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Introduction 

Crop simulation models are used increasingly for predicting the impacts of climatic change and climatic variability on crop 

growth and yield (Ababaei 2012; Ababaei et al. 2010; Soltani et al. 2000; Boote et al. 1996; Matthews et al. 1997; Lal et al. 1998). 

The quality of model outputs is related to the quality of weather data used as input and sensitivity analysis of model output to the 

quality of generated weather data is essential (Soltani et al. 2000). In most crop models, daily temperature is one of the driving forces 

and is very important to be estimated accurately. 

Weather Generators (WGs) are widely used in water engineering, agriculture, ecosystem and climate change studies because 

observed climatic series have deficiencies related to length, completeness and spatial coverage. These models can fill missing data and 

are able to reproduce important statistical properties of observed time series. The simulation of daily climatic time series is the most 

important and usual application of these models. To date, most models have their focus on precipitation as the most important variable 

affecting environmental processes (Hutchinson 1995). Nonetheless, supplementary algorithms have been also proposed to simulate 

other variables. In combination with crop simulation models, the accurate simulation of crop production requires synthetic data which 

can mimic the daily variations of climatic variables (Ababaei et al. 2010b; Nonhebel 1994; Semenov and Porter 1995; Semenov et al. 

1998). 

Daily temperature can be simulated in a few parametric ways. One way is to use the method applied in some well-known WG 

models like LARS-WG (Semenov and Barrow 2002), WGEN (Richardson and Wright 1984) and WeaGETS (Chen et al. 2012) and 

simulate daily minimum (Tmin) and maximum (Tmax) temperatures using an autoregressive model. Another way consists of the 

simulation of daily average temperature (Tav) and daily temperature range (R) and then the calculation of Tmin and Tmax indirectly. 

Recently, non-parametric approaches (e.g. Lall and Sharma 1996; Sharif et al. 2007) have been utilizing for this purpose. 

Since the authors didn’t find any thorough assessment and comparison between these two parametric approaches in simulating 

daily temperature data, the aim of this paper is to do the assessment to find out what is the difference between these methods. 
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ABSTRACT 

Weather Generators (WGs) are widely used in water engineering, agriculture, ecosystem and 

climate change studies because observed climatic series have deficiencies related to length, 

completeness and spatial coverage. WG models can simulate daily temperature data in a few 

parametric ways. One way is to simulate daily minimum (Tmin) and maximum (Tmax) 

temperatures using an autoregressive model. Another way consists of the simulation of daily 

average temperature (Tav) and daily temperature range (R) and then the calculation of Tmin 

and Tmax indirectly. In this study, four different algorithms were assessed for daily 

temperature in combination with a well-tested weather generator. M1 and M2 algorithms 

simulated the daily Tav and R values directly and Tmin and Tmax indirectly. M3 algorithm 

simulated Tmin and Tmax and M4 algorithm simulated Tmin and Tav directly and the other 

variables indirectly. The results showed that each algorithm could perform better in 

simulating primary variables (which are simulated directly). This issue was more 

considerable in relation to daily R values. M2 overestimated the cross-correlation 

coefficients of this variable because of the assumption of a strong autocorrelation structure 

between primary variables in the WG model. M3 and M4 outperformed the other algorithms 

in relation to most studied indices. This study showed the importance of choosing the best 

temperature generation algorithm according to the requirements.  
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Methods and Materials 

Methodology 

In this research, four different temperature generation algorithms were compared using a well-tested weather generator model. 

These algorithms include: (1) M1: generation of Tav and log-transformed R, (2) M2: generation of Tav and square-root transformed R, 

(3) M3: generation of Tmin and Tmax and (4) M4: generation of Tmin and Tav. After generating the primary variables, secondary 

variables were estimated using Equations (1) through (5): 

RTT av min
    used in: M1 and M2 

RTT av max
    used in: M1 and M2 

minmax 2 TTT av      used in: M4 

)(*5.0 minmax TTR     used in: M3 and M4 

)(*5.0 minmax TTTav     used in: M3 

The algorithms were assessed in Qazvin station located in Qazvin Province of Iran.  

