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Introduction 

Radiative convective flows have gained attention of many researchers in recent years. This is justified by the fact that the 

radiative flows of an electrically conducting fluid with high temperature in the presence of magnetic field plays a vital role in many 

engineering, industrial and environment processes e.g. heating and cooling chambers, fossil fuel combustion energy processes, 

evaporation from large open water reservoirs, astrophysical flows, solar power technology and space vehicle re-entry. More 

applications and a good insight into the subject are given by Rashad [1], Sanyal and Adhikari [2], Muthucumaraswamy and 

Kulandaivel [3], Prasad and Reddy [4], Singh and Kumar [5] and Raptis and Perdikis [6]. Chamkha [7] considered the problem of 

steady, hydromagnetic boundary layer flow over an accelerating semi-infinite porous surface in the presence of natural radiation, 

buoyancy and heat generation or absorption. Analytical model of MHD mixed convective radiating fluid with viscous dissipative heat 

have been presented by Ahmed and Batin [8]. Soundalgekar [9] investigated oscillatory MHD flow and heat transfer effects on the 

channel. Ali et al. [10] studied the radiation effect on free convectionboundary layer flow over horizontal surfaces, using the 

Rosseland diffusion approximation. Soundalgekar and Takhar [11] have studied radiation effects on free convection flow of a gas past 

a semi-infinite flat plate. Theoretical analysis of radiative effects on transient free convection heat transfer past a hot vertical surface 

in porous media was presented by Ghosh and Beg [12]. Kim and Fedorov [13] studied transient mixed radiative convection flow of a 

micropolar fluid past a semi-infinite vertical porous plate. Hossain and Rees [14] investigated free convection from isothermal 

inclined plates to horizontal plates. The interaction of free convection and radiation on boundary layer flows with fluid suction 

through the porous wall was investigated by Hossain et al. [15]. Yih [16] studied the radiation effect on natural convection about a 

truncated cone. EL-Hakim and Rashad [17] used Rosseland diffusion approximation in studying the effect of radiation on free 

convection from a vertical cylinder embedded in a fluid-saturated porous medium. Raptis and Massalas [18] analyzed the effects of 

radiation on the oscillatory flow of a gray gas, absorbing-emitting in the presence of induced magnetic field. Beg and Ghosh [19] 

investigated an analytical study for MHD flow of radiating fluid with oscillatory surface temperature and secondary flow effects. 
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Prasad and Reddy [4] studied radiation and mass transfer effects on an unsteady MHD free convection flow past a semi-infinite plate 

through porous medium. 

If two regions in a mixture are maintained at different temperatures so that there is a flux of heat, it has been found that a 

concentration gradient is set up. In a binary mixture, one kind of a molecule tends to travel toward the hot region and the other kind 

toward the cold region. This is called the “Soret effect”. Eckert and Drake [20] have pointed out that in a convective fluid when the 

flow of mass is caused by a temperature difference one cannot neglect the thermal diffusion effect (commonly known as Soret effect) 

due to its practical application in engineering and science. Usually this effect has a negligible influence on mass transfer, but it is 

useful in the separation of certain mixtures. Thermal diffusion effect or Soret effect has been utilized for isotope separation and in 

mixtures between gases with very light molecular weight and medium molecular weight (air) and it was found to be of a magnitude 

that it cannot be neglected. More physical insight into the problem is given by Sparrow and Cess [21] and Renuka et. al. [22]. Reddy 

and Reddy [23] investigated Soret and Dufour effects on steady MHD free convective flow past an infinite plate. Soret effects due to 

natural convection between heated inclined plates have been investigated by Raju et al. [24]. 

