpha}}{y_{1}^{2 r_{1}} \ldots . y_{n}^{2 r_{n}}} d y_{1} \ldots . d y_{n}$
$=2^{4 \alpha}+2^{4 \alpha} \int_{1}^{\infty} \ldots \ldots \int_{1}^{\infty} y_{1}^{4 \alpha-2 r_{1}} \ldots \ldots . y_{n}^{4 \alpha-2 r_{n}} d y_{1} \ldots . d y_{n}<\infty$,
for all $r_{i}>3 \alpha+\beta, i=1,2, \ldots, n$.
Similarly, the second integral in (3.3) can also be shown to converge. Thus proof is completed.

4. An $L^{\mathbf{1}}$ norm inequality:

In the proof Theorem 4.1, we shall need the following estimate for the Hankel type transform of $[x]^{2 \alpha} a\left(x_{1}, \ldots . ., x_{n} ; \eta_{1}, \ldots, \eta_{n}\right)$. We write

$$
A_{\eta}\left(y_{1}, \ldots, y_{n}\right)=h_{\alpha, \beta}\left\{[x]^{2 \alpha} a\left(x_{1}, \ldots \ldots, x_{n} ; \eta_{1}, \ldots, \eta_{n}\right)\right\} y_{1}, \ldots, y_{n}
$$

Lemma 4.1: For $(\alpha-\beta) \geq-\frac{1}{2}$ and $r \in \mathbb{N}_{0}^{n}, r>(0, \ldots \ldots, 0)$, there exists a constant $\mathrm{C}>0$ such that

$$
\begin{equation*}
\left|A_{\eta}\left(y_{1}, \ldots, y_{n}\right)\right| \leq C(1+[\eta])^{m}[y]^{2 \alpha}\left(1+\left[y^{2 r}\right]\right)^{-1} \tag{4.1}
\end{equation*}
$$

Proof: As in the proof of Lemma 3.1, we have

$$
\begin{aligned}
\left(\prod_{i=1}^{n}\left(y_{i}^{2}\right)^{r_{i}}\right) & A_{\eta} \\
& \left(y_{1}, \ldots ., y_{n}\right) \\
& =\int_{0}^{\infty} \ldots . \int_{0}^{\infty}\left(\prod_{i=1}^{n}\left(x_{i} y_{i}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x_{i} y_{i}\right) \Delta_{\alpha, \beta}^{r_{i}}\left([x]^{2 \alpha} a\left(x_{1}, \ldots \ldots, x_{n} ; \eta_{1}, \ldots ., \eta_{n}\right)\right)\right) \\
& \times d x_{1} \ldots \ldots . d x_{n}
\end{aligned}
$$

$$
=\int_{0}^{\infty} \ldots \ldots \int_{0}^{\infty} \prod_{i=1}^{n}\left\{\left(x_{i} y_{i}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x_{i} y_{i}\right)\right\}\left(\sum_{j_{i}=0}^{r_{i}} b j_{i}\left(x_{i}\right)^{2 j_{i}+2 \alpha}\left(x_{1}^{-1} \frac{\partial}{\partial x_{i}}\right)^{r_{i}+j_{i}} a\left(x_{1}, \ldots \ldots, x_{n} ; \eta_{1}, \ldots, \eta_{n}\right)\right)
$$