Daily Precipitation Occurrence  

One of the most common methods to simulate precipitation in one station is using a precipitation occurrence simulation model 

and then generating the precipitation quantity on wet days from an independent distribution (Woolhiser 1992). Precipitation 

occurrence is mostly simulated by two different mechanisms: (1) a Markov process (Gabriel and Neumann 1962; Salas 1993; Katz 

and Zheng 1999), or (2) an alternating renewal process (ARP) (Buishand 1978; Sharma and Lall 1999). In this study, an ARP process 

(named PGEN) is utilized, similar to the one which is implemented in LARS-WG (Semenov and Barrow, 2002). Dry and wet spell 

lengths are generated from monthly semi-empirical distributions (SEDs). Each type of spells is generated after the other one. This 

method is used in all the models study here. In other words, all the models use the same precipitation occurrence series.   

Daily Weather Generator 

The daily weather generator (Ababaei, 2012) uses a method similar to the one implemented in LARS-WG (Semenov and Barrow, 

2002) which has been evaluated in different climates in Iran (Ababaei et al., 2010a). This model uses SEDs instead of normal 

distributions (which are used in WGEN-like models). Standard variables selected from SEDs are then scaled into correlated standard 

variables using a 4-variable first-order autoregressive model (Equation 6): 

)(][)1(][)( tBtzAtz   

Where z(t): Gaussian standard variables for day t, A and B: coefficient matrices (Matalas, 1967) and Ɛ(t): white-noise variables. 

Afterwards, these standard variables are scaled back to nonstandard variables using long-term daily average and STD of each variable 

for each calendar month (Equation 7): 
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Where Tk(t): the climatic variable k on day t, M and ST: the average and (total) STD and the indices 0 and 1 indicate dry and wet 

days, respectively. This step is carried out for wet and dry days separately. Precipitation is generated from an independent SED and is 

scaled to a nonstandard variable using Equation (7).   

Adjusting Low-Frequency Variances 

Application of WG models usually results in the underestimation of variances and/or biased estimation of average values of 

agriculture or hydrological model outputs (Ababaei et al. 2010; Hansen and Mavromatis, 2001; Richardson, 1985; Jones and 

Thornton, 1997; Semenov and Porter, 1995; Mearns et al., 1996). For a series including a years and each year consisting of ni daily 

data (i = 1...a) of weather variable y, for each month, total standard deviation (ST) of y can be estimated by Equation (8): 



Behnam Ababaei
 
et al./ Elixir Meteorology 67A (2014) 21877-21889 

 
21879 

 

  





 

a

i

a

i

ni

j
ij

ni

Yy

ST

1

1 1

2

)1(

)(
 

This total standard deviation can be divided into two elements (Hansen and Mavromatis, 2001): (1) high-frequency STD (SH) 

which is related to days within a month (Equation 9), and (2) low-frequency STD (SL) which is related to the interannual STD of each 

month (STD of monthly means, Equation 10): 
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Many WG models which are used in agriculture and water resources studies simulate ST using short-term stochastic processes 

and are unable to reproduce low-frequency variances like them related to ENSO (Hansen and Mavromatis, 2001). This issue reveals 

the need for changing interannual properties of climatic variables in order for reproducing these low-frequency variations well. Some 

methods have been proposed (e.g. Katz and Parlange 1993; Jones and Thornton 1993) and a review can be found in Dubrovsky et al. 

(2004). 

In order to improve the performance of the WG models in relation to the interannual variances (low-frequency variances), the 

series of monthly mean and STD values of the climatic variables are constructed for all the months in the entire period (for wet and 

dry days separately). These series are then scaled (Equation 11) in a way that their average and STD values become equal to the 

observed values: 

YXXY
X

Y 



)(

 

Where X: the simulated monthly mean or STD values, X : the mean value of the simulated monthly mean or STD series, Y : the 

mean value of the observed monthly mean or STD series, and  : the STD of these series. Afterwards, daily time series are scaled by 

an equation similar to Equation (7). This process is carried out for dry and wet days separately.  