Formulation of the problem 

We consider a steady, laminar, hydromagnetic combined heat and mass transfer by natural convection flow along a continuously 

moving semi-infinite permeable flat plate that is inclined with an acute angle  from the vertical. With x-axis measured along the 

plate, a magnetic field of uniform strength Bo is applied in the y direction which is normal to the flow direction .Fluid suction is 

imposed at the plate surface. A heat source is placed within the flow to allow for possible heat generation effects. The fluid is assumed 

to be Newtonian, electrically conducting and heat generating. The temperature of the surface is held uniform at Tw which is higher 

than the ambient temperature T. The species concentration at the surface is maintained uniform at Cw, which is taken to be zero and 

that of the ambient fluid is assumed to be C. The effects of thermophotesis are being taken into account to help in the understanding 

of the mass deposition variation on the surface. We further assume that  

(i) The mass flux of particles is sufficiently small so that the main stream velocity and temperature fields are not affected by the 

thermophysical processes experienced by the relatively small number of particles, 

(ii) Due to the boundary layer behavior the temperature gradient in the y direction is much larger than that in the x direction and hence 

only the thermophoretic velocity component which is normal to the surface is of importance,  

(iii) The fluid has constant kinematic viscosity and thermal diffusivity, and that the Boussinesq approximation may be adopted for 

steady laminar flow,  

(iv)The particle diffusivity is assumed to be constant, and the concentration of particles is sufficiently dilute to assume that particle 

coagulation in the boundary layer in negligible and  

(v) The magnetic Reynolds number is assumed to be small so that the induced magnetic field is negligible in comparison to the 

applied magnetic field. 

 

Under the above assumptions, the governing equations(see Selim et al. [25] and Chen [26]) for this problem can be written as 
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  (Equation of Diffusion)    (4) 

where u, v are the velocity components in the x and y directions respectively,  is the kinematic viscosity, g is the acceleration due to 

gravity,  is the density of the fluid,  is the volumetric coefficient of thermal expansion, T, Tw and T are  the temperature of the fluid 

inside the thermal boundary layer, the plate temperature and the fluid temperature in the free stream, respectively, while C, Cw and C 

are the corresponding concentrations,  is the electrical conductivity, B0 is the magnetic induction, g is the thermal conductivity of 

fluid cp is the specific heat at constant pressure,  D is the molecular diffusivity of the species concentration,k11,k12  are cross 

diffusivities and VT is the thermophoretic velocity. 

 The appropriate boundary conditions for the above model are as follows: 

u = U0, v =  vw(x), T = Tw, C = Cw = 0      at y = 0                                                               (5a) 

u =0,   T = T , C = C   as y                                                                                                         (5b) 
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where U0 is the uniform plate velocity and vw(x) represents the permeability of the porous surface where its sign indicates suction (<0) 

or blowing (>0). Here we confine our attention to the suction of the fluid through the porous surface and for these we also consider 

that the transpiration function variable vw (x) is of the order of x
-1/2

. 

By using Rosseland approximation, the raddiative heat flux is given by 
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and by Taylor’s expansion we get 
434 34 ee TTTT    after neglecting higher order terms.                                            (6b) 

  is the Stefan-Boltzman constant and  R  is the mean absorption coefficient. 

 

 The effect of thermophoresis is usually prescribed by means of an average velocity that a particle will acquire when exposed 

to a temperature gradient. For boundary layer analysis it is found that the temperature gradient along the plate is much lower than the 

temperature gradient normal to the surface, i.e., 
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. So the component of thermophoretic velocity along the plate is 

negligible compared to the component of its normal to the surface. As a result, the thermophoretic velocity VT, which appears in 

equation (4), can be written as: 
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where k is the thermophoretic coefficient which ranges in value from 0.2 to 1.2 as indicated by Batchelor and Shen[27] and is defined 

from the theory of Talbot et al.[28] by: 
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(8) 

where C1, C2, Ci, Cm, Cs, Ct are constants g and p are the thermal conductivities of the fluid and diffused particles, respectively and 

Kn is the Knudsen number. 

 At thermophoretic parameter  can be defined (see Mills et al. [29] and Tsai [30]) as follows: 
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Typical values of  are 0.01, 0.1 and 1.0 corresponding to approximate values of    –k(Tw - T) equal to 3.30 and 300 K for a reference 

temperature of Tref = 300 K.  

 In order to obtain similarity solution of the problem we introduce the following non - dimensional variables: 
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Where  is the stream function that satisfies the continuity equation (1).Since 
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Here prime denotes ordinary differentiation with respect to . 

