Subrata Kr. Mandal et al./ Elixir Mech. Engg. 65 (2013) 20145-20149

Available online at www.elixirpublishers.com (Elixir International Journal)

# **Mechanical Engineering**



Elixir Mech. Engg. 65 (2013) 20145-20149

# Design of a typical Autogenous Mill: Part-I Subrata Kr. Mandal<sup>1,\*</sup>, S. M. Sutar<sup>2</sup> and Atanu Maity<sup>1</sup>

Subrata Kr. Mandal<sup>1</sup>,\*, S. M. Sutar<sup>2</sup> and Atanu Maity<sup>1</sup> <sup>1</sup>CSIR-Central Mechanical Engineering Research Institute, Durgapur, India. <sup>2</sup>CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, India.

# **ARTICLE INFO**

Article history: Received: 21 October 2013; Received in revised form: 15 December 2013; Accepted: 23 December 2013;

# Keywords

Autogenous, Run-of-mine, Pebble.

# ABSTRACT

An Autogenous Milling defined as used in this study, the term Autogenous milling means a process in which the size of the constituent pieces of a supply of rock is reduced in a tumbling mill purely by the interaction of the pieces, or by the interaction of the pieces with the mill shell, no other grinding medium being employed. The definition thus covers both 'run-of-mine' and 'pebble' milling, the only difference from the mathematical modeling viewpoint being that the feed to the first has a continuous, and the second a non-continuous, size distribution. This paper describes the detail design of a typical Autogenous mill.

© 2013 Elixir All rights reserved

## Introduction

Over the past twenty or thirty years, mathematical modeling of ball and rod mills has been widely investigated, and reasonably satisfactory models are now available. The Autogenous mill has, however, received very little attention in this respect, and in view of the increasing importance of this type of mill, the Julius Kruttschnitt Mineral Research Centre in the Department of Mining and Metallurgical Engineering, University of Queensland, in 1970 commenced a programme of research into mathematical modeling of the Autogenous mill.

Special Characteristics of the Autogenous Mill Autogenous milling differs fundamentally from non-Autogenous milling in two respects. (1) Size reduction occurs by two main modes, namely the detachment of material from the surface of larger particles (referred to as 'abrasion') on the one hand, and disintegration of smaller particles due to the propagation of crack networks through them (called 'crushing') on the other. Abrasion and crushing breakage overlap on the size scale. This contrasts with non-Autogenous milling, in which only crushing breakage, however caused, is regarded as significant. (2) The grinding parameters of the Autogenous mill load are not independent of the mill feed; the load is continually generated from the feed, and its parameters therefore depend directly on those of the feed. These two characteristics must be specifically included in the model of the Autogenous mill (George, 1947).

Α special development is the Autogenous or semi Autogenous mill. Autogenous mills operate without grinding bodies; instead, the coarser part of the ore simply grinds itself and the smaller fractions. To semi Autogenous mills (which have become widespread), 5 to 10 percent grinding bodies (usually metal spheres) are added. Autogenous and semi-Autogenous mills are designed for grinding or primary crushed ore, and are the most widely used in concentrators globally. Autogenous mills are so-called due to the self-grinding of the ore: a rotating drum throws larger rocks of ore in a cascading motion which causes impact breakage of larger rocks and compressive grinding of finer particles. It is similar in operation to a SAG mill as described below but does not use steel balls in

the mill. Also known as ROM or "Run of Mine" grinding. Autogenous Mills operate, mechanically, similar to the ball mill. They differ in the media they use to break or grind the ore. Autogenous Mills use large particles of ore instead of steel or other balls for grinding media. Autogenous mills use large pieces of ore as grinding media. The grinding is facilitated in Autogenous mills by attrition with limited grinding by impact. For an ore to successfully grind autogenously, the ore must be competent, and it must break along grain boundaries at the desired product size. Another requirement is that the finer sizes should break easily and should be removed from the mill, otherwise, there will be a critical size buildup. Autogenous grinding has two advantages, (1) it reduces metal wear and (2) eliminates secondary and tertiary crushing stages. Thus it offers a savings in capital and operating costs. Autogenous mills are available for both wet and dry grinding. The diameter of Autogenous mills is normally two to three times the length. The ore charge is usually 25 to 35% of the mill volume. Autogenous mills have grate discharges to retain the coarse grinding media in the mill (Andrew et al., 2000).

