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Introduction 

ARTIFICIAL neural networks (ANNs) have been used widely in applications like system identification, signal processing, 

classification, and pattern recognition. Most applications were developed using feed-forward ANNs and the back-propagation (BP) 

learning algorithm [1] [19]. The important issue in using ANNs is to choose their architectures appropriately. Whereas a too large 

architecture may overfit the training data a too small architecture may underfit the training data. Both overfitting and underfitting 

cause bad generalizations of ANNs. So, it is necessary to design ANNs automatically and they can solve different problems 

efficiently. There are many algorithms available for designing ANNs automatically, such as constructive, pruning, constructive–

pruning, and regularization algorithms [2]–[4]. A constructive algorithm [18] adds hidden layers, neurons, and connections to a 

minimal ANN architecture. A pruning algorithm deletes unnecessary hidden layers, neurons, and connections from an oversized 

ANN. A constructive–pruning algorithm is a hybrid approach. In addition, evolutionary approaches, such as genetic algorithms [5], 

evolutionary programming [6], [7], and evolution strategies [8], have been used extensively in designing ANNs automatically.  

The main problem in designing ANNs using constructive, pruning, constructive–pruning, and regularization algorithms is that 

they use a predefined, fixed, and greedy strategy. Thus, these algorithms are susceptible to becoming trapped at architectural local 

optima [9]. The proposed work presents a new Evolutionary algorithm (EA) that uses one-point crossover and adaptive merging and 

adding process at the mutation level in designing ANNs. The decision of when to merge or add hidden neurons, is completely 

dependent on the improvement of hidden neurons‘ learning ability or the training progress of ANNs. A time complexity analysis is 

also made on the proposed EA. 

Evolutionary Algorithms (EAs): 

Evolutionary Algorithms (EAs) refer to a class of population based stochastic search algorithms developed [20] from ideas and 

principle of natural evolution. They are a class of stochastic optimization algorithms inspired by biological process that allows 

populations of neurons to adapt genetic inheritance and survival of the fittest. The architecture design is crucial in ANN because it has 

significant impact on network information processing capabilities. For a given learning task, an ANN with only a few connections and 

neurons may not be able to perform the task at all, due to its limited capability, while an ANN with a large number of nonlinear 

neurons and connections may overfit noise in the training data and fail to have good generalization ability.  
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ABSTRACT 

This paper highlights the role of new Evolutionary Algorithm (EA) in designing Artificial 

Neural Networks (ANNs). The proposed EA has been used for two purposes. One is 

generalization of architecture. In this, the optimal adaptive architecture is achieved by using 

evolutionary crossover and mutation. The adaptive strategy merges or adds hidden neurons 

based on the learning ability of hidden neurons or the training progress of ANNs.  The 

mathematical frame work is also discussed. The other is the Time Complexity of ANN to 

reach the global minima using two selection processes. The proposed EA has been tested on 

a number of benchmark problems in machine learning and ANNs, including breast cancer, 

diabetes, heart problems and for time complexity N-Bit Parity is used. The experimental 

results show that proposed EA can design compact ANN architectures with good 

generalization ability, compared to other algorithms with good time complexity. 
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The main advantage of this approach is that it can avoid the architectural local optima problem [9], [10]. However, the 

evolutionary approach is quite demanding in both time and user-defined parameters [2]. Moreover, it is necessary to find a set of 

optimal control parameters so that an evolutionary process can balance exploration and exploitation in finding good quality solutions. 

This can be overcome, by using proposed evolutionary learning process applied on feed-forward ANN architecture.   

Mathematical Model of Evolutionary Algorithm: 

The mathematical frame work in this section gives a general description of a proposed evolutionary search in EA. The schemata 

correspond to invariant subsets of the search space and the schema theorem can be reformulated in proposed framework. In the 

proposed evolutionary algorithm the architecture search space denoted by 
i

n

i A1  . P is the population of architectures which 

consisting of m individuals and n number of layers. So P is an m x n order given by equation (1.1). W is the weight population with 

same size of P. 
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Frame work: A population P of size m {1, 2,…., m} is considered and elementary steps of initial selection, partition and 

recombination are applied on P. The first elementary step is the initial selection is applied on P and new population P
l
 is generated.  
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The fitness evaluation for individuals of P is 
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The ‗selection‘ of individuals in P
l
 is based on probability rule  

 i

m

l

j

xf

xf

1

  where f is the fitness function given as f = 1/mean 

square error. 





























my

y

y

P

.

