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Introduction 

 In traditional machining process drilling of micro holes is 

very difficult in hard and recent developed materials. The 

application of micro holes is also essential in aviation, space, 

electronics and also in computer, medical and manufacturing of 

miniature components1. The micro EDM is one of the most 

important and suitable machining methods for drilling of micro 

holes. It is the non-contact type of machining process that the 

electrical energy discharges between anode and cathode the 

spark generates and erodes the material by vapour bubbles 2. The 

circuit current, circuit voltage, capacitance, resistance, dielectric 

fluid are the parameters that affects the machining conditions. 

These parameters are important in material removal rate. Many 

studies have been conducted to find out the MRR by varying the 

machining conditions. An ultrasonic vibration introduced to the 

work-piece to maximize the MRR and minimize the tool wear. 

The ultrasonic vibration and peak power with capacitance are 

significant for improving MRR3. Optimized the powder mixed 

EDM parameters on Ti6A1-4U alloy. MRR, tool wear rate, 

overcut and taper are the responses chosen. The optimum results 

obtained through ANOVA and S/N ratio graph. They concluded 

that the peak current and pulse on time are most affected 

parameters4. A regression model developed and optimized the 

process parameters in PMEDM using Genetic algorithm. From 

the model they concluded that, reducing the machining time 

increases the production rate and reduces electrode wear5. A 

comparative investigation made by Kibria et al[6] on Ti-6Ai-4U 

alloy using pure de-ionized water and boron carbon (B4C) mixed 

water. From the results, they concluded that, B4C mixed water 

increase the MRR and reduces the tool wear rate also produced 

good surface with less recast layer. Kadirvel and Hariharan [7] 

reviewed the entire MEDM process, issues, output parameters, 

optimization techniques, and control systems. Natarajan and 

Arunachalam [8] optimized the machining parameter using 

Taguchi method and Gray relational analysis. They concluded 

that the pulse ontime was the most significant parameter during 

machining. Aravind et al [9] developed an artificial neural 

network model to predict MRR. Voltage, capacitance, feed and 

speed of the electrode were considered as input parameters. The 

experiments were conducted using design of experiments. They 

concluded that the developed model is suitable to predict the 

micro EDM process. Somashekar et al [10] developed a feed 

forward neural network with back propagation model to predict 

the MRR and overcut in micro wire electric discharge 

machining on aluminum plate. Voltage, capacitance and feed 

rate were chosen as input parameters. They concluded that the 

predicted ANN results well agreed with the experimental results. 

Yan et al (2001) [11] presented a feed forward neural network 

using a back propagation learning algorithm for the estimation 

of the work piece height in WEDM. They estimated the average 

error of workpiece height was 1.6mm.  Lin and Lin (2005) [12] 

reported a new approach for the optimization of the EDM 

process with multiple performance characteristics based on grey 

relational analysis. The machining parameters, such as work 

piece polarity, pulse on time, duty factor, open discharge 

voltage, discharge current and dielectric fluid were optimized on 

the output characteristics of material removal rate, surface 

roughness, and electrode wear ratio. Kuriakose and Shunmugam 

(2005) [13] developed a multiple regression model to represent 

relationship between input and output variables. To optimize the 

wire-EDM process parameter a multi-objective optimization 

method based on a non-dominated sorting genetic algorithm 

(NSGA) is used. Saha et al (2008) [14] developed a second 

order multi-variable regression model and a feed-forward back-

propagation neural network (BPNN) model to correlate the input 

process parameters. The input parameters of pulse on-time, 

pulse off time, peak current and capacitance with the 

performance measures like cutting speed and surface roughness 

in WEDM of tungsten carbide-cobalt (WC-Co) composite 

material. The neural network architecture provides the best 
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prediction capability with 3.29% error overall and 6.02% error 

was revealed by regression model. The existing work shows that 

not much works carried out on 316L stainless steel to optimize 

the micro EDM process parameters. This paper helps to find out 

the optimum machining parameter on 316L stainless steel.   
Experimental Setup 

The single axis (Z) tabletop micro EDM setup was used for 

experiments. The set-up consists of various components such as 

machine structure, tool electrode feed system, closed loop 

sparkgap system, dielectric fluid supply and circulation system 

and Resistance Capacitance (RC) power supply. Figure 1 shows 

the developed single axis micro EDM setup. Pure Tungsten wire 

of diameter 380µm is used as a microelectrode for all trials. A 

316L stainless steel is chosen as work material. The de-ionised 

water was used as dielectric medium. 

