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ABSTRACT

This paper presents realization of semi Gaussian (S-G) shaper circuits for detector readout
front ends. The circuits are based on current difference transconductance amplifier (CDTA)
and differential difference current conveyor transconductance amplifier (DDCCTA) and can
operate in voltage and current mode. The proposed circuits use grounded capacitors and thus
make these suitable from integration viewpoint. The theoretical propositions are verified
through extensive SPICE simulations using 0.25um TSMC CMOS technology model
parameters. The performance of proposed topologies is compared in terms of total harmonic
Current difference transconductance distortion, power dissipation, dynamic range, signal to noise ratio (SNR) and output noise.
amplifier(CDTA), Current mode, The performance comparison of CDTA, DDCCTA, CCIl and OTA based shapers proves
Differential difference current conveyor that proposed CDTA and DDCCTA based shapers have advantageous performance features

Keywor ds

transconductance amplifier (DDCCTA), over existing CCIl and OTA based shapers.

Semi Gaussian (S-G), \Wltage mode.

Introduction

Recently, there is a considerable interest in developing
monolithic implementation of readout systems [1]-[11]. The
architecture of readout system comprises of a preamplifier stage
followed by a pulse shaper [12]-[18]. The design of pulse
shapers in integrated circuits is challenging as realization of long
shaping times require resistances and capacitors of large values,
thereby occupy a large implementation area. It is suggested that
a semi Gaussian (S-G) shaper provides optimum signal to noise
characteristics among other pulse shaping schemes [5], [19],
[20]. The S-G shapers have primarily been implemented using
RL-RC"filter [19],[20] which is shown in Fig. 1. The S-G shaper
is characterized by a lower and an upper frequency bound and
can be seen as (n+1)™ order band pass filter (BPF), where n
represents number of lossy integrators. The transfer function of
an nth order S-G shaper may be written by ().
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where n is shaper order, zgisand i, are differentiator and
integrator time constants, and A is integrators dc gain. The
differentiator sets the pulse duration by introducing the decay
time constant whereas the integrator increases rise time to limit
noise bandwidth. The operating bandwidth of an S-G shaper
may be computed by (2).

1 1
BW=f —f. = -
int diff Z”Tim Zﬂrdiff (2)

The analog integrated circuits design, in particular S-Gshaper,
using current mode building blocks has gained popularity due to
advantageous performance features like wide bandwidth, wide
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dynamic range, low power consumption, less circuit complexity,
and high operating speed [20]. The literature survey on S-Gshaper
circuits shows that a variety of current mode active building blocks
(ABB) namely operational transconductance amplifier (OTA) [20],
second generation current conveyor (CCII) [20] and Current
amplifiers (CA) [5] have been employed in the realization. In this
paper, voltage and current mode S-G shaper designs based on
current difference transconductance amplifier (CDTA) [21]-[24]
and differential difference current conveyor transconductance
amplifier (DDCCTA) [25]-[27] have been proposed. The proposed
shaper configurations employ lesser passive elements and have
better performance characteristics than the configurations
described in [28]-[29]. The feasibility of the proposed designs is
studied using SPICE simulations and their performance is
compared in terms of total harmonic distortion (THD), power
dissipation, and dynamic range (DR), signal to noise ratio (SNR)
and output noise.

IN High Pass ouT

Filter

Low Pass
Filter

Fig 1. Block diagram of nt" order S-G shaper

CDTA based shapers

CDTA [21]-[24] is an active and versatile circuit element
which is free from parasitic input capacitances and can operate
in a wide frequency range due to its current-mode operation. It
consists of a unity-gain current source controlled by the
difference of the input currents and a multi-output
transconductance amplifier providing electronic tunability
through its transconductance gain. The CDTA symbol is shown
in Fig. 2 and its terminal characteristic in matrix form are given

by (3).
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where gpis transconductance of the CDTA. The CMOS
implementation of CDTA [22] is given in Fig. 3. It comprises of
a current differencer (Mc1-Mcl7) [22] which is followed by
The value of

transconductance amplifier (Mc18-Mc26).
transconductance (gn)is expressed by (4) which can be adjusted
by bias current Igj;s of CDTA. transconductance (gp)is expressed
by (4) which can be adjusted by bias current lgj;s0f CDTA.

m= x/Z/UCox (W 7 L)io 21 Veias (4)

where p represents the carrier mobility, (W/L);is the aspect
ratio of i™transistor and Coyis the gate oxide capacitance per unit

area. The CDTA based voltage and current mode shaper circuits
are proposed respectively in the next section.
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Fig 3. CMOS implementation of CDTA