$$
\times d x_{1} \ldots \ldots . d x_{n}
$$

so that
$\left|\left(\prod_{i=1}^{n}\left(y_{i}^{2}\right)^{r_{i}}\right) A_{\eta}\left(y_{1}, \ldots, y_{n}\right)\right| \leq \int_{0}^{\infty} \ldots . . \int_{0}^{\infty}\left|\prod_{i=1}^{n}\left\{\left(x_{i} y_{i}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x_{i} y_{i}\right)\right\}\right|$
$\times\left(\prod_{i=1}^{n} \sum_{j_{i}=0}^{r_{i}}\left|b j_{i}\right|\left(x_{i}\right)^{2 j_{i}+2 \alpha}\right)\left|\left(x_{1}^{-1} \frac{\partial}{\partial x_{i}}\right)^{r_{i}+j_{i}} a\left(x_{1}, \ldots \ldots, x_{n} ; \eta_{1}, \ldots, \eta_{n}\right)\right| d x_{1} \ldots \ldots d x_{n}$
$\leq \int_{0}^{\infty} \ldots \ldots \int_{0}^{\infty}\left|\prod_{i=1}^{n}\left\{\left(x_{i} y_{i}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x_{i} y_{i}\right)\right\}\right|\left(\prod_{i=1}^{n} \sum_{j_{i}=0}^{r_{i}}\left|b j_{i}\right|\right)$
$\times\left[x^{2_{j}+2 \alpha}\right] D(1+[\eta])^{m} \prod_{i=1}^{n}\left(1+x_{i}\right)^{-q_{i}} d x_{1} \ldots \ldots . d x_{n}$
$\leq \int_{0}^{\infty} \ldots . . \int_{0}^{\infty}[y]^{2 \alpha}[x]^{2 \alpha}\left|\prod_{i=1}^{n}\left\{\left(x_{i} y_{i}\right)^{-(\alpha-\beta)} J_{\alpha-\beta}\left(x_{i} y_{i}\right)\right\}\right|$

$$
\begin{aligned}
& \times\left(\prod_{i=1}^{n} \sum_{j_{i}=0}^{r_{i}}\left|b j_{i}\right|\right)\left[x^{2 j+2 \alpha}\right] D(1+[\eta])^{m} \\
& \times \prod_{i=1}^{n}\left(1+x_{i}\right)^{-q_{i}} d x_{1} \ldots \ldots . d x_{n} \\
& \leq \prod_{i=1}^{n} \sum_{j_{i}=0}^{r_{i}}[y]^{2 \alpha} B(1+[\eta])^{m} \int_{0}^{\infty} \ldots . \int_{0}^{\infty} \prod_{i=1}^{n}\left(\left(1+x_{i}\right)^{-q_{i}} x_{i}^{2 j+4 \alpha}\right) d x_{1} \ldots \ldots . d x_{n} \\
& \leq \prod_{i=1}^{n} \sum_{j_{i}=0}^{r_{i}}[y]^{2 \alpha} B(1+[\eta])^{m}\left(B\left(2(\alpha-\beta)+2 j_{i}+2, q_{i}-2(\alpha-\beta)-2 j_{i}-2\right)\right) \\
& \leq \prod_{i=1}^{n} \sum_{j_{i}=0}^{r_{i}}[y]^{2 \alpha} B(1+[\eta])^{m}\left(\frac{\Gamma\left(2(\alpha-\beta)+2 j_{i}+2\right) \Gamma\left(q_{i}-2(\alpha-\beta)-2 j_{i}-2\right)}{\Gamma\left(q_{i}\right)}\right)
\end{aligned}
$$

Therefore,

$$
\left|A_{\eta}\left(y_{1}, \ldots, y_{n}\right)\right| \leq C(1+[\eta])^{m}[y]^{2 \alpha}\left(1+\left[y^{2 r}\right]\right)^{-1}
$$

where C is a positive constant. Thus proof is completed.
We shall use the above inequality in obtaining a Sobolev norm inequality for a subspace of $H_{\alpha, \beta}\left(I^{n}\right)$.
Definition 4.1: (Sobolev type space) : The space $G_{\alpha, \beta}^{s}\left(\mathbb{R}^{n}\right), s \in \mathbb{R}$ is defined to be the set of all those elements $\phi \in$ $H_{\alpha, \beta}\left(I^{n}\right)$ which satisfy

$$
\begin{equation*}
\|\phi\|_{G_{\alpha, \beta}^{s}}=\eta^{s+2 \beta-1} h_{\alpha, \beta} \phi \mid<\infty . \tag{4.2}
\end{equation*}
$$

Theorem 4.1: Let $(\alpha-\beta)>-\frac{1}{2}$. Then for all $v \in \mathbb{N}_{0}^{n}$ there exists $\mathrm{C}>0$ such that

$$
\begin{equation*}
\left\|h_{\alpha, \beta, a} \phi\right\|_{G_{\alpha, \beta}^{0}} \leq \prod_{i=1}^{n} \sum_{l_{i}=0}^{v_{i}}\binom{v_{i}}{l_{i}}\|\phi\|_{G_{\alpha-\beta}^{l_{i}}} \quad \phi \in H_{\alpha, \beta}\left(I^{n}\right) . \tag{4.3}
\end{equation*}
$$