.

.

2

1

1

                             1.4 

The individuals having small fitness values are not allowed into P
1
 at all. This is to institute the natural survival of the fittest 

principle. 
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The second elementary step is recombination. This is schema based recombination, i.e., the entire search space Ω is divided into 

sub group or sub algorithms called schemata. The resultant population P
l
 from first elementary step is then partitioned into k number 

of disjoint tuples for mating. This is based on some probability distribution pm. This is represented by set K = {P1,P2,……Pk}, where 

each partition P is a k-tuple of integers  kqqqq ........,, 21 . For instance, if the partition selected based on 
mp  is 

      ........,....,,.....,....,,,......,, 21
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One-point crossover Transform: 

For one point crossover, let 
iL and 

iR  are the crossover operations on two subspaces Qj and Qj+1 with n layered architectures. The 

family of crossover transformations F is given as 

           1.3 

For instance, if a = (a1, a2, …, an), b=(b1, b2, ….,bn),  then, each element of a and b are represents the 

matrices of the layers in the two parent architectures. Each layer has m number of neurons with weight matrix W. The probability 

distribution of family F is 

   niiii bbbaaabaL .....,,,......,,, 2121                         1.4 

      niini ababbbbaR ......,,,.....,,, 2121                      1.5 

The above process is called as one-point crossover and the new off-spring population is P
11

. On completion of a cycle, the 

procedure starts all over again, with the initial population p
m

 and the cycle is repeated a number of times depending on the problem.  
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Mutation:  

Finally, mutation is the process with small probabilities that replace zi with F(zi) according to the evolutionary process given in 

the next section, for chosen F M. This creates a new population P
111
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Architecture Optimization:  

Designing architecture is an important issue in the evolution of an ANN. The proposed evolutionary algorithm used the one point 

or cutting point crossover to improve the behavior between parents and off-springs. The cutting points are independently extracted for 
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each parent according to equations (1.7) and (1.8). The cutting point is taken only between the hidden layers; this means that a new 

evolutionary weight matrix has been created to make connection between two layers at the cutting points in the parents producing two 

off-springs, so that the population is maintained constant.  

The proposed EA used an adaptive search strategy in designing ANN. The adaptive strategy is evolutionary merging and adding 

of neurons based on the learning ability of hidden neurons or layers in ANN.  Fig (1.0) shows the mutation flow chart.  

Neuron Merging: Created off-springs carried from crossover consist of M number hidden neurons in the hidden layer. where M is 

selected by the user. All connection weights remain same. An epoch counter (µi) is initialized with zero, this count is used to count the 

number of epochs of hidden neurons and is trained. Mean Square Error (E) value is computed on the training set. If the termination 

criterion is satisfied, the training process is stopped and final network architecture gives the optimized ANN. Each hidden neuron is 

labeled with significance ηi. The significance of each hidden neuron hi [11] is computed. Train the ANN on the training set for a 

number of epochs ( ). Increment the epoch count as follows for i = 1,2…..,N, 

µi = µi +
 

                                   1.8 

where N is the number of hidden neurons in the existing architecture. Initially N and M are the same. 

The neuron merging in EA is based on significance . It is computed using equation (1.9) for the hidden neuron hi. 

                             Where  is the standard deviation.                1.9 

Significance    is small when its standard deviation  and/or its number of training epochs µi is large. The smaller the value of  

, the less significant hi is. A less significant hidden neuron delivers constant information to the neurons of output layer. The next 

process of merging is to compute the correlations between s-labeled hidden neuron and other neurons in ANN. The EA uses the 

Pearson product-moment correlation coefficient to measure the correlation and it is denoted by Cij. It is the correlation between s-

labeled hidden neuron i and the unlabeled hidden neuron j and is given as 

                                                                        2.0 

Where hi(p) and hj(p) are the outputs of hidden neurons i and j for the example p in the training set, the variables  are 

the mean values and  are standard deviation of hi and hj, respectively. 