# Background

The Autogenous mill is designed for dry grinding of raw bath (cryolite) mixed with other materials as aluminium modules or sheets, iron scraps, papers, etc. The Raw bath, which is coming from the mill feed-belt conveyor, is provided with the mill spout feeder. The mill body is the driven unit of the driving pinion and ring gear. The raw bath is lifted during the rotation of the mill by the internal mill liners and it is then broken during free falling. As the size of the particle is reduced, the gas stream through the discharge trunnion removes the ground product. It is then allowed to enter in process bag filter. The reduced size of bath is obtained by impact work and attrition work. A fan exhausts the air and it is fitted with motorised dampers. An air flow meter is located at stack inlet and it controls the position of this damper. It is required to maintain the air sweeping flow at a constant value corresponding to the size of bath particles to be exhausted from the mill.

Tele: E-mail addresses: subrata.mandal72@gmail.com

<sup>© 2013</sup> Elixir All rights reserved

The air drawn up by the fan then ensures 3 major functions such as 1) Reclaiming finished product from Autogenous mill, 2) Conveying ground bath up to the process bag filter 3) Making Autogenous Mill grinding process dust free, working under negative pressure. The Autogenous Mill is equipped with a lubrication unit consisting of a) One tank, b) One low-pressure motor pump unit and c) A set of accessories. The oil is pumped from the tank by a low-pressure motor pump unit and it feeds the mill bearings. The oil is filtered before reaching the bearing and cooled by an oil/air or oil/water exchanger. It is then distributed by flow regulating valves. The oil returns from the bearings to the lubrication unit by gravitational pressure. Based on the stated background and historical citation a typical Autogenous Mill has been designed and presented in this paper. Thus the objective of this research work was to design a Autogenous Mill for small and medium scale mill based on the available input parameters.

# Materials and Methods:

The specifications for the design and developed Autogenous Mill are given below:

| Table 1: Autogenous Will specifications |                                                                                                                                                                                                                                                                                  |  |  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Equipment                               | Autogenous Grinding Mill (Size: 3900x1450x50mm)                                                                                                                                                                                                                                  |  |  |
| Туре                                    | Air Swept Discharge                                                                                                                                                                                                                                                              |  |  |
| Capacity                                | Rated- 20 TPH, Design- 30 TPH                                                                                                                                                                                                                                                    |  |  |
| Feed Material                           | Anode Bath for Aluminium Smelter                                                                                                                                                                                                                                                 |  |  |
| Bulk Density                            | 1.8 – 2 T/Cu m                                                                                                                                                                                                                                                                   |  |  |
| Desired Product<br>Size                 | 100% < 5 mm<br>95% < 3 mm<br>30% < 74 microns                                                                                                                                                                                                                                    |  |  |
| Gearing Ratio                           | 9.16                                                                                                                                                                                                                                                                             |  |  |
| Pinion speed                            | 150 rpm                                                                                                                                                                                                                                                                          |  |  |
| Material<br>Characteristics             | Very Abrasive                                                                                                                                                                                                                                                                    |  |  |
| Auxiliary<br>Systems                    | <ul> <li>Tramp Metal Butts Extractor with Feed Launder Movement Device and Dust collection Outlets</li> <li>Access Doors</li> <li>Main Driving Mechanism and Motor (150 kW-1500 rpm)</li> <li>Inching Drive with Motor (3.7 kW- 1500 rpm)</li> <li>Lubrication System</li> </ul> |  |  |
| Mill Shell                              | • 3900 mm dia inside liners                                                                                                                                                                                                                                                      |  |  |
| Mill Operating<br>Speed                 | 1250 min length inside inters                                                                                                                                                                                                                                                    |  |  |
| Design Mill<br>Charge                   | 45 % by volume maximum                                                                                                                                                                                                                                                           |  |  |

Table 1. Autogenous Mill specifications

Fig.1 shows the complete Autogenous mill. The total Autogenous mill is consists of some of the critical major assemblies like Mill body assembly, Driving gear and pinion assembly, Spout Feeder Assembly, Outlet Duct Assembly, Babbit Bearing Assemblies, Metallic Butt Extractor Assembly, Drive Base Assembly.