In the present work three parameters were selected like 

voltage, capacitance and sparkgap. In each parameter three 

levels were chosen. The Table 1 shows the selected parameters 

and their levels.  

 

Figure 1 Experimental setup of Micro Electric Discharge 

Machining (µEDM) 

For three levels and three parameters full factorial [15] 

design was selected for experimentation. The plan of 

experiments is made of 27 tests and repeated once for better 

understanding. Totally 54 tests were conducted to study the 

objective. The MRR is the output of this study. Multiple 

regression and artificial neural networks (ANN) are used to 

predict the outputs. To validate the predicted models, the 

predicted output values are compared with the experimental 

values.  Table 2 shows the experimental values and MRR. 
Prediction Model for MRR 

To improve the micro EDM, micro hole drilling process, it is 

necessary to develop the prediction model. Multiple regression 

analysis and ANN techniques are used to predict the MRR. 

Multiple Regression Model for MRR 

Multiple regression is commonly used traditional technique 

to predict various machining process Sidda Reddy et al (2008). 

The proposed multiple regression equation is as follows  

0 1 1 2 2 3 3 ...... nY a a x a x a x nx      - (1) 

Y – Standard variable 

x1, x2 and x3 are the predicted variables  

Where  

 x1 - Voltage 

x2 - Capacitance 

x3 – Sparkgap 

a0, a1, a2 and a3 are the regression coefficients  

The multiple regression equation 2 is used for MRR 

= 0.454 + 0.00738 Voltage +0.000630 Capacitance - 0.0195 

Sparkgap - (2) 

To solve the regression equation a matrix is formulated to 

determine regression coefficients. The regression coefficients 

are used to estimate the MRR and it is shown in table (3).  The 

predicted MRR values are compared with experimental values. 

The table (4) shows the predicted, experimental and errors 

values.  
The ANN model for predicting the MRR 

 Nowadays ANN is widely used for optimization, prediction 

and image processing etc., A generalized feed forward network 

is used for developing ANN model. The feed forward neural 

network model consists of two stages such as training and 

testing of the experimental data. During the training of network, 

all the input parameters are considered and given equal 

important. The network has three inputs (voltage, capacitance 

and sparkgap) and one output (MRR). The present model 

consists of three neurons in the input layer and one neuron in the 

output layer.  In the multi-layer feed forward network, the size 

of hidden layers is one of the most important considerations 

when solving the problems. In this model two hidden layers 

were adopted.  The experimental data used for training is given 

in Table 4. The topology and training parameters are given in 

Table 5. 

0

N

j i ij

j

net x w



                                         (1) 

where, 

xi = ith input, N = number of inputs 

wij = weight attached to the link connecting ith input neuron and 

jth hidden neuron. 

The sigmoidal activation function is applied in this ANN 

model. Its output is given by, 

( )

1
( )

1 i
j net

f net
e

  




                        (2) 

The voltage, capacitance and sparkgap are three parameters 

given to input layer. In this model, the inputs and outputs are 

normalised to gain better results. To train the developed model, 

15 data sets are used. To test the ANN model, 10 data sets are 

used. A „C‟ program is written to train, test and predict the MRR 

values.  The predicted results developed by the model are 

compared with experimental values and errors are shown in 

Table 6. From the results, it is clear that the developed model is 

well trained and possesses the capability to predict new 

outcomes from the past trends. 
Optimization of Process Parameters 

To optimize the µEDM process parameters, signal to noise 

(S/N) (Phillip Ross and Tapan Bagchi [16] ratio is calculated. 

The S/N ratio is the ratio between signal to noise, where the 

signal represents the desirable value and the noise represents the 

undesirable values. Therefore the S/N ratio is used to find the 

significant machining parameters through the analysis of 

variance (ANOVA). The higher observed value that represents 

higher MRR is known as Higher is Better (HB). The equation 

(1) is used to find out the S/N ratio for higher material removal 

rate (MRR). 

