M.K. Mishra et al./ Elixir Adv. Pure Math. 65 (2013) 19536-19538

Awakening to reality Available online at www.elixirpublishers.com (Elixir International Journal)

Advances in Pure Mathematics

Elixir Adv. Pure Math. 65 (2013) 19536-19538

Fuzzy Generalized Super Closed Sets

M.K. Mishra¹, M. Shukla¹, R.Deepa² and B.Ambiga² ¹AGCW Karaikal. ²E.G.S. Pillay Engineering College, Nagapattinam (T.N.).

ARTICLE INFO

ABSTRACT

In this paper we introduced the concept of fuzzy g- super closed and explore various properties fuzzy topological space.

© 2013 Elixir All rights reserved.

Article history: Received: 21 October 2013; Received in revised form: 25 November 2013; Accepted: 2 December 2013;

Keywords

Fuzzy topology, Fuzzy super closure, Fuzzy super interior, Fuzzy super closed set, Fuzzy super open set, Fuzzy super generalized closed set.

Introduction

Let X be a non empty set and I= [0,1]. A fuzzy set on X is a mapping from X in to I. The null fuzzy set 0 is the mapping from X in to I which assumes only the value is 0 and whole fuzzy sets 1 is a mapping from X on to I which takes the values 1 only. The union (resp. intersection) of a family $\{A_{\alpha}: \alpha \in \Lambda\}$ of fuzzy sets of X is defined by to be the mapping sup A_{α} (resp. inf A_{α}). A fuzzy set A of X is contained in a fuzzy set B of X if $A(x) \leq B(x)$ for each $x \in X$. A fuzzy point x_{β} in X is a fuzzy set defined by $x_{\beta}(y)=\beta$ for y=x and x(y) = 0 for $y \neq x$, $\beta \in [0,1]$ and $y \in X$. A fuzzy point x_{β} is said to be quasi-coincident with the fuzzy set A denoted by $x_{\beta q}A$ if and only if $\beta + A(x) > 1$. A fuzzy set A is quasi –coincident with a fuzzy set B denoted by A_qB if and only if there exists a point $x \in X$ such that A(x) + B(x) > 1. A $\leq B$ if and only if $](A_qB^c)$.

A family τ of fuzzy sets of X is called a fuzzy topology [2] on X if 0,1 belongs to τ and τ is super closed with respect to arbitrary union and finite intersection .The members of τ are called fuzzy super open sets and their complement are fuzzy super closed sets. For any fuzzy set A of X the closure of A (denoted by cl(A)) is the intersection of all the fuzzy super closed super sets of A and the interior of A (denoted by int(A)) is the union of all fuzzy super open subsets of A.

Defination1.1[5]:- Let (X,τ) fuzzy topological space and $A \subseteq X$ then

1. Fuzzy Super closure $scl(A)=\{x \in X: cl(U) \cap A \neq \phi\}$

2. Fuzzy Super interior $sint(A) = \{x \in X: cl(U) \le A \neq \phi\}$

Definition 1.2[5]: -A fuzzy set A of a fuzzy topological space (X, τ) is called:

(a) Fuzzy super closed if $scl(A) \le A$.

(b) Fuzzy super open if 1-A is fuzzy super closed sint(A)=A

Remark 1.1[5]:- Every fuzzy closed set is fuzzy super closed but the converses may not be true.

Remark 1.2[5]:- Let A and B are two fuzzy super closed sets in a fuzzy topological space (X, \mathfrak{J}) , then $A \cup B$ is fuzzy super closed.

Remark 1.3[5]:- The intersection of two fuzzy super closed sets in a fuzzy topological space (X, \mathfrak{J}) may not be fuzzy super closed.

Definition 1.5[3,8,9,10, 11]:- A fuzzy set A of a fuzzy topological space (X,_t) is called:

1. fuzzy g- super closed if $cl(A) \le G$ whenever $A \le G$ and G is super open.

^{© 2013} Elixir All rights reserved

2. fuzzy g- super open if its complement 1-A is fuzzy g- super closed.

Definition 1.8. [3,8,9,10, 11]:- A fuzzy point $x_p \in A$ is said to be quasi-coincident with the fuzzy set A denoted by x_pqA iff p + A(x) > 1. A fuzzy set A is quasi-coincident with a fuzzy set B denoted by A_qB iff there exists $x \in X$ such that A(x) + B(x) > 1. If A and B are not quasi-coincident then we write A_qB . Note that $A \le B$, Aq(1-B).

Fuzzy g-super Closed Sets.