The EA merges two correlated neurons, for instant ha and hb,   produces a neuron hm. The algorithm assigns the input and output 

connection weights of the hm  as follows 

                                      2.1 

                                          

Where p and q are the number of neurons in the predecessor and successor layers of the ANN. The neuron merging is carried out 

based on, whose contribution is negligible with respect to the overall network output and the decision is based on the selection 

criterion given in the above equation 2.0.  

Neuron Addition: The EA uses a simple criterion to add a hidden neuron in an ANN. This is based on the training error progress of 

the ANN. When the error of the ANN does not reduce by an amount  after training epochs , EA assumes that, it is necessary to add 

hidden neurons in the ANN. Here  and  are two user specified parameters. The neuron addition criterion is given as 

                      2.2 

Where  are the training errors at epochs t and , respectively. EA adds a hidden neuron by splitting 

an existing hidden neuron of an ANN. Two neurons are created by splitting and have the same number of connections as off-spring 

neuron.  
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Proposed Evolutionary Algorithm Flow Chart: 

 

Figure 1.0 Flow hart of proposed EA on ANN 

Computational Time Complexity of Proposed Evolutionary:     

  A few optimization problems are very hard to solve using the EAs and may take very long time to reach the global optima. The 

take-over time in terms of generation is the mean hitting time ( ) of EA [12] [17]. EA may take very long time i.e., exponential 

number of generations to find the global optima is called wide-gap problems. The results are verified on well known benchmark 

problems like N-Bit Parity. The empirical results are almost same as the theoretical results. Here, first a truncation selection with 

mutation (selection I) is applied. Second, a tournament selection with mutation operator (selection II) is applied.    
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Benchmark Real Data Classification Problems:  

The proposed method of optimization algorithm is applied to benchmark problems using the feed-forward architecture with a bias 

of +1 input for hidden layer and output layer. All the data, applied to the training and test sets, are acquired from the UCI Machine 

Learning Repository [13]. The number of training and test data sets is given in Table 1. Testing error rate (TER) is one more paraeter 

in real time data classification problems, which refers to the percentage of wrong classification produced by ANNs on the testing set. 

i) Pima-India-Diabetes dataset problems.  

ii) SPECT Heart data set  

iii) Breast-Cancer dataset problem 

Experimental Setup EANN: The evolutionary process attempts to crossover and mutate weights before performing any structural or 

topology crossover and mutation. The weights of ANNs were initialized to random values in the range between −0.5 and +0.5.For 

evolving connection weights population size in EA is taken as 20 and 10 independent trials have been conducted to get the generalized 

alues  and η are set to 1E-06 and 

0.06 respectively. The value of T used in the termination criterion is set to 3 (for real classification problems). Condition of 

terminating criteria is based on training error. 

 

Figure 2.0 Performance of Evolutionary ANN for Pima Indians diabetes with initial size of [9 4 5 1 2]. 

 

Figure 3.0 Performance of Evolutionary ANN for SPECT Heart dataset with initial size of [14 4 5 1 2]. 
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Figure 4.0 Performance of Evolutionary ANN for Breast Cancer dataset with initial size of [11 4 5 1 2]. 

 

Figure 5.0.  The Average first hitting time of EA with selection I. 