Fig.1: Complete designed and developed Autogenous mill

# Design Based Calculation of the typical Autogenous Mill (Malhotra, 1969)

| Power calculation of AG mil | 1 |
|-----------------------------|---|
|-----------------------------|---|

| Mill inside liner diameter (3.9 m - 2 x 0.1)                | 85 m), D     | =3.53m                 |
|-------------------------------------------------------------|--------------|------------------------|
| Mill inside liner length $(1.35 \text{ m} - 2 \times 0.13)$ | m). L        | =1.09m                 |
| Bulk density BD                                             | ,, 2         | $= 2MT/m^3$            |
| Average % fraction of critical speed C                      |              | - 77%                  |
| Volumetric % fraction of mill charge $V_{T}$                |              | - 35%                  |
| Product size 80 % passing P                                 |              | -740  mm               |
| Fred size 80 % passing (E)                                  |              | = 740  mm              |
| Short top to matric tops conversion factor                  | k            | -1.102                 |
| Kile Wett to IID conversion factor V                        | , <b>к</b> 1 | -1.102                 |
| Kilo watt to HP conversion factor, $K_2$                    |              | = 1.341                |
| Work index, wi                                              |              | =13.30 SIPH            |
| Mill charge with 15% over loading, w                        |              | = /.4 / M1             |
| Power required based on material par                        | ameter a     | and degree of          |
| size reduction                                              |              | 2025                   |
| Optimum feed size, F <sub>0</sub>                           | =            | 3925mm                 |
| Size reduction ratio, R <sub>r</sub>                        | =            | 473:1                  |
| Specific energy by Bond Equation E<br>HP/MT                 | =            | 7.00                   |
| Efficiency Factors: Grinding factor, f <sub>1</sub>         | =            | 1.3 for dry            |
| Open circuit grinding factor, $f_2$                         | =1.2 fo      | r 80% passing          |
| Diameter factor, $f_3$                                      | =            | 0.93                   |
| Over size factor, $f_4$                                     | =            | 2.21                   |
| Fineness of grinding factor, f <sub>5</sub>                 | =            | 0.89                   |
| Specific Energy, P <sub>MS</sub>                            | = 19.3       | 85 HP/MT               |
| Total Mill Power with margin of 15% and                     | 1 90% eff    | Ficiency HP            |
| Total filler of our with margin of 10% and                  | -189         | HP or 141kW            |
| Power required based on physical para                       | meter lil    | ke size sneed          |
| loading etc                                                 | ment m       | xe size, specu,        |
| Critical speed N                                            | _            | 22.52 mm               |
| Mill speed, Ner                                             | _            | 16.27 rpm              |
| Device and N                                                | =            | 2 20m/see              |
| Peripheral speed, N <sub>ph</sub>                           | =            | 3.20m/sec.             |
| Specific energy, PPS                                        | = 1          | 1.31 KW n/N1           |
| Mill Power with margin of 15% and 90%                       | efficienc    | <i>y</i> ,             |
| HP2                                                         | AG =         | 108HP                  |
| Power Model based on speed & CG of cha                      | arge =       | 77 kW                  |
| CG distance from mill center, R <sub>g</sub>                | =            | 0.975m                 |
| Energy constant factor, c                                   | =            | 1/1200 =               |
| 0.000833333                                                 |              |                        |
| Mill Power with margin of 15% and 90%                       | efficienc    | y,                     |
| HPAG                                                        | G =1341      | HP or 100 kW           |
| Calculation of Load Capacity of Spur                        | And Hel      | ical Gears(As          |
| per IS: 4460-95)                                            |              |                        |
| Input Data                                                  |              |                        |
| Number Of teeth (Pinion), $Z_1$                             | =            | 31                     |
| Number Of teeth (Gear), $Z_2$                               | =            | 284                    |
| Normal Module, m <sub>n</sub>                               | =            | 16 mm                  |
| Normal Pressure Angle, $\alpha_n$                           | =            | 20 degree              |
| Helix Angle b                                               | =            | 0 degree               |
| Pinion Speed n.                                             | =            | 150 rpm                |
| Transmited Power P                                          | =            | 150000 W               |
| Face Width b                                                | _            | 150 mm                 |
| Life L <sub>11</sub>                                        | _            | 72000 h                |
| Probality Of Failure P.                                     | _            | 0.01                   |
| Accuracy Grade                                              | _            | 6                      |
| Material Hardness UP                                        | _            | 0<br>250 RUN           |
| Material Hardness, HP                                       | _            | 230 DHN<br>210 RUN     |
| Modulus Of Flosticity F                                     | _            | 210 DEIN<br>206000 MD- |
| mountus OI Elasticity, $E_1$                                | _            | 200000 wira            |