Definition 2.1.: A fuzzy set A of a fuzzy topological space (X, \cdot_{τ}) is called fuzzy generalized super closed (fuzzy g- super closed) if $Cl(A) \leq O$ whenever $A \leq O$ and O is fuzzy super open.

Remark 2.1. : Every fuzzy closed set is fuzzy g- super closed but its converse may not be true. For,

Example 2.1.: Let X {a,b} and A and U be defined as follows:

A(a) = 0.3, A(b) = 0.2; UQ) = 0.5, U(b) 0.7; Let $\tau = \{\phi, U, X\}$ be a fuzzy topology on X. Then A is fuzzy g- super closed but not fuzzy super closed.

Theorem 2.1. : If A and B are fuzzy g- super closed in a fuzzy topological space (X, τ) then A \cup B is fuzzy g- super closed.

Proof: Let O be a fuzzy open set in X, such that $A \cup B \leq O$ then $A \leq O$ and $B \leq O$ so $CI(A) \leq O$ and $Cl(B) \leq O$. Therefore $Cl(A) \cup Cl(B) = Cl(A \cup B) \leq O$. Hence $A \cup B$ is fuzzy g-super closed.

Remark 2.2.: The intersection of two fuzzy g- super closed sets in a fuzzy topological space (X, τ) may not be fuzzy g- super closed. For,

Example 2.2.: Let $X = \{a, b\}$ and U, A and B be defined as follows U(a) = 0.7, U(b) = 0.6; A(a) = 0.6, A(b) = 0.7; B(a) = 0.8, B(b) = 0.5; Let $\tau = \{\phi, U, X\}$, then A and B are fuzzy g- super closed in (X, τ) but $A \cap B$ is not fuzzy g- super closed.

Theorem 2.2.: Let $A \le B \le Cl(B)$ and A is fuzzy g- super closed in' a fuzzy topological (X, τ) . Then B is fuzzy g- super closed.

Proof. : Let O be a fuzzy super open set such that B \leq O then A \leq O and since A is fuzzy g-super closed CI(A) \leq O. Now B \leq CI(A) \Rightarrow Cl(B) < Cl(A) <O. Consequently B is fuzzy g-super closed.

Definition 2.2.: A fuzzy set A of a fuzzy topological space $(X; -\tau)$ is called fuzzy g- super open iff A^c is fuzzy g.- super closed.

Remark 2.3.: Every fuzzy open set is fuzzy g- super open. The converse may not be true.

Theorem 2.3.: A fuzzy set A of fuzzy topological space (X, τ) is fuzzy g- super open iff $F \le lnt(A)$ whenever F is fuzzy closed and F $\subset A$.

Theorem 2.4. :Let A and B are Q-separated fuzzy g- super open subsets of a fuzzy topological space (X, τ) then A \cup B is fuzzy g-super open.

Proof.: Let F be a fuzzy super closed subset of $A \cup B$. Then $F \cap Cl(A) \le (A \cup B) \cap Cl(A)=(A \cap Cl)(A)) \cup (B \cap Cl(A)) \le int (A)$. Similarly $F \cap Cl(B) \le int (B)$. Now $F \cap (A \cup B) \le (F \cap Cl (A)) \cup (F \cap Cl(B)) \le int (A) \cup int (B) \le int (A \cup B)$. Hence $F \le int(A \cup B)$ and by theorem (2.2) $A \cup B$ is fuzzy g- super open.

Theorem 2.5.: Let A and B be two fuzzy g- super closed sets of a fuzzy topological space (X, τ) and suppose that A^c and B^c are Q-separated, then $A \cap B$ is fuzzy g- super closed.

Theorem 2.6. :Let A be a fuzzy g- super open subset of a fuzzy topological space (X, τ) and $int(A) \le B \le A$ then B is fuzzy g- super open.

Proof. :Since $A^c \subseteq B^c \subseteq Cl(A^c)$ and A^c is fuzzy g- super closed it follows that B^c is fuzzy g- super closed by theorem (2.2), thus B is fuzzy g- super open.

Theorem 2.7.:Lét(Y, τ_Y) be a subspace of a fuzzy topological space (X, τ) and A be a fuzzy set in Y. If A is fuzzy g- super closed in X then A is fuzzy g- super closed in Y.

Proof. :Let $A \le O_Y$, where O_Y , is fuzzy super open in Y. Then there exists a fuzzy super open set O in X such that $OY = O \cap Y$. Therefore $A \le O$ and since A is fuzzy g- super closed in X, $Cl(A) \le O$. It follows that $CI_Y(A) = Cl(A) \cap Y \le O \cap Y = O_Y$. Hence A is fuzzy g- super closed in Y.