Proof: Taking the Hankel type transform with respect to x of (3.2), we get

$$
\begin{aligned}
& \int_{0}^{\infty} \ldots . . \int_{0}^{\infty}\left(\prod_{i=1}^{n}\left(x_{i} y_{i}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x_{i} y_{i}\right)\right)\left(h_{\alpha, \beta, a} \phi\right)\left(x_{1}, \ldots \ldots, x_{n}\right) d x_{1} \ldots \ldots . d x_{n} \\
& =\int_{0}^{\infty} \ldots \int_{0}^{\infty} a_{\eta}\left(y_{1}, \ldots \ldots, y_{n}\right) \hat{\phi}\left(\eta_{1}, \ldots \ldots, \eta_{n}\right) d \eta_{1} \ldots \ldots . d \eta_{n} .
\end{aligned}
$$

Now, multiplying both sides by $[y]^{2 \beta-1}$ and using (1.11), we get

$$
\begin{gathered}
{[y]^{2 \beta-1} h_{\alpha, \beta}\left(h_{\alpha, \beta, a} \phi\right)\left(y_{1}, \ldots \ldots, y_{n}\right)=\int_{0}^{\infty} \ldots \ldots \int_{0}^{\infty} \hat{\phi}\left(\eta_{1}, \ldots \ldots, \eta_{n}\right)[y]^{2 \beta-1}} \\
\times\left(\int_{0}^{\infty} \ldots . \int_{0}^{\infty}\left\{\prod_{i=1}^{n}\left(x_{i} y_{i}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x_{i} y_{i}\right)\right\}\left\{\prod_{v=1}^{n}\left(x_{v} y_{v}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x_{v} y_{v}\right)\right\} a\left(x_{1}, \ldots \ldots, x_{n} ; \eta_{1}, \ldots, \eta_{n}\right)\right) \\
\left.\times d x_{1} \ldots \ldots . d x_{n}\right)
\end{gathered}
$$

$\times d \eta_{1}, \ldots, . . d \eta_{n}$.

$$
\begin{aligned}
& =\frac{1}{\left(2^{\alpha-\beta} \Gamma(3 \alpha+\beta)\right) 2^{2 n}} \int_{0}^{\infty} \ldots \ldots \int_{0}^{\infty} \hat{\phi}\left(\eta_{1}, \ldots \ldots, \eta_{n}\right)[y]^{2 \beta-1} \\
& =\int_{0}^{\infty} \ldots . \int_{0}^{\infty}\left\{\prod_{i=1}^{n}\left(x_{i} y_{i}\right)^{\alpha+\beta}\left(x_{i} y_{i}\right)^{\alpha+\beta} j_{\alpha-\beta}\left(x_{i} y_{i}\right)\right\} \\
& \times\left\{\prod_{v=1}^{n}\left(x_{v} y_{v}\right)^{\alpha+\beta}\left(x_{v} y_{v}\right)^{\alpha-\beta} j_{\alpha-\beta}\left(x_{v} y_{v}\right)\right\} \\
& \left.\times a\left(x_{1}, \ldots \ldots, x_{n} ; \eta_{1}, \ldots ., \eta_{n}\right) d x_{1} \ldots . d x_{n}\right) d \eta_{1}, \ldots \ldots, d \eta_{n} .
\end{aligned}
$$

Now, applying equations (1.9) and (1.10), we can write the right-hand side of the above expression in the form

$$
\begin{aligned}
& R \int_{0}^{\infty} \ldots \ldots \int_{0}^{\infty} \hat{\phi}\left(\eta_{1}, \ldots \ldots, \eta_{n}\right)[y]^{2 \beta-1}\left(\int_{0}^{\infty} \ldots \ldots \int_{0}^{\infty}[x]^{4 \alpha}[\eta]^{3 \alpha+\beta}[y]^{2 \alpha}\right) \\
& \times\left(\int_{0}^{\infty} \ldots \ldots \int_{0}^{\infty}[z]^{3 \alpha+\beta}\left\{\prod_{i=1}^{n}\left(x_{i}\right)^{-(\alpha-\beta)} J_{\alpha-\beta}\left(z_{i} x_{i}\right) D_{\alpha, \beta}\left(\eta_{i}, y_{i}, z_{i}\right)\right\} d z_{1}, \ldots \ldots, d z_{n}\right)
\end{aligned}
$$