Model Assessment 

For assessing the WG model, 300 years of synthetic time series were generated. For precipitation, the assessment was carried out 

based on two guiding principles (Ng and Panu 2010): (1) model capability in simulating short-term dependencies, and (2) model 

capability in simulating dry and wet spells. In relation to the first-order short-term dependencies, the occurrence probability of a wet 

day after a dry day (Pdw) and a wet day after a wet day (Pww) were compared. In relation to dry and wet spells, the comparisons were 

carried out using 3-months sliding windows (Dec-Jan-Feb, Jan-Feb-Mar …). The minimum values of daily precipitation of the wet 

days were set to 0.5 mm. In relation to the other variables, monthly mean and STD, different percentiles, interannual mean (the 

average of the monthly mean values), interannual STD (the STD of the monthly mean values), daily lag-1 autocorrelation and monthly 

lag-1 autocorrelation were estimated and compared between the observed and the generated time series. In order to assess the 

proposed methods, the average (XErr) values of Standardized Mean Absolute Errors (SMAE) and Standardized Root Mean Square 

Errors (SRMSE) were utilized: 
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In which, Pi and Oi are generated and observed values, respectively, O is the average observed value and n is the number of 

values to be compared. 

Results and Discussions 

Precipitation Occurrence 

All algorithms used a similar precipitation occurrence series. As precipitation occurrence affects the monthly statistics of other 

variables, it was necessary to assess the performance of the WG model from this viewpoint. Figure 1 shows the model performance 

for the short-term autocorrelations in precipitation time series and also the simulation of wet and dry spells. This figure shows that the 

model is very accurate in reproducing the precipitation statistics in almost all calendar months, although there are some deficiencies in 

July to September.  

 

 

Figure 1- Model performance related to the simulation of precipitation occurrences. 

Precipitation Amount 

As the WG model uses an adjustment algorithm for low-frequency variations and this algorithm considers the monthly 

correlations between precipitation and other variables, it was expected that the temperature generation algorithms had different 

performances in terms of precipitation. Table 1 shows the XErr values of the four algorithms for the simulation of precipitation 

quantities. The algorithms had comparable performance related to the daily precipitation statistics. But, M3 had the highest XErr 

values in relation to percentiles. On the whole, it can be concluded that the choice between different temperature generation 

algorithms affects the simulation of precipitation, but the differences were not considerable. 

Table 1, The XErr values related to the simulation of precipitation quantities 

  M1 M2 M3 M4 

Daily Pcp: Mean 4.3% 2.8% 3.4% 2.5% 

Daily Pcp: Std 7.6% 6.6% 7.2% 5.5% 

Daily Pcp: Skew 6.2% 7.5% 7.6% 9.7% 

Daily Pcp: Percentiles 15.1% 14.3% 18.3% 15.1% 

Total Monthly Pcp: Mean 7.2% 6.1% 6.5% 6.1% 

Total Monthly Pcp: Std 21.0% 17.8% 21.3% 18.9% 

Average 10.2% 9.2% 10.7% 9.6% 
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Temperature: Monthly Statistics 

All algorithms performed perfectly in relation to monthly mean values. Figure 2 shows the monthly STD values of temperature 

variables resulted from all generation algorithms. All algorithms simulated the monthly STD values of Tmin very well. But, M4 which 

directly simulated Tmin and Tav overestimated the monthly STD values of Tmax. A similar conclusion can be made for M3 and M4 

and the simulation of the monthly STD values of R, since these two models simulated the daily R values indirectly. Generally, all 

models performed acceptably in relation to monthly STD values.  

Figure 3 shows the comparisons between observed and simulated percentiles of studied variables resulted from different 

temperature generation algorithms. All algorithms performed very well in simulating the distribution shape of Tmin, Tmax and Tav. 

But, the performance of M3 and M4, which simulated R values indirectly, was not as well. Both algorithms underestimated the lower 

tail of the distributions and overestimated the higher tails. This happened because these algorithms simulated the daily R values 

indirectly and independently. This issue can be detected also in Figure 4. M1 and M2 underestimated the monthly maximum values of 

Tav and R. But, the other algorithms had deficiencies in relation with the monthly maximum (and minimum) values of Tav and R. 

M1:  

M2:  

M3:  

M4:  

Figure 2- The monthly standard deviation values. 
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Temperature: Interannual Monthly Statistics 

Figure 5 shows the observed and simulated interannual STD values of monthly means. All algorithms performed consistently in 

reproducing the interannual STD values of Tmin and Tmax, specially M3 and M4. M1 and M2 algorithms performed well in relation 

to Tav and R. But, M3 and M4 underestimated the interannual STD values of Tav and specially R. This issue happened because the 

WG model adjusts the SL values for primary variables and this doesn’t happen directly for the secondary variables (i.e. are simulated 

indirectly). 