Poisson's Ratio, m = 0.3Viscosity Grade Of Lubricant = ISO VG 32 Lubricant Viscosity,VG32, v40 =  $32 \text{ mm}^2/\text{s}$ Lubricant Viscosity,VG32, v50 =  $20 \text{ mm}^2/\text{s}$ 

| Endurance Limit, $\sigma_{Hlim1}$                    |   | =                | 600Mpa  |
|------------------------------------------------------|---|------------------|---------|
| Endurance Limit, $\sigma_{\text{Hlim2}}$             |   | =                | 460 Mpa |
| Nominal Endurance Limit, OFE1                        |   | =                | 420 Mpa |
| Nominal Endurance Limit, OFF1                        |   | =                | 300 Mpa |
| Profile Correction Factor. $x_1$                     |   | =                | 0       |
| Profile Correction Factor, x <sub>2</sub>            |   | =                | 0       |
| Mean Roughness, R <sub>Z1</sub>                      |   | =                | 6.3 µm  |
| Mean Roughness, $R_{Z2}$                             |   | =                | 6.3 µm  |
| Protuberance Angle $\alpha_{\text{prol}}$            |   | =                | 20 °    |
| Protuberance Angle $\alpha_{pro2}$                   |   | =                | 20 °    |
| Buckling Height, $h_{k2} (\alpha_n = \alpha_{npro})$ |   | =                | 0 mm    |
| Supplementary Data                                   |   |                  |         |
| Ratio Of Gearing, u                                  | = | 9.16             |         |
| Gear Speed, N <sub>2</sub>                           | = | 16.37            | rpm     |
| Pinion PCD, d <sub>1</sub>                           | = | 496 n            | ım      |
| Gear PCD, d <sub>2</sub>                             | = | 4544             | mm      |
| Outside diameter (Pinion), d <sub>a1</sub>           | = | 528 m            | ım      |
| Outside diameter (Gear), d <sub>a2</sub>             | = | 528 m            | ım      |
| Linear Speed, v                                      | = | 3.9 m            | /s      |
| Tangential Load, F <sub>t</sub>                      | = | 38505            | 5.23 N  |
| Transverse Module, m <sub>t</sub>                    | = | 16 mr            | n       |
| Base Circle Dia.(Pinion), db <sub>1</sub>            | = | 466.0            | 9 mm    |
| Transverse Pressure Angle $\alpha_t$                 | = | $20^{\circ}$     |         |
| Trans. Working Pr. Angle, $\alpha_{wt}$              | = | $20^{\circ}$     |         |
| Base Helix Angle, $\beta_b$                          | = | $0^{\mathrm{o}}$ |         |
| Tip Pressure Angle, $\alpha_{a1}$                    | = | 28.03            | D       |
| Tip Pressure Angle, $\alpha_{a2}$                    | = | 21.07            | D       |
| Transverse Contact Ratio, <sub>Ea1</sub>             | = | 0.83             |         |
| Transverse Contact Ratio, $\varepsilon_{a2}$         | = | 0.97             |         |
| Transverse Contact Ratio, $\epsilon_a$               | = | 1.8              |         |
| Normal Contact Ratio, Ean                            | = | 1.8              |         |
| Overlap Ratio, $\varepsilon_{B}$                     | = | 0                |         |
| Base Circle Dia. (Gear), d <sub>b2</sub>             | = | 4269.            | 96 mm   |
|                                                      |   |                  |         |

**Factor of safety for contact stresses:** For Pinion SH1=1.50 and For Gear SH2=1.17

Factor of safety for bending stresses: For Pinion SB1=3.56 and For Gear SB2=1.44

Load factor for surface durability:

$$\left(Z_{1}, \frac{v}{100}\right)\left(\sqrt{\frac{u^{2}}{1+u^{2}}}\right) = 1.20$$
Factor K<sub>V\sigma</sub> = 1  
Factor K<sub>V\beta</sub> = 1  
Factor K<sub>V</sub> = KV\sigma - \vee \vee \beta (K\_{V\sigma} - K\_{V\beta}) = 1  
Zone factor Z\_{H:}  
Z\_{H} = \boxed{(2\cos \beta\_{b} . \cos \sigma\_{wt})} = 2.49