$$
\times a\left(x_{1}, \ldots \ldots, x_{n} ; \eta_{1}, \ldots, \eta_{n}\right) d \eta_{1}, \ldots \ldots, d \eta_{n}
$$

$$
=R \int_{0}^{\infty} \ldots \ldots \int_{0}^{\infty}[x]^{3 \alpha+\beta}[\eta]^{2 \alpha} \hat{\phi}\left(\eta_{1}, \ldots \ldots, \eta_{n}\right) d \eta_{1}, \ldots \ldots, d \eta_{n}
$$

$$
\left.\times \int_{0}^{\infty} \ldots \ldots \int_{0}^{\infty}[z]^{2 \alpha}\left\{\prod_{i=1}^{n} D_{\alpha, \beta}\left(\eta_{i}, y_{i}, z_{i}\right)\right\} d z_{1}, \ldots \ldots, d z_{n}\right)
$$

$$
\times \int_{0}^{\infty} \ldots . . \int_{0}^{\infty} a\left(x_{1}, \ldots \ldots, x_{n} ; \eta_{1}, \ldots, \eta_{n}\right)[z]^{\alpha+\beta}\left(\prod_{i=1}^{n} J_{\alpha-\beta}\left(z_{i} x_{i}\right)\right) d x_{1}, \ldots \ldots, d x_{n}
$$

$$
=R \int_{0}^{\infty} \ldots \ldots \int_{0}^{\infty}[x]^{2 \alpha}[\eta]^{2 \alpha} \hat{\phi}\left(\eta_{1}, \ldots \ldots, \eta_{n}\right) d \eta_{1}, \ldots \ldots, d \eta_{n}
$$

$$
\times\left(\int_{0}^{\infty} \ldots . . \int_{0}^{\infty}[z]^{2 \alpha}\left\{\prod_{i=1}^{n} D_{\alpha, \beta}\left(\eta_{i}, y_{i}, z_{i}\right)\right\} d z_{1}, \ldots \ldots, d z_{n}\right)
$$

$$
\times \int_{0}^{\infty} \ldots . \int_{0}^{\infty} a\left(x_{1}, \ldots \ldots, x_{n} ; \eta_{1}, \ldots, \eta_{n}\right)\left(\prod_{i=1}^{n}\left(z_{i} x_{i}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(z_{i} x_{i}\right)\right) d x_{1}, \ldots \ldots, d x_{n}
$$

$$
=R \int_{0}^{\infty} \ldots \int_{0}^{\infty}[\eta]^{2 \alpha} \hat{\phi}\left(\eta_{1}, \ldots \ldots, \eta_{n}\right) d \eta_{1}, \ldots \ldots, d \eta_{n} \int_{0}^{\infty} \ldots \int_{0}^{\infty}[z]^{2 \alpha}\left(\prod_{i=1}^{n} D_{\alpha, \beta}\left(\eta_{i}, y_{i}, z_{i}\right)\right)
$$

$$
\times d z_{1}, \ldots \ldots, d z_{n} \int_{0}^{\infty} \ldots . \int_{0}^{\infty}[x]^{2 \alpha} a\left(x_{1}, \ldots \ldots, x_{n} ; \eta_{1}, \ldots, \eta_{n}\right)
$$