2

1

HB 10log(1/ ( 1/ )
n

i

i

r Y


  
  

Analysis - Optimum Machining Parameters 

The mean S/N ratio for MRR is displayed graphically in 

Figure 2. The MRR for each factors level indicates the relative 

effects of the various factors, A: voltage, B: capacitance and C: 

sparkgap on the machining performance and characteristics such 

as MRR is related to the µEDM operation during machining of 

316L stainless steel. From the S/N response graph figure 2 for 

maximum MRR the optimal parametric combination is A3, B2, 

and C1.  
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Table 1. shows the parameters and their levels  
Parameters Voltage (V) Capacitance (pF) Sparkgap (µm) 

Level 1 80 200 28 

Level 2 100 300 32 
Level 3 120 500 36 

 

Table 2 shows the experimental and MRR values  

Exp. 
No. 

Input Parameters & Values MRR 
*e-3 

(gm‟s/min) 

Voltage 
(V) 

Capacitance 
(pF) 

Sparkgap 
(µm) 

1 80 200 28 0.6365 
2 100 200 28 0.7527 

3 120 200 28 0.9022 

4 80 300 28 0.7119 

5 100 300 28 0.8527 

6 120 300 28 0.9655 

7 80 500 28 0.7998 

8 100 500 28 0.9613 

9 120 500 28 1.108 

10 80 200 32 0.5544 

11 100 200 32 0.6751 

12 120 200 32 0.8146 

13 80 300 32 0.6391 

14 100 300 32 0.7586 

15 120 300 32 0.9898 

16 80 500 32 0.6983 
17 100 500 32 0.8699 

18 120 500 32 1.0191 

19 80 200 36 0.4671 

20 100 200 36 0.5998 

21 120 200 36 0.7054 

22 80 300 36 0.5453 

23 100 300 36 0.6977 

24 120 300 36 0.8484 

25 80 500 36 0.6308 

26 100 500 36 0.8013 

27 120 500 36 0.9884 

 
Table 3 Regression coefficients 
Regression Coefficients Values 

a0 0.454 

a1 0.00738 

a2 0.000630 

a3 - 0.0195 

 

Table 4 Comparison of predicted with experimental values –Regression 

Exp. 

No 
Voltage Capacitance 

Spark 

Gap 

MRR 

Experimental Predicted Error 

1 80 200 28 0.6365 0.6244 -0.0121 

2 100 200 28 0.7527 0.772 0.0193 
3 120 200 28 0.9022 0.9196 0.0174 

4 80 300 28 0.7119 0.6874 -0.0245 

5 100 300 28 0.8527 0.835 -0.0177 

6 120 300 28 0.9655 0.9826 0.0171 
7 80 500 28 0.7998 0.8134 0.0136 

8 100 500 28 0.9613 0.961 -0.0003 

9 120 500 28 1.108 1.1086 0.0006 

10 80 200 32 0.5544 0.5464 -0.008 

11 100 200 32 0.6751 0.694 0.0189 

12 120 200 32 0.8146 0.8416 0.027 

13 80 300 32 0.6391 0.6094 -0.0297 

14 100 300 32 0.7586 0.757 -0.0016 

15 120 300 32 0.9898 0.9046 -0.0852 

16 80 500 32 0.6983 0.7354 0.0371 

17 100 500 32 0.8699 0.883 0.0131 

18 120 500 32 1.0191 1.0306 0.0115 

19 80 200 36 0.4671 0.4684 0.0013 

20 100 200 36 0.5998 0.616 0.0162 

21 120 200 36 0.7054 0.7636 0.0582 
22 80 300 36 0.5453 0.5314 -0.0139 

23 100 300 36 0.6977 0.679 -0.0187 

24 120 300 36 0.8484 0.8266 -0.0218 

25 80 500 36 0.6308 0.6574 0.0266 

26 100 500 36 0.8013 0.805 0.0037 

27 120 500 36 0.9884 0.9526 -0.0358 
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Table 5 ANN topology and its training parameters  

Parameters Values 

Number of input neurons 3 

Number of hidden layers 2 

Number of neurons in each hidden layer 5 

Number of output neuron 1 

Momentum factor 0.9 

Learning rate 0.6 

Number of iterations 200000 

 

Table 6 Comparison of predicted (ANN) and experimental values  
Exp. 