Theorem 2.8.: Let (X, τ) be a fuzzy topological space and \mathcal{F} be the family of all fuzzy super closed sets of X. Then $\tau = \mathcal{F}$ iff every fuzzy subset of X is fuzzy g- super closed.

Proof: Necessity.: Suppose that $\tau = \mathcal{F}$ and that $A \subset O \in \tau$ then $Cl(A) \leq Cl(O) = O$ and A is fuzzy g- super closed.

Sufficiency. Suppose that every fuzzy subset of X is fuzzy g- super closed. Let $O \in \tau$ then since $O \leq O$ and O is fuzzy g- super closed where C1(O) $\subset O$ and $O \in \mathcal{F}$. Thus $t \subset \mathcal{F}$ If $T \in \mathcal{F}$ then $T^c \in t \leq \mathcal{F}$ and hence $T \in \tau$ consequently $\mathcal{F} \subset \tau$ and $\tau = \mathcal{F}$.

where $CI(0) \subseteq 0$ and $O \subseteq J$. Thus $I \subseteq J$ in $I \subseteq J$ and $I \subseteq I \subseteq J$ and hence $I \subseteq I$ consequently $J \subseteq I$ and I = J.

Theorem 2.12. Let A be a fuzzy g- super closed set in a fuzzy topological space (X, τ) and f: $(X, \tau) - (Y, \tau^*)$ is fuzzy super continuous and fuzzy super closed then f(A) is fuzzy g- super closed in Y.

Proof: If $f(A) \le G$ where G is fuzzy super open in Y then $A \le f^1(G)$ and hence $Cl(A) \le f^1(G)$. Thus $f(Cl(A)) \le G$ and f(Cl(A)) is a fuzzy super closed set. It follows that $Cl(f(A)) \le Cl(f(Cl(A))) = f(Cl(A)) \le G$. Then $Cl(f(A)) \le G$ and f(A) is fuzzy g- super closed.

References

- [1] Azad K.K on fuzzy semi continuity, fuzzy Almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82(1981),14-32.
- [2] Balchandran K, Sundram P and Maki H., on Generalized Super continuous Map in Topological Spaces , Mem. Fac. sci. Kochi Univ.(Math)12(1991),5-13.
- [3] Chang C.L. fuzzy Topological Spaces J. Math Anal. Appl.24(1968),182-190.
- [4] El-Shafei M. E. and Zakari A. semi-generalized continuous mappings in fuzzy topological spaces J. Egypt. Math. Soc.15(1)(2007), 57{67.
- [5] Mishra M.K. ,et all on "Fuzzy super closed set" Accepted.
- [6] Mishra M.K. ,et all on "Fuzzy super continuity" (Accepted)
- [7] Mishra M.K., Shukla M. "Fuzzy Regular Generalized Super Closed Set" IJSRP, Dec(2011).
- [8] Mishra M.K., Thakur S.S. "Fuzzy w-continuous mappings" IJSRP, Dec(2011).
- [9] Pu P. M. and Liu Y. M. Fuzzy Topology I: Neighborhood structure of a fuzzy point and More Smith Convergence, J. Math. Anal Appl.76(1980)571-599.
- [10] Pushpaltha A. studies on Generalization of Mappings in Topological Spaces Ph.D. Thesis Bharathiyar University Coimbotore (2000).
- [11] Sundram P. and M. Shekh John, On w-super closed sets in topology, Acta Cinica Indica 4(2000) 389-392.
- [12] Tapi U. D, Thakur S S and Rathore G.P.S. Fuzzy sg -super continuous mappings Applied sciences periodical (2001), 133-137.
- [13] Tapi U. D., Thakur S. S. and Rathore G.P.S. Fuzzy semi generalized super closed sets, Acta Cien. Indica 27 (M) (3) (2001), 313-316.
- [14] Tapi U. D., Thakur S. S. and Rathore G.P.S. Fuzzy sg- irresolute mappings stud. Cert. Stii. Ser. Mat. Univ. Bacu (1999) (9) ,203-209.
- [15] Thakur S.S. & Malviya R., Generalized super closed sets in fuzzy topology Math. Note 38(1995),137-140.
- [16] Yalvac T.H. fuzzy sets and Function on fuzzy spaces, J. Math. Anal. App. 126(1987), 409-423.
- [17] Yalvac T.H. Semi interior and semi closure of fuzzy sets, J. math. Anal.Appl. 132 (1988) 356-364.
- [18] Zadeh L.A. fuzzy sets, Inform and control 18 (1965), 338-353.