$\times\left(\prod_{i=1}^{n}\left(z_{i} x_{i}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(z_{i} x_{i}\right)\right) d x_{1}, \ldots \ldots, d x_{n}$,
where
$R=\frac{1}{\left(2^{\alpha-\beta} \Gamma(3 \alpha+\beta)\right)^{2 n}}$.
Therefore,

$$
\begin{align*}
& {[y]^{2 \beta-1} h_{\alpha, \beta}\left(h_{\alpha, \beta, a}\right)\left(y_{1}, \ldots \ldots, y_{n}\right)} \\
& \leq \int_{0}^{\infty} \ldots \ldots \int_{0}^{\infty}[\eta]^{2 \alpha} \hat{\phi}\left(\eta_{1}, \ldots \ldots, \eta_{n}\right) d \eta_{1}, \ldots \ldots, d \eta_{n} \int_{0}^{\infty} \ldots \int_{0}^{\infty}[z]^{2 \alpha} \\
& \times\left(\prod_{i=1}^{n} D_{\alpha, \beta}\left(\eta_{i}, y_{i}, z_{i}\right)\right) d z_{1}, \ldots \ldots, d z_{n} \int_{0}^{\infty} \ldots . . \int_{0}^{\infty}[x]^{2 \alpha} a\left(x_{1}, \ldots \ldots, x_{n} ; \eta_{1}, \ldots, \eta_{n}\right) \\
& \quad \times\left(\prod_{i=1}^{n}\left(z_{i} x_{i}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(z_{i} x_{i}\right)\right) d x_{1}, \ldots \ldots, d x_{n} \tag{4.4}
\end{align*}
$$

By an application of the estimates (4.1) to (4.4), we have

$$
\begin{align*}
& \left|[y]^{2 \beta-1} h_{\alpha, \beta}\left(h_{\alpha, \beta, a} \phi\right)\left(y_{1}, \ldots \ldots, y_{n}\right)\right| \\
& \leq C R \int_{0}^{\infty} \ldots \ldots \int_{0}^{\infty}(1+[\eta])^{m}[\eta]^{2 \alpha} \widehat{\phi}\left(\eta_{1}, \ldots \ldots, \eta_{n}\right) d \eta_{1}, \ldots \ldots, d \eta_{n} \\
& \times \int_{0}^{\infty} \ldots . \int_{0}^{\infty}[z]^{4 \alpha}\left(1+\left[z^{2 r}\right]\right)^{-1}\left(\prod_{i=1}^{n} D_{\alpha, \beta}\left(\eta_{i}, y_{i}, z_{i}\right)\right) d z_{1}, \ldots \ldots, d z_{n} \\
& \leq D \sum_{l_{1}=0}^{v_{1}} \ldots \sum_{l_{n}=0}^{v_{n}}\binom{v_{1}}{l_{1}} \ldots \ldots\binom{v_{n}}{l_{n}} \int_{0}^{\infty} \ldots \ldots \int_{0}^{\infty}\left[\eta^{l+2 \alpha}\right] \hat{\phi}\left(\eta_{1}, \ldots \ldots, \eta_{n}\right) d \eta_{1}, \ldots \ldots, d \eta_{n} \\
& \quad \times \int_{0}^{\infty} \ldots \int_{0}^{\infty}[z]^{4 \alpha}\left(1+\left[z^{2 r}\right]\right)^{-1}\left(\prod_{i=1}^{n} D_{\alpha, \beta}\left(\eta_{i}, y_{i}, z_{i}\right)\right) d z_{1}, \ldots \ldots, d z_{n} \tag{4.5}
\end{align*}
$$

Now, we set

$$
f\left(z_{1}, \ldots \ldots . z_{n}\right)=\left(1+\left[z^{2 r}\right]\right)^{-1} \in L^{1}\left(I^{n}\right) \text { for } r_{i}>0, i=1,2 \ldots . . n
$$

and
$g\left(\eta_{1}, \ldots \ldots, \eta_{n}\right)=\left(2^{\alpha-\beta} \Gamma(3 \alpha+\beta)\right)^{n}\left[\eta^{l+2 \beta-1}\right] \hat{\phi}\left(\eta_{1}, \ldots \ldots, \eta_{n}\right) \in L^{1}\left(I^{n}\right)$, for
all $l \in \mathbb{N}_{0}^{n}$ such that $l_{i} \leq v_{i}, i=1,2 \ldots \ldots, n$.
Then according to (1.12) and (1.13), we have