 $\int \cos \sigma_1 \cdot \sin \sigma_{wt}$ 

Elasticity factor  $Z_E$  (For contact stress)

$$\frac{Z_{\rm E}}{\sqrt{\left(\frac{1-u^2}{E_1}+\frac{1-u^2}{E_2}\right)}} = 189.81$$

Factor of safety for contact stresses: For Pinion SH1=1.50 and For Gear SH2=1.17 Factor of safety for bending stresses: For Pinion SB1=3.56 and For Gear SB2=1.44 Load factor for surface durability: Application factor (U/M)  $K_A = 1.25$ Load distribution factors: For contact stress Longitudinal K HB =1.19 Transverse  $K_{H\sigma}$ =1.0Dynamic load factor K<sub>v</sub> (For contact stress )  $\left(Z_1 \cdot \frac{v}{100}\right) \left(\sqrt{\frac{u^2}{1+u^2}}\right) = 1.20$ Auxiliary value  $K_V =$ Factor  $K_{V\sigma}$ = 1Factor  $K_{V\beta}$ = 1 Factor K<sub>v</sub>  $= KV\sigma - \varepsilon_{\beta} \left( K_{V\sigma} - K_{V\beta} \right) = 1$ Zone factor Z<sub>H:</sub>  $= \sqrt{\frac{(2\cos\beta_b.\cos\sigma_{wt})}{\cos\sigma_1.\sin\sigma_{wt}}} = 2.49$ Z<sub>H</sub> Elasticity factor  $Z_E$  (For contact stress  $= \sqrt{\left(\frac{1-u^2}{E_1} + \frac{1-u^2}{E_2}\right)} = 189.81$  $Z_E$ Lubrication factor Z<sub>L</sub> Factor of Safety for contact stress (For contact stress) Factor C<sub>ZL1</sub>  $=((\sigma_{HLM} - 850)/350)*0.8 + 0.81 = 0.83$ Factor C<sub>ZL2</sub>  $=((\sigma_{HLM} - 850)/350)*0.8 + 0.81 = 0.83$  $=C_{ZL} + 4 (1-C_{ZL})/(1.2+v^2) = 0.86$  $Z_L$ (For both pinion and gear) Work hardening factor  $Z_W$  (For contact stress)  $Z_{W1} = 1.2 - ((HB_1 - 130)/1700) = 1.13$  $Z_{W2} = 1.2 - ((HB_2 - 130)/1700) = 1.15$ Roughness factor  $Z_R$  (For contact stress)  $Z_{R1} = 1, Z_{R2} = 1$ Velocity factor  $Z_V$  (For contact stress)  $C_V = ((H_{LIM} - 850)/350) * 0.8 + 0.85$  $C_V + 2. \frac{1.2 - C_V}{\sqrt{0.8 + \frac{32}{V}}} = 0.97$ (For Pinion and Gear) Size factor Z<sub>S</sub> (For contact stress)  $Z_{S1} = 1$   $Z_{S2} = 2$ Reliability factor K<sub>R</sub> (For contact stress)  $K_R = 0.79 - 0.105 \log_{10} (p_f) = 1$ Calculated contact stress  $\sigma_{HO:}$ 

$$\sigma_{HO} = Z_H Z_E Z_\varepsilon Z_\beta \sqrt{\frac{F_t(1+u)}{bdu}}$$

Permissible contact stress  $\sigma_{_{HP}}$ 

$$\sigma_{HP} = \frac{\sigma_{H \text{ lim}}}{\sqrt{K_R}} Z_R Z_V Z_W Z_L Z_1$$
  

$$\sigma_{HP1} = 562.34 \text{ MPA} \quad \sigma_{HP2} = 497.41 \text{ MPA}$$
  
Factor of safety  $S_H = \frac{\sigma_{HP}}{\sigma_{HO}}$ 

For pinion  $S_{H1} = 1.79$ , For gear SH2 = 1.58

### Load Factor for Bending Strength

Table 2 describes the supplementary data for the gear while Fig.2 shows the shear force and bending moment diagram.