Now substituting equation (9) in equations (2) – (4) we obtain the following ordinary differential equations which are locally 

similar: 

f + f f + Gr ( +N)cosα - 1 -( M
2
+D

-1
) f = 0,                                   (10) 

 

 (1+4/3N1)+ Pr f   = 0                                                                                                                      (11)  

 

 + Sc(f - ) - Sc = -ScSo  -γ                                                                                              (12) 

 

The boundary conditions (5) then turn into 

 

f = fw,  f = 1,   = 1, = 0   at     = 0                                                                                          (13a) 

 

f = 1,   = 0, = 1     at                                                                                                              (13b) 

where  fw = -vw(x) 

0

2

U

x


is the dimensionless wall mass transfer coefficient such that fw>0 indicates wall suction and fw<0 indicates 

wall injection. 
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 The dimensionless parameters introduced in the above equations are defined as follows:
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The skin-friction coefficient ( w ), wall heat transfer coefficient (or local Nusselt number (Nu)) and wall deposition flux (or the local 

Stanton number (Sh)) are important physical parameters. These can be obtained from the following expressions: 
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where 


xU 2
Re 0  is the local Reynolds number.  

Results and discussion of the numerical results                                              

                                          In this analysis we investigate the effect of chemical reaction, thermo diffusion and diffusion thermo on the 

convective heat and mass transfer flow of a viscous electrically conducting fluid through a porous medium bounded by a semi-infinite 

vertical plate at 0   with variable electrically conductivity. The equations governing the flow heat and mass transfer are solved by 

employing Galerkin-finite element analysis with three nodded line segments  

                                            The axial velocity f   is shown in figs.1-4 for different values of G, M, D
-1

, N, N1, Sc, So, τ,  ,  and 

 . Fig. 1-4 represents  the variation of f   with M shows that higher the Lorentz force larger f   and for further higher Lorentz 

forces smaller f  Also lesser the permeability of the porous medium larger f   in the entire flow region. The variation of f   with 

buoyancy ratio N shows that when the molecular buoyancy force dominates over the thermal buoyancy force f   enhances in the 

flow region when buoyancy forces are in the same direction and for the forces acting in opposite direction  f   depreciates in the 

flow region. Higher the radiative heat flux larger f   in the flow region (fig.1). With respect to Sc we find that lesser the molecular 

diffusivity smaller f  in the flow region. Also f   depreciates with increase in 0So   and enhances with 0So  (fig.2). With 

respect to chemical reaction parameter   we find that f   reduces in the degenerating chemical reaction case and in generating 

chemical reaction case f   reduces with increase in 1.5   and enhances with 2.5  (fig.3). The effect of thermophoretic 

parameter  on f is shown in  fig. 4. It is found that the axial velocity f depreciates in the flow region (0  η  5) and enhances for 

away from the boundary with   0.05 and for higher   0.07, we notice depreciation in the region (0  η  5) and enhances in the 

remaining flow region. 

                                                     The transverse velocity ( f ) is shown in figs.5-8 for different parameter values. From fig.5 we find 

higher the Lorentz force larger f . When the molecular buoyancy force dominates over the thermal buoyancy force f  enhances 

when buoyancy forces are in the same direction and for the forces acting in opposite directions  f  depreciates in the flow region. 
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With respect to 1N  shows that the transverse velocity depreciates with 1 4N   and enhances with higher 1 6N   . Fig.6 represents 

the transverse velocity with  Sc and So . The transverse velocity depreciates with Sc . Also  f  enhances with 0So   and 

depreciates with So . The variation of  f  with the Darcy parameter 
1D
 shows that lesser the permeability of porous medium larger 

f  in the flow then  f  reduces in the degenerating case and in the generating case f  reduces with 1.5   and enhances with 

2.5  (fig.7). Also f experiences depreciation with increase in the thermophoretic parameter  (fig.8). 

                                              The non-dimensional temperature   is shown in figs.9-12 for different parametric values. We follow the 

convention that the non-dimensional temperature is positive or negative according as the actual temperature   is greater/lesser than 

T . The variation of   with Hartman number M, buoyancy ratio N  is shown in fig.9. It is found that higher the Lorentz force larger 

the actual temperature and for further higher Lorentz force smaller the actual temperature. When the molecular buoyancy force 

dominates over the thermal buoyancy force the actual temperature experiences an enhancement irrespective of the directions of the   

buoyancy forces. Also an increase in the thermal radiation parameter 1N , leads to a depreciation in the actual temperature with respect 

to Sc  . We find that lesser the molecular diffusivity smaller the actual temperature. The actual temperature depreciates with increase 

in 0So   and enhances with So  (<0) (fig.10). From fig.11 we find that lesser the permeability of the porous medium smaller the 

actual temperature and for further lowering of the permeability larger the actual temperature. The variation of    with chemical 

reaction parameter   shows that the actual temperature enhances in the degenerating chemical reaction case and reduces in the 

generating chemical case (fig.11). An increase n the thermophoretic parametric τ leads to a depreciation in the actual temperature 

(fig.12). 