$$
\begin{aligned}
\left(\tau_{y} f\right)\left(\eta_{1}, \ldots \ldots, \eta_{n}\right) & =\int_{0}^{\infty} \ldots \ldots \int_{0}^{\infty} f\left(z_{1}, \ldots \ldots . z_{n}\right)\left(\prod_{i=1}^{n} D_{\alpha, \beta}\left(\eta_{i}, y_{i}, z_{i}\right)\right) \\
& \times[z]^{4 \alpha}\left(2^{\alpha-\beta} \Gamma(3 \alpha+\beta)\right)^{-n} d z_{1} \ldots \ldots d z_{n}
\end{aligned}
$$

and

$$
\begin{aligned}
& (f \neq g)(y)=\int_{0}^{\infty} \ldots \ldots \int_{0}^{\infty}\left(\tau_{y} f\right)\left(\eta_{1}, \ldots \ldots, \eta_{n}\right) g\left(\eta_{1}, \ldots \ldots, \eta_{n}\right)[\eta]^{4 \alpha} \\
& \quad \times\left(2^{\alpha-\beta} \Gamma(3 \alpha+\beta)\right)^{-n} d \eta_{1}, \ldots \ldots, d \eta_{n}
\end{aligned}
$$

Therefore applying (1.14) to (4.5), we get
$\left\|[y]^{2 \beta-1} h_{\alpha, \beta}\left(h_{\alpha, \beta, a} \phi\right)\left(y_{1}, \ldots \ldots, y_{n}\right)\right\|_{L^{1}}$
$\leq D \sum_{l_{1}=0}^{v_{1}} \ldots . \sum_{l_{n}=0}^{v_{n}}\binom{v_{1}}{l_{1}} \ldots \ldots\binom{v_{n}}{l_{n}}\left\|\left[\eta^{l+2 \beta-1}\right] \hat{\phi}\left(\eta_{1}, \ldots \ldots, \eta_{n}\right)\right\|_{L^{1}}\left\|\left(1+\left[z^{2 r}\right]\right)^{-1}\right\|_{L^{1}}$
$\leq C \sum_{l_{1}=0}^{v_{1}} \ldots . . \sum_{l_{n}=0}^{v_{n}}\binom{v_{1}}{l_{1}} \ldots \ldots\binom{v_{n}}{l_{n}}\left\|\left[\eta^{l+2 \beta-1}\right] \hat{\phi}\left(\eta_{1}, \ldots \ldots, \eta_{n}\right)\right\|_{L^{1}}$.
From which inequality (4.3) follows. This completes the proof.

Conclusions:

1. If we take $\alpha=\frac{1}{4}+\frac{\mu}{2} \quad, \beta=\frac{1}{4}-\frac{\mu}{2}$ in the present paper then results reduce to n dimensional case in [2] .
2. For $n=1, \alpha=\frac{1}{4}+\frac{\mu}{2} \quad, \beta=\frac{1}{4}-\frac{\mu}{2}$, the results in the present paper reduce to the dimensional case in Zemanian [8].
3. Author claims that the results developed in the present paper are stronger than that of [2].

Remark: It is proposed to obtain more results on $n^{\text {- dimensional pseudo-differential type operator involving Hankel type }}$ transformation.

References:

1. I.I.Jr.Hirschman, Variation diminishing Hankel transform, J. Analyse Math. 8(1960/61), 307-336.
2. R.S. Pathak, Akhilesh Prasad, Manish Kumar, An n-dimensional pseudo-differential operator involving the Hankel transformation, Proc. Indian Acad. Sci. (Math. Sci.) Vol. 122, No.1, Feb, 2012, 99-120.
3. L.Schwartz, Theorie des Distributions, (Paris: Hermann), (1978).
4. B.B.Waphare , Pseudo-differential operators associated with Bessel type operators-I, Thailand J. Math, Vol.8, No. 1 (2010), 51-62.
5. B.B.Waphare, On the n-dimensional distributional Hankel type transformation (communicated).
6. S.Zaidman , On some simple estimates for pseudo-differential operators, J. Math. Anal. Appl. 39 (1972), 202-207.
7. S.Zaidman, Distributions and Pseudo-differential operators (Essex, England : Longman) (1991).
8. A.H.Zemanian, A distributional Hankel transformation, SIAM J. Appl. Math. 14 (1966), 561-576.
9. A.H.Zemanian, Generalized Integral Transformation, Interscience Publishers, New York (1968).