CDTA based wltage mode shaper

The proposed voltage mode n™ order CDTA based S-G
shaper circuit is shown in Fig. 4. It employs (n+1) CDTAS, two
TAs, (n+1) grounded capacitors and two grounded resistors. The
differentiator employs one CDTA, twoTAs, one grounded
capacitor and resistor while n integrators employ n CDTAS, n
grounded capacitors and onegrounded resistor. The transfer
function of the proposed n™ order shaper and its operating
bandwidth is given by (5) and (6) respectively.
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Fig. 5 shows the proposed n'" order CDTA based current
mode shaper circuit. The circuit employs (n+1) CDTAS, two
TAs and (n+1) grounded capacitors. The differentiator employs

CDTA based current mode shaper
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Fig 4. Proposed wltage mode nt" order CDTA based S-G shaper
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one CDTA, two TAs and one grounded capacitor while n transconductance amplifier (Md13-Md22). The value of
integrators employ n CDTAs and n grounded capacitors. The transconductance (gm)is expressed by (10) which can be can be
transfer function of the proposed n™ order current mode shaper adjusted by varying bias current Igjgs.
and its operating bandwidth is given by (7) and (8) respectively.
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Fig 6. Symbol of proposed DDCCTA
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DDCCTA based shapers

DDCCTA [25]-[27], is relatively new active building block,
employs DDCC [26] as input block which is followed by a TA.
It has all the good properties of CCIl and OTA, and special
properties of DDCC such as easy implementation of differential
and floating input circuits [26]. The DDCCTA symbol is shown
in Fig. 6 and its terminal characteristics in matrix form are given

by (9).

Voo

lyy 0 0 00 0 00 Viu Fig 7. CMOS implementation of DDCCTA

l,, 0 0 00 0 0 0 |V,

I, 0 0O 00 0 0 O V., The DDCCTA based voltage and current mode shaper circuits

are proposed respectively in sections 3.1 and 3.2.

V, [=]1 -1 1.0 0 0 0f |l | O

I, 0 0O 01 0 0O Vv, DDCCTA based wltage mode shaper

lor 0 0 0 0-g, 00 Voo In this section n™ order voltage mode shaper based on
| 0 0 0 0 — 00 Vv DDCCTA is proposed. The circuit is shown in Fig. 8 which
L"o2-] L Un 4 L7o2- ] employs (n+1) DDCCTAs, (n+1) grounded capacitors, and three

resistors. The differentiator employs one DDCCTA, one grounded

where gnis transconductance of the DDCCTA. The CMOS capacitor and two resistors while n integrators employ n

implementation of DDCCTA [26] is given in Fig. 7. It comprises DDCCTASs, n grounded capacitors and one grounded resistor. The
of a DDCC block (Md1-Md12) [26] which is followed by transfer function of theproposed n'™ order shaper and itsoperating



DDCCTA based current mode shaper

Fig. 9 shows the proposed n'" order DDCCTA based current
mode shaper. It uses (n+1) DDCCTAs, (n+1) grounded
capacitors and three grounded resistors. The differentiator
employs one DDCCTA, one grounded capacitor and two
grounded resistors while n integrators employ n DDCCTAS, n
grounded capacitors and one grounded resistor. The transfer
function of the n" order DDCCTA based current mode proposed
shaper and its operating bandwidth is given by (13) and (14)
respectively.
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Simulation Results

The theoretical proposition has been verified through SPICE
simulations using TSMC 025um CMOS process model
parameters. The CMOS schematic of Fig. 3 and Fig. 7 is used
for CDTA and DDCCTA respectively, a part of CDTA
schematic (Mc18-Mc26) is taken for TA. The aspect ratio of all
the transistors for CDTA and DDCCTA is given in Table 1. The
power supply voltages of Vpp = -Vss = 1.8 V are used uniformly
for all circuits and Vgg = -0.8V is taken for DDCCTA based
shapers. The CDTA and DDCCTA based first order shapers
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Fig 9. Proposed DDCCTA based n™ order current mode shaper
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Table 1. MOS Dimensions of CDTA and DDCCTA

CDTA DDCCTA
MOSFETs W (um)/L MOSFETs W (um)/L(
(um) um)
Mc26 7.0/0.7 Md5,Md6,Md1 5/0.5
3, Md14,
Md17-Md22
Mcl 9.8/0.7 Md9,Md11 8.5/0.5
Mc2, Mc3, 10.5/0.7 Md1,Md2, 10/0.5
Mc13,Mc16, Md3,Md4
Mc17
Mc19, Mc21 16.1/0.7 Md7,Md8, 27.25/0.5
Mc6, Mc20 28.0/0.7 Md15Md16 27/0.5
Mc8, Mc10, 28.7/0.7 Md10,Md12 44/0.5
Mc18
Mc15, Mc12, 35.0/0.7 - -
Mc5
Mc4, Mc14 42.0/0.7 - -
Mc22, Mc23, 56.0/0.7 - -
Mc25
Mc24 58.8/0.7 - -
Mc7, Mc9, 70.0/0.7 - -
Mcll

are designed with operating bandwidth of 340KHz and 425KHz
respectively. The circuit parameters for CDTA and
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DDCCTAbased voltage and current mode shapers are listed in
Table 2. The frequency response of proposed CDTA and
DDCCTA based first order shaper topologies in voltage and
current mode is given in Fig. 10.