                                                        

                          The non-dimensional concentration (C) is shown in fig.13-16 for different parametric variations. We follow the 

convention the non- dimensional is positive or negative according as the actual concentration is greater/lesser than C . For different   

variations of the parameters the actual concentration is lesser than C . From fig.13 we find that higher the Lorentz force larger the 

actual temperature and for further higher Lorentz force lager the actual concentration. When the molecular buoyancy force dominates 

over the thermal buoyancy force the actual concentration enhances when buoyancy forces are in the same direction and for the forces 

acting in opposite directions the actual concentration depreciates in the flow region. An increase in the thermal radiation parameter 

1N  results in a depreciation in the actual concentration. The variation of C with Sc  shows that lesser the molecular diffusivity 

smaller the larger the actual concentration. The actual concentration enhances 0So   and reduces with 0So   (fig.14). From fig.15 

we find that lesser the permeability of porous medium smaller the actual concentration and for further lowering of the permeability we 

notice an enhancement in the concentration. The variation of C with chemical reaction parameter   the actual concentration enhances 

in the degenerating chemical reaction case while in the generating chemical reaction case it enhances with 1.5   and reduces with 

higher 2.5  . The variation of C with thermophoretic parameter shows that the actual concentration reduces everywhere in the 

region except in 0 1   where it enhances (fig.16). 
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Fig.4.Variation of  f with  τ 
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Fig.6. Variation of  f  with Sc and So 
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Fig.8.Variation of f with τ 

 

 

 

 

Fig.9. Variation of θ with M, N1 and N 
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Fig.10. Variation of  θ with Sc and So 
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Fig.11. Variation of θ with D
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 and γ 
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Fig.12.Variation of  θ  with  τ 
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Fig.13. Variation of C with M, N1 and N 

 

 

 

 

 

Fig.14. Variation of C with Sc and So 
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Fig.16.Variation of C  with  τ 

 

 

                                                                         The skin-friction coefficient (
w )on the wall  0   is shown in tables.1-2 for different 

values of G, M, D
-1

, N, N1, τ, Sc, So,  ,  and  .It is found that the   skin-friction coefficient 
w  with Soret parameter So shows 

that  w  enhances with increase in 0So   and depreciates with So . The variation of w with thermophoretic parameter  shows 

that the stress enhances in the heating case and reduces in the cooling case with increase in (table-1).The variation of w with 

chemical reaction parameter   shows that  w  depreciates in the degenerating chemical reaction case while in the generating case 

w  enhances with 1.5   and depreciates with 2.5   .Higher the radiative heat flux smaller w  at η=0 (table-2)   

                                               The rate of heat transfer (Nu) at  0   is shown in tables.3-4 for different parametric values. The 

variation of Nu  with Soret parameter So shows that the rate of heat transfer enhances in the heat case and depreciates in cooling case 

with increase in 0So   and a reversed effect is observed in the behaviour of   Nu  with So . |Nu| depreciates in the heating case 

and enhances in the cooling case with increase in the thermophoretic parameter  at η = 0 (table-3).With respect to chemical reaction 

parameter    we find that the rate of heat transfer reduces  for  0G   and enhances for 0G   in the degenerating chemical 

reaction  case while in the generating case it enhances for 0G   and depreciates   0G   with 1.5   and for higher 2.5   a 

reversed effect is noticed in the behaviour of  Nu . Lesser the molecular diffusivity larger  Nu  in the heating case and smaller 

Nu  in the cooling case (table-4). 