No 
Actual MRR Predicted MRR Error 

1 0.6365 0.612 0.0245 

2 0.7527 0.7423 0.0104 

3 0.9022 0.911 -0.0088 

4 0.7119 0.6941 0.0178 

5 0.8527 0.9241 -0.0714 

6 0.9655 0.9865 -0.0211 

7 0.7998 0.7658 0.0340 

8 0.9613 0.9421 0.0192 

9 1.108 1.092 0.0160 

10 0.5544 0.5426 0.0118 

 

Table 7 Experimental results and S/N ratios  
Exp. 

No. 
MRR (*e-3 mm3/min) S/N Ratio 

1 0.6365 -3.92 

2 0.7527 -2.47 

3 0.9022 -0.89 

4 0.7119 -2.95 

5 0.8527 -1.38 

6 0.9655 -0.30 

7 0.7998 -1.94 

8 0.9613 -0.34 

9 1.108 0.89 

10 0.5544 -5.12 

11 0.6751 -3.41 

12 0.8146 -1.78 

13 0.6391 -3.89 

14 0.7586 -2.40 

15 0.9898 -0.09 

16 0.6983 -3.12 

17 0.8699 -1.21 

18 1.0191 0.16 

19 0.4671 -6.61 

20 0.5998 -4.44 

21 0.7054 -3.03 

22 0.5453 -5.27 

23 0.6977 -3.13 

24 0.8484 -1.43 

25 0.6308 -4.00 

26 0.8013 -1.92 

27 0.9884 -0.10 

 

Table 8 Percentage contributions of the selected parameters for MRR 
Source of variance Degree of Freedom Sum of squares Variance F- Ratio F- Ratio 

Tabulated value 
% 

Contribution 

Voltage 2 50.92 25.46 292.25 3.37 56.25 

Capacitance 2 22.49 11.25 129.09 3.37 24.84 

Sparkgap 2 15.38 7.69 88.25 3.37 16.99 

Error 20 1.74 0.09   1.92 

Total 26 90.54    100 
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Figure 2 graphical representation of S/N ratio for MRR 

Analysis of Variance (ANOVA) 

The experiments were conducted based on the experimental 

plan given in Table 1. ANOVA was carried out to find the 

influence of machining parameters on MRR. The percentage 

contribution indicates the significant effect of parameters on 

MRR and it is given in the Table 3.  F - Tests have been 

performed to find the significance of machining parameters. At 

95% confidence level F(0.05%), 2,26 = 3.37. The calculated value of 

the „F‟ ratio of voltage, capacitance and sparkgap are more than 

the tabulated value. This shows that the voltage is highly 

significant and the capacitance is next significant to voltage for 

MRR. The percentage contribution of each parameter on MRR 

is shown in figure 3. 

Percentage contribution of MRR

Spark Gap

17%

Capacitance 

25%

Voltage

56%

Error

2%

Spark Gap Capacitance Voltage Error

 

Figure 3 percentage contributions on MRR 
Conclusions 

A full factorial design was used to conduct the experiments. 

Three important machining parameters such as voltage, 

capacitance and sparkgap were considered for experimentation 

and MRR was calculated. Multiple regression and artificial 

neural network techniques are used to predict the MRR. To 

validate the developed model, the predicted values are compared 

with actual experimental results. ANOVA is carried out and the 

influence of machining parameters on MRR is found.  The S/N 

ratio was calculated to find the optimum machining parameters. 

From the results, the following salient conclusions can be 

drawn. 

1. The developed multiple regression model gives satisfactory 

results in many predictions. 

2. The results attained from the ANN model gives better 

agreement with experimental values than the multiple 

regression. 

3. From the S/N ratio, the optimum machining parameter for 

MRR is voltage of 120V, capacitance of 300 pF and sparkgap of 

28 µm.  

ANOVA results show that the voltage is the most 

dominating parameter that influences MRR, Capacitance is the 

second dominating parameter for MRR. The voltage contributes 

56.25 %, capacitance contributes 24.84 % and sparkgap 

contributes 16.99 % towards the MRR.  
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