The transient behaviour of proposed shapers is also studied
by applying input signals of frequencies 10KHz, 100KHz and
3MHz, each having an amplitude of 50mV each. Fig. 11 shows
the input and output waveform along with their frequency
spectrum for CDTA based first order voltage mode shaper. It
may clearly be noted that the CDTA based voltage mode shaper
allows only 10KHz and 100KHz to pass and significantly
attenuates 3 MHz signal Similar responses for other shapers
were also obtained.

Performance Evaluation

The performance of proposed topologies is compared in
terms of total harmonic distortion, power dissipation, dynamic
range, signal to noise ratio (SNR) and output noise. The total
harmonic distortion (THD) and signal to noise ratio (SNR) of
proposed shapers are shown in Figs. 12 and 13 respectively.

The total performance characteristics of proposed first order
shapers are recapitulated in Table 3. Furthermore, performance
of first order CDTA and DDCCTA based current mode shapers
is compared with already existing second order CCIl and OTA
based LC ladder shaper topologies in terms of power dissipation,
THD, Dynamic range and SNR and is given in Table 4.

Table 2. Circuit Parameters of CDTA and DDCCTA based first order shapers

Fig. 10. Frequency Response of (a) CDTA and (b) DDCCTA based wltage mode; (c) CDTA and (d) DDCCTA based current

Circuit CDTA CDTA Circuit DDCCTA DDCCTA
Parameters Voltage mode Current mode Parameters Voltage mode Current mode
Igias1, Iias2 1.20pA 2UA IBias1 100pA 10pA
IBiasS IBias4 O-OOSHA O-O4UA IBiasz 1O“A 1OUA
Cy 50pF 40pF Ry 1KQ 5.5KQ
C, 80pF 100pF R, 100KQ 40KQ
Ry 20KQ - R3 7.2KQ 5KQ
- - - C, 50pF 65pF
3
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Fig 13. SNR of proposed shaper configurations

The DDCCTA based current mode shaper proved to be
optimum concerning the dynamic range and SNR. The power
dissipation of OTA based LC ladder shaper is least while it has
maximum THD. The CCIl LC ladder shaper has the minimum
THD while it suffers from the drawback of high power
dissipation. The CDTA based current mode shaper has low
power dissipation, THD, dynamic range while high SNR value.
The comparison proves that CDTA and DDCCTA based shapers
have advantageous performance features over CCIl and OTA
based shapers.

Conclusion

In this paper, CDTA and DDCCTA based voltage and
current mode S-G shaper circuits are presented. The shaper
topologies use grounded capacitors and are suitable from
integration point of view. The simulation results are included to
demonstrate the workability of the circuits. The performance is
characterized in terms of THD, power dissipation, dynamic
range, SNR and output noise. The CDTA-based current and
voltage mode shapers proved to be optimum concerning the
power dissipation and total harmonic distortion (THD) while the
DDCCTA-based current and voltage mode shapers appear to be
the optimum concerning the dynamic range and signal to noise
ratio (SNR). The output noise voltage of CDTA-based shaper is
less than DDCCTA-based shaper when operated in voltage
mode while DDCCTA-based shaper proved to have lesser output
noise voltage when operated in current mode. The performance
comparison of CDTA, DDCCTA, CCIl and OTA based shapers
proves that CDTA and DDCCTA based shapers have
advantageous performance features over CCIl and OTA based
shapers.

Table 3. Performance Characteristics of CDTA and DDCCTA based first order shapers

Performance Parameters CDTA CDTA DDCCTA DDCCTA
Voltage mode Current mode Voltage mode Current mode
THD (at 100m\V/10pA) 3.44% 2.74% 3.50% 2.98%
Power Dissipation 0.37TmwW 0.62mw 1.88mwW 1.42mwW
DynamicRange (THD =1%) 17.16dB 16.06dB 59.41dB 54.99dB
SNR (at 100mV/50pA) 120.20dB 56.00dB 128.60dB 73.80dB
Max. Output Noise Voltage 262.20nV 194.20nV 360.00nV 38.00nV
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Table 4. Comparison of CCIl, OTA, CDTA and DDCCTA based current mode shapers

Performance Parameters CCll OTA CDTA DDCCTA
LC Ladder [20] LC Ladder [20] Current mode Current mode
Power Dissipation 5.50mwW 0.13mw 0.62mwW 1.42mwW
THD (at 10pA) 0.32% 5.62% 2.74% 2.98%
DynamicRange (THD = 1%) 35.00dB 32.00dB 16.06dB 54.99dB
SNR (at 50pA) 40.00dB 38.00dB 56.00dB 73.80dB
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