                                           The rate of mass transfer (Sh) at 0   is shown in tables.5-6 for different parametric values. It is found 

that the rate of mass transfer enhances with increase in G . The variation of Sh  with Soret parameter So shows that the rate of mass 

transfer with increase in So . Also |Sh| enhances with increase in the thermophoretic parameter (table-5). The rate of mass transfer 

depreciates for 0G   and enhances for 0G   in both degenerating and generating chemical reaction cases. The variation of Sh  

with radiation parameter 1N  shows that higher the radiative heat flux ( 1 4N  ) larger  Sh   in the heating case and smaller in the 

cooling case and for further higher radiative heat flux Sh  depreciates for 0G   and enhances for 0G    (table-6).  

 

Table 1.  

Skin-friction ( w ) at η = 0 

G I II III IV V VI VII 

10
3
 1.0403 1.9412 1.2385 1.375 1.0951 1.1580 1.1730 

3x10
3
 -5.8201 -6.11273 -5.2256 -4.9284 -4.6586 -3.2749 -2.2755 

-10
3
 7.9001 7.9997 7.7025 7.6034 4.3515 3.8412 3.1296 

-3x10
3
 14.7610 15.0582 14.1665 13.8693 5.6980 4.1244 3.8321 

So 0.5 1 -0.5 -1 0.5 0.5 0.5 

τ 0.01 0.01 0.01 0.01 0.03 0.05 0.07 

 

 

 

 

 

I II III IV 

τ 0.01 0.03 0.05 0.07 
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Table 2.  

Skin-friction (
w ) at η = 0 

G I II III IV V VI VII VIII 

10
3
 0.8403 0.6296 0.6194 0.9807 -1.3513 1.2626 0.7255 0.6705 

3x10
3
 -5.8201 -4.0521 -3.7827 -5.9988 -9.9950 -2.1533 -6.2173 -7.5674 

-10
3
 7.9001 7.8513 7.8015 7.9603 9.2923 6.6784 6.3664 5.3265 

-3x10
3
 14.7610 12.9930 12.7237 14.9398 18.9360 11.0943 3.1583 2.4705 

γ 0.5 1.5 2.5 -0.5 -1.5 -2.5 0.5 0.5 

N1 2 2 2 2 2 2 4 6 

 

Table 3.  

Nusselt Number (Nu) at η = 0 

G I II III IV V VI VII 

10
3
 -6.3090 -6.3433 -6.2317 -6.1875 -7.0889 -7.4662 -7.6177 

3x10
3
 -5.7429 -5.9132 -5.1086 -6.0868 -6.0647 -6.1930 -6.3062 

-10
3
 -6.5478 -6.5380 -6.5681 -6.5785 -6.4763 -6.2527 -6.1070 

-3x10
3
 -6.1953 -6.1823 -6.2219 -6.2356 -6.1492 -6.1010 -6.0968 

So 0.5 1 -0.5 -1 0.5 0.5 0.5 

τ 0.01 0.01 0.01 0.01 0.03 0.05 0.07 

 

Table 4.  

Nusselt Number (Nu) at η = 0 

G I II III IV V VI VII VIII 

10
3
 -6.4090 -6.0944 -6.0578 -6.2329 -6.3251 -5.0377 -6.6243 -7.1785 

3x10
3
 -5.7429 -5.3671 -5.2672 -6.4201 -6.8053 -6.6994 -6.6742 -7.4654 

-10
3
 -6.5478 -6.6275 -6.6392 -6.5969 -6.5332 -6.6438 -6.4709 -6.3785 

-3x10
3
 -6.1953 -6.2947 -6.3082 -6.2283 -6.1042 -6.3599 -6.0762 -6.0325 

γ 0.5 1.5 2.5 -0.5 -1.5 -2.5 0.5 0.5 

N1 2 2 2 2 2 2 4 6 

 

Table 5.  

Sherwood Number (Sh) at η= 0 

G I II III IV V VI VII 

10
3
 -7.9666 -7.8044 -8.2746 -8.4209 -6.7490 -6.6968 -6.5194 

3x10
3
 -11.8462 -11.7977 -11.8652 -11.9745 -8.5615 -8.5068 -8.4289 

-10
3
 -9.9192 -9.9759 -9.8131 -9.7635 -9.8702 -9.8040 -9.7730 

-3x10
3
 -10.5187 -10.5916 -10.3827 -10.3192 -10.4762 -10.4178 -10.3757 

So 0.5 1 -0.5 -1 0.5 0.5 0.5 

τ 0.01 0.01 0.01 0.01 0.03 0.05 0.07 

 

Table 6. 