 

Figure 6.0.  The Average first hitting time of EA with selection II 

Result Analysis: The performance results on three benchmark real data classification problems are obtained. First by, for Pima 

Indians the average training error rate (TER) of 23.5 is obtained. The resultant architecture is optimized with an average of 3.02 

hidden neurons and 1.2 average hidden layers. The minimum average mean square error is 8.6214E-3 as shown in Fig (2.0) and the 

average percentage of mse performance of the architecture is equal to 77.50. Second by, for SPECT Heart problem the average TER is 

equal to 13.5 over 10 trial runs. The resulting architecture is tested using 67 test sets and the minimum average mean square error 

obtained is 7.7264E-3 as shown in Fig (3.0) and minimum average number of hidden neurons is 3.41 with average number of hidden 

layers of 1.2. The average percentage of performance of proposed EA on the architecture is equal to 85.84. Third by, for the Breast 

Cancer problem, the optimized network with average hidden neurons and layers are 2.01 and 1.1 is obtained. The best average TER of 

3.0 is achieved. The optimized architecture is tested with 240 test set vectors so that the mean square error is 5.3614E-3 is obtained 
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and is as shown in Fig (4.0). The average percentage of performance of proposed EA on the architecture is equal to 98.5. The 

proposed EA also compared on number of hidden neurons, generations and TER with some different algorithms like BCA, BTA and 

BCPA [14], [[15], [16] given in Table 2.  

The time complexity results are shown in Fig (5.0) for truncation selection. This result is averaged over 50 independent trials with 

smaller population size and Fig (6.0) shows the results of tournament selection and the number of generations which is averaged over 

50 independent trials with possible larger population. On observation of time complexity results, the selection I pressure stores the 

best individuals with lower population size and to finds the path quickly but it fails for higher population. The results of selection II 

pressure stores the best or worst individual as seed individuals and the resultant generations are exponential. This selection pressure 

solves the problem with sufficiently higher selection pressure and larger population. So, for beginning it is best to use the lower 

selection pressure like selection I and after some epochs, to reach along the path higher selection pressure selection II is used. 

Conclusion:  

The proposed EA performed well with respect to the mean square error, adaptive optimal architecture and generalization when 

compared to the different algorithms in the literature. The time complexity shows that the initial training takes the selection I and the 

after some epochs to reach along the path, higher selection pressure like selection II is quit effective.  

One of the future improvements to proposed EA would be to reduce the number of parameters or make them adaptive. In 

addition, the use of a different significance criterion in the merging operation of EA would also be an interesting future research topic. 

Since proposed EA has been applied to the classification problems, it would be interesting to study how well EA would perform on 

regression problems. 

Table 1. Performance of EA on Three Real Time dataset  problem. 

 

    

 

 

 

 

 

 

 

 

 

 

 

Table 2. Comparison of different methods based on architecture size and TER for three real dataset classification problems.  

Algorithm 

or 

Method 

Diabetes problem SPECT-Heart problem Cancer problem 

Number of 

TER 

Number of 

TER 

Number of 

TER Hidden 

neurons 

Genera- 

tions 

Hidden 

neurons 

Genera-

tions 

Hidden 

neurons 

Genera-

tions 

BCA 5.96 467.5 26.04 3.42 173.4 20.34 2.20 290.2 1.92 

BPA 5.56 409.6 26.25 3.12 161.4 19.93 1.60 263.3 1.89 

BCPA 5.80 501.3 26.22 3.26 190.7 20.43 2.12 311.5 1.95 

CNNDA 4.2 235 -- 19.8 591.5 -- 3.5 415.5 -- 

NCA -- -- -- 2.62 170 18.1 2.08 293 0.97 

Proposed 

EA 
3.02 358.7 23.5 3.41 190.6 15.1 2.01 228.2 2.86 

 

 

Parameter 
Experimental Results 

Pima-Indians SPECT-Heart Cancer  

Number Of Runs  10 10 10 

Average Number Of Generations  61 103 52 

Number of Training patterns used 500 200 400 

Average Training Set Accuracy in percentage 76.5 87.2 97.0 

Number of Test patterns used 268 67 240 

Average Test Set Accuracy  in percentage 77.5 85.12 98.02 

Initial Number of Hidden layers / Neurons  2 / [5 4] 2 / [5 4] 2 / [5 4] 

Final Number of Hidden layers / Neurons 

(Resulted NN) 
1.2 / [3.02] 1.4 / [3.41] 1.1/ [2.01] 

Population size 50 50 50 

Number of inputs 09 14 11 

Number of outputs 01 01 01 
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