# Table 2 Supplementary Data

| Sl.No. | Description                              | Values          |
|--------|------------------------------------------|-----------------|
| 1      | Basic Rack Addendum, hao1                | 31.25 mm        |
| 2      | Basic Rack Addendum, hao2                | 31.25mm         |
| 3      | Tip Radius of Basic Rack, $\theta_{ao1}$ | 5.00 mm         |
| 4      | inv a <sub>t</sub>                       | 0.01            |
| 5      | inv a <sub>a2</sub>                      | 0.08            |
| 6      | Virtual Number Of Teeth, zv1             | 182.00          |
| 7      | Auxiliary Angle, $\theta_1$              | $0.25^{0}$      |
| 8      | Tip Tr. Pressure Angle, $\theta_{ta1}$   | $32.68^{\circ}$ |
| 9      | Tip Tr. Pressure Angle, $\theta_{ta2}$   | $22.04^{0}$     |
| 10     | Tip Helix Angle, $\theta_{a1}$           | $0.00^{0}$      |
| 11     | Tip Helix Angle, $\theta_{a2}$           | $0.00^{0}$      |
| 12     | Tip Nor. Pr. Angle, $\theta_{an1}$       | $32.68^{\circ}$ |
| 13     | Tip Nor. Pr. Angle, $\theta_{an2}$       | $22.04^{\circ}$ |

Application factor (U/M)  $K_A = 1.25$ 

Load distribution factors (For contact stress)

Longitudinal  $K_{H\beta} = 1.21$ 

Transverse  $K_{H\sigma} = 1$ 

Dynamic load factor K<sub>V</sub> (For contact stress)

Auxiliary value 
$$K_v = \left(Z_1 \cdot \frac{v}{100}\right) \left(\sqrt{\frac{u^2}{1+u^2}}\right) = 0.86$$

Factor  $K_{V\sigma} = 1$ Factor K<sub>v</sub>  $= \mathbf{K}_{\mathbf{V}\sigma} - \mathbf{C}_{\beta}((\mathbf{K}_{\mathbf{V}\sigma} - \mathbf{K}_{\mathbf{V}\beta}) = 1$ Life factor, Y<sub>N</sub> For bending strength Life cycle = 6E+8 cycles Life cycle  $L_{n2} = 7E + 8$  cycles  $Y_{N1} = 1, Y_{N2} = 1$ Stress concentration factor Notch parameter  $q_{n1} = 3.04$ Notch parameter  $qn_2 = 3.34$ Auxiliary value  $L_{a1} = 0.78$ Auxiliary value  $L_{a2} = 0.95$  $Y_{K1} = (1.2+.13La1)*q_{n1}*(1/1.21+2.3/L_{a1}) = 1.81$  $Y_{K2} = (1.2+.13La2)*q_{n2}*(1/1.21+2.3/L_{a2}) = 1.75$ **Contact ratio factor**  $Y_{\varepsilon} = 2.5 + .75/\varepsilon \sigma = 0.72$ Helix angle factor  $Y_{\beta} = 1 - \varepsilon_{\beta} * \beta / 120 = 1$ Notch sensitivity factor  $Y_{n1} = 1, Y_{n2} = 1$ **Roughness factor**  $Y_{R1}=1.03, Y_{R2}=1.03$ Size factor  $Y_{s1} = 1.05 - 1.03 m_n = 0.88$  $Y_{s2} = 1.05 - 1.03 m_n = 0.88$ **Reliability factors** Reliability factor K<sub>R</sub> For bending strength  $K_R = 0.79 - 0.105 \log_{10}(p_f) = 1$ Maximum nominal stress  $\sigma_{FO 1} = (F_t/bm_n)^*Y_{FA}^*Y_{K1}^*Y_{\varepsilon}^*Y_{\beta} = 29.71 \text{ MPA}$  $\sigma_{FO 2} = (F_t/bm_n) * Y_{FA} * Y_{K2} * Y_{\varepsilon} * Y_{\beta} = 40.68 \text{ MPA}$ Maximum permissible stress  $\sigma_{FP1} = (\sigma_{FE}/K_R) * Y_N * Y_n * Y_S * Y_r = 381.14 \text{ MPA}$  $\sigma_{FP2} = (\sigma_{FE}/K_R) * Y_N * Y_{n2} * Y_{S2} * Y_r = 344 \text{ MPA}$ 