 Sherwood Number (Sh) at η= 0 

G I II III IV V VI VII VIII 

10
3
 -7.9696 -6.8389 -5.8373 -8.5308 -8.3756 -8.4184 -8.1372 -8.0890 

3x10
3
 -11.8462 -11.6630 -10.7005 -11.4392 -11. 1575 -11.9115 -11.0557 -10.9823 

-10
3
 -9.9192 -9.9331 -9.9748 -9.4295 -11.4139 -9.8934 -9.9262 -9.9890 

-3x10
3
 -10.5187 -10.5338 -10.5535 -9.4697 -11.5895 -10.4246 -10.6449 -10.8990 

γ 0.5 1.5 2.5 -0.5 -1.5 -2.5 0.5 0.5 

N1 2 2 2 2 2 2 4 6 

 

Conclusions:                                   

                    An attempt has been made to investigate the effect of chemical reaction, thermo-diffusion and diffusion thermo on the 

convective heat and mass transfer flow of a viscous electrically conducting fluid through a porous medium bounded by a semi-infinite 

vertical plate with thermophoresis. Using Galerkine finite element analysis with three nodded line segments the governing equations 

have been solved and flow characteristics are discussed for different variations. 

(i). Lesser the permeability of the porous medium larger f   in the entire flow region. The variation of f   with buoyancy ratio 

N shows that when the molecular buoyancy force dominates over the thermal buoyancy force f   enhances in the flow region 
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when buoyancy forces are in the same direction and for the forces acting in opposite direction  f   depreciates in the flow 

region. Higher the radiative heat flux larger f   in the flow region. f   depreciates with increase in 0So   and enhances with 

0So  . With respect to chemical reaction parameter   we find that f   reduces in the degenerating chemical reaction case 

and in generating chemical reaction case f   reduces with increase in 1.5   and enhances with 2.5  . The effect of 

thermophoretic parameter  on f  .It is found that the axial velocity f depreciates in the flow region (0  η  5) and enhances for 

away from the boundary with   0.05 and for higher   0.07, we notice depreciation in the region (0  η  5) and enhances in 

the remaining flow region. 

 

 

(ii). When the molecular buoyancy force dominates over the thermal buoyancy force f  enhances when buoyancy forces are in 

the same direction and for the forces acting in opposite directions  f  depreciates in the flow region. With respect to 1N  shows 

that the transverse velocity depreciates with 1 4N   and enhances with higher 1 6N  . Also  f  enhances with 0So   and 

depreciates with So . f  reduces in the degenerating case and in the generating case f  reduces with 1.5   and enhances 

with 2.5  . Also f experiences depreciation with increase in the thermophoretic parameter   . 

 

(iii). When the molecular buoyancy force dominates over the thermal buoyancy force the actual temperature experiences an 

enhancement irrespective of the directions of the   buoyancy forces. Also an increase in the thermal radiation parameter 1N , leads 

to a depreciation in the actual temperature. The actual temperature depreciates with increase in 0So   and enhances with So  

(<0). We find that lesser the permeability of the porous medium smaller the actual temperature and for further lowering of the 

permeability larger the actual temperature. The variation of    with chemical reaction parameter   shows that the actual 

temperature enhances in the degenerating chemical reaction case and reduces in the generating chemical case. An increase n the 

thermophoretic parametric τ leads to a depreciation in the actual temperature. 

 

(iv). When the molecular buoyancy force dominates over the thermal buoyancy force the actual concentration enhances when 

buoyancy forces are in the same direction and for the forces acting in opposite directions the actual concentration depreciates in 

the flow region. An increase in the thermal radiation parameter 1N  results in a depreciation in the actual concentration.  The 

actual concentration enhances 0So   and reduces with 0So   . We find that lesser the permeability of porous medium smaller 

the actual concentration and for further lowering of the permeability we notice an enhancement in the concentration. The 

variation of C with chemical reaction parameter   the actual concentration enhances in the degenerating chemical reaction case 

while in the generating chemical reaction case it enhances with 1.5   and reduces with higher 2.5  . The variation of C 

with thermophoretic parameter τ shows that the actual concentration reduces everywhere in the region except in 0 1   where 

it enhances. 
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