M1:  

M2:  

M3:  

M4:  

Figure 3. The percentiles (left: Tav, right: R). 

M1:  
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M2:  

M3:  

M4:  

Figure 4. The monthly maximum values. 

M1:  

M2:  

M3:  
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M4:  

Figure 5- The interannual STD values of monthly means. 

Temperature: Annual Statistics 

Figure 6 shows the yearly mean and interannual STD of the annual mean and STD values for all variables. It can be seen that all 

algorithms performed well in relation to the yearly mean values, even for precipitation. Although all of them underestimated the 

interannual STD values and this issue happened because of the nature of the WG model and was reported in many studies (see the 

references in the Introduction). In relation to the interannual STD values, M1 outperformed the other algorithms. 

M1:  

M2:  

M3:  

M4:  

Figure 6- The mean and interannual STD of the annual mean and STD values. 
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Temperature: Autocorrelations 

Figure 7 shows the daily autocorrelation coefficients for all variables. M1 and M2, algorithms which simulated the daily R values 

directly, simulated the autocorrelation coefficients of R more accurate. This issue happened because the WG model presumes a strong 

autocorrelation structure between variables. M3 and M4 algorithms performed very well in relation to Tmin, Tmax and Tav and 

performed acceptable in relation to R, although both underestimated the autocorrelation coefficients of R. 

M1:  

M2:  

M3:  

M4:  

Figure 7- The daily autocorrelation coefficients. 

Temperature: Cross-Correlations 

Figure 8 shows the cross-correlation coefficients between Tmin and Tav and between Tmin and R. M2 algorithm overestimated 

the cross-correlation coefficients of R for the first 4 lags, but performed well in simulating the coefficients of Tav. Similar to the 

autocorrelation coefficients, M3 and M4 outperformed the other algorithms for all variables, specifically Tmin, Tmax and Tav. 
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M1      M2 

 

M3      M4 

 

Figure 8- The daily cross-correlation coefficients between Tmin and other variables. 

Temperature: Summary 

Table 2 summarizes the performance of studied algorithms (XErr values) in relation to the monthly and interannual indices. It can 

be seen that M1 and M2 performed better in simulating the daily R values because this variable was simulated directly in these two 

algorithms. But the simulations of Tmin and Tmax indices had more deficiencies in comparison with the other algorithms. Tav was 

simulated well by all the algorithms. M3 and M4 algorithms outperformed the other algorithms in relation to Tmin and Tmax, 

although the differences were not considerable. As to the monthly minimum and maximum values, all algorithms performed better in 

simulating the primary variables (i.e. variables that are simulated directly). M1 and M2 had lower control on these extreme values of 

Tmin and Tmax, while the same was applicable to M3 and M4 in relation to Tav and R. Also, there were slight differences in using 

log- or square-root transformed R values while simulating with the WG model, while the differences between these two methods is 

considerable as to the simulation of cross-correlation coefficients of daily R values and Tmin. Moreover, the values in Table 2 show 

that the WG model performed better in dry days, although the higher XErr values of the wet days could because of less number of wet 

days in most calendar months in Qazvin station.  

Table 2- Summary of the model performance (XErr values). 