## Factor of safety

For pinion =8.50, For gear = 5.60 Weight of the gear



Face width b = 200 mm, Ring thickness t = 92.3 mm, Inner diameter, d = 4329 mm

Weight of the gear W = 2.03

### **Calculation of Pinion Shaft and Bearing:**

| Calculation of I mion Shart a | nu Dearmg. |         |
|-------------------------------|------------|---------|
| Number Of teeth (Pinion), z1  | =          | 31      |
| Normal Module                 | =          | 16 mm   |
| Pinion PCD, d1                | =          | 496 mm  |
| Pinion Speed, n1              | =          | 150 rpm |
| Linear Speed, v               | =          | 3.9m/s  |
| Transmitted Power, P          | =          | 150000W |
| Tangential Load, Ft           | =          | 38505 N |
| Bearing span, 1               | =          | 600 mm  |
| Pinion distance, $11 (= 1/2)$ | =          | 300 mm  |
| Bearing reaction, R1          | =          | 19253 N |
| Bearing reaction, R2          | =          | 19253 N |
| Maximum bending moment, M     | max =      | 5776N m |
|                               |            |         |





Fig.2 Shear force and bending moment diagram Babbit Bearing Length Calculations

$$p_{\psi} = p_{\text{max}} \cdot \cos^{1.5} \psi$$
  

$$F = p_{\psi} \cdot r d\psi \cdot \cos \psi$$
  

$$F_{\text{max}} = \int_{+60}^{-60} \mathbf{r} \cdot \mathbf{p}_{\text{max}} \cos^{2.5} \psi \cdot d\psi$$

Applying Simpson 1/3 rule and considering  $P_{max}$  = Allowable bearing pressure,  $S_{max}$ 

| 0.175 | 50  | 0.875  | 0.32896 f1  |
|-------|-----|--------|-------------|
| 0.175 | 40  | 0.700  | 0.51160 f2  |
| 0.175 | 30  | 0.525  | 0.69654 f3  |
| 0.175 | 20  | 0.350  | 0.85525 f4  |
| 0.175 | 10  | 0.175  | 0.96225 f5  |
| 0.175 | 0   | 0.000  | 1.00000 f6  |
| 0.175 | -10 | -0.175 | 0.96225 f7  |
| 0.175 | -20 | -0.350 | 0.85525 f8  |
| 0.175 | -30 | -0.525 | 0.69654 f9  |
| 0.175 | -40 | -0.700 | 0.51160 f10 |
| 0.175 | -50 | -0.875 | 0.32896 f11 |
| 0.175 | -60 | -1.050 | 0.17464 f12 |
|       |     |        |             |

 $G = 1/3 h[f0 + 4f1 + 2f2 + 4f3 + \dots + 2f10 + 4f11 + f12] = 1.166$ 

For Lade Base Bearing Material, Bearing Load.  $F_{max} = r. S_{max}.G = 8743 \text{ N/mm}$ 

| Bearing radius, r                | = 1000  mm                           |
|----------------------------------|--------------------------------------|
| Allowable bearing pressure, smax | = 7.5 MPa or N/mm <sup>2</sup> , For |
| Lead Bas                         |                                      |
| Bearing length, L                | = 170 mm                             |
| Bearing reaction load, Rw ~ 42/2 | = 21 MT                              |

| Bearing angle, y1, y2                        | $=+60^{\circ}$ to $-60^{\circ}$ |
|----------------------------------------------|---------------------------------|
| Allowable reaction load, Ra                  | = (Fmax l)/2 = 70 MT            |
| Factor of safety (for $l = 160 \text{ mm}$ ) | = Ra/Rw = 3.3                   |
| Conclusions                                  |                                 |

#### Conclusions

An Autogenous Milling has been designed based on the customer need and presented in this paper. During the design process the two main character of an Autogenous Mill e.g. size reduction and the grinding parameters has been specifically included in design of the Autogenous mill. Design process was carried out following Simpson's 1/3<sup>rd</sup> rule and satisfactorily results were obtained.

### **References:**

1. George CL. Crushing and grinding, Butterworth & Co. (Publishers) Ltd., London, 1947; 225-249.

2. Andrew LM, Doug NH, Derek J.B. Mineral Processing Plant Design, Practice and control. Published by Society for mining, Metallurgy and Exploration Inc.(SME), 8307, Shuffer Palkway, Littleton, Colorado, USA, 2000; 1:755-770.

3. Malhotra DR, Strength of Materials. Tech India Publications, New Delhi-5, 1969.