  M1   M2 

 Tmin Tmax Tav R  Tmin Tmax Tav R 

Monthly: Mean 0.4% 0.2% 0.2% 0.3%  0.3% 0.2% 0.2% 0.4% 

Monthly: Mean (Dry Days) 0.3% 0.3% 0.3% 0.3%  0.3% 0.3% 0.3% 0.3% 

Monthly: Mean (Wet Days) 1.7% 1.1% 1.3% 1.2%  1.4% 1.3% 1.3% 1.4% 

Monthly: Std 2.1% 1.5% 0.4% 2.4%  1.8% 1.1% 0.5% 1.4% 

Monthly: Std (Dry Days) 3.3% 2.9% 0.7% 3.5%  2.8% 2.7% 0.6% 1.2% 

Monthly: Std (Wet Days) 10.1% 6.7% 3.3% 4.4%  11.3% 5.8% 3.2% 5.6% 

Monthly: Min 10.6% 12.9% 5.2% 22.2%  10.4% 19.2% 6.7% 13.0% 

Monthly: Max 9.5% 1.8% 5.9% 7.2%  9.0% 1.8% 7.0% 7.1% 

Monthly: Percentiles 3.5% 1.4% 1.8% 2.4%  3.5% 1.3% 1.9% 2.2% 

Interannual: Mean of Means 0.3% 0.2% 0.2% 0.4%  0.3% 0.2% 0.2% 0.4% 

Interannual: Std of Means 10.3% 7.2% 1.6% 15.0%  10.8% 7.4% 1.3% 15.0% 

Interannual: Mean of Stds 1.6% 2.3% 0.7% 1.9%  1.6% 1.9% 0.8% 1.4% 

Lag1-Correlations: Daily 7.9%  7.1% 

Lag1-Correlations: Monthly 2.4%  3.1% 

Average 4.5% 3.2% 1.8% 5.1%  4.5% 3.6% 2.0% 4.1% 

 M3  M4 

 Tmin Tmax Tav R  Tmin Tmax Tav R 

Monthly: Mean 0.4% 0.2% 0.2% 0.4%  0.4% 0.2% 0.1% 0.4% 

Monthly: Mean (Dry Days) 0.3% 0.3% 0.3% 0.2%  0.3% 0.3% 0.3% 0.2% 
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Monthly: Mean (Wet Days) 1.8% 1.4% 1.4% 1.6%  1.3% 1.3% 1.2% 1.5% 

Monthly: Std 0.6% 0.9% 2.4% 7.6%  0.6% 3.2% 0.5% 9.1% 

Monthly: Std (Dry Days) 0.5% 0.7% 2.4% 13.2%  0.5% 5.3% 0.6% 17.0% 

Monthly: Std (Wet Days) 2.5% 3.4% 3.2% 11.1%  3.5% 4.6% 3.1% 8.9% 

Monthly: Min 5.2% 7.2% 8.1% 30.1%  6.0% 20.4% 5.3% 37.7% 

Monthly: Max 12.2% 5.5% 4.7% 16.3%  11.3% 2.6% 6.3% 18.2% 

Monthly: Percentiles 4.1% 1.5% 1.7% 3.8%  4.0% 1.4% 1.8% 4.1% 

Interannual: Mean of Means 0.4% 0.2% 0.2% 0.4%  0.4% 0.2% 0.1% 0.4% 

Interannual: Std of Means 2.3% 5.2% 2.7% 22.8%  2.5% 5.8% 1.4% 17.9% 

Interannual: Mean of Stds 0.6% 1.4% 3.5% 12.0%  0.7% 6.5% 0.6% 13.4% 

Lag1-Correlations: Daily 9.1%  8.0% 

Lag1-Correlations: Monthly 2.8%  2.8% 

Average 2.6% 2.3% 2.6% 10.0%  2.6% 4.3% 1.8% 10.7% 

Conclusions 

In this study, four different algorithms were assessed for daily temperature in combination with a well-tested weather generator. 

Two algorithms simulated the daily Tav and R values directly and Tmin and Tmax indirectly. The third algorithm simulated Tmin and 

Tmax and the fourth algorithm simulated Tmin and Tav directly and the other variables indirectly. The results showed that each 

algorithm could perform better in simulating the primary variables (i.e. the variables which are simulated directly). This issue was 

more considerable in relation to the daily R values. M1, M3 and M4 accurately simulated the auto- and cross-correlation coefficients 

of this variable because of the assumption of a strong autocorrelation structure between primary variables in the WG model. 

Meanwhile, M2 algorithm overestimated the cross-correlation coefficients of R for the first 4 lags. Altogether, M3 and M4 

outperformed the other algorithms in relation to most studied indices.  

This study showed the importance of choosing the best temperature generation algorithm according to the requirements. If the 

simulation of daily Tmin and Tmax is important and there is no need for exact simulation of daily temperature ranges (R), the 

algorithms similar to M3 and M4 can be used, while if the simulation of R is more important, it must be considered as one of the 

primary variables and simulated directly using algorithms similar to M1 and M2. The authors believe that the former case is more 

relevant while WG models are to be combined with crop growth simulation models because there are chances to obtain very low or 

very high daily temperature values while using algorithms similar to M1 and M2. This issue is of great importance specially while 

using crop simulation models. Since there can be any exact prediction about the performance of crop simulation models in 

combination of these algorithms, the issue must be assessed in future studies. 
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