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Introduction

There are many concepts of universal algebras generalizing
an associative ring ( R ; + ; . ). Some of them in particular,
nearrings and several kinds of semirings have been proven very
useful. Semirings (called also halfrings) are algebras (R ; +; .)
share the same properties as a ring except that (R ; + ) is
assumed to be a semigroup rather than a commutative group.
Semirings appear in a natural manner in some applications to the
theory of automata and formal languages. An algebra (R ; +, .) is
said to be a semiring if (R ; +) and (R ; .) are semigroups
satisfying a. (b+c ) = a. b+a. c and (b+c) .a = b. a+c. a for all a,
b and c in R. A semiring R is said to be additively commutative
if atb = b+a for all a, b and ¢ in R. A semiring R may have an
identity 1, defined by 1. a=a=a. 1 and a zero 0, defined by O+a
za=at+t0anda.0 =0=0.aforall ain R. A semiring R is said to
be a hemiring if it is an additively commutative with zero.
Interval-valued fuzzy sets were introduced independently by
Zadeh [10], Grattan-Guiness [4], Jahn [6], in the seventies, in
the same year. An interval valued fuzzy set (IVF) is defined by
an interval-valued membership function. Jun.Y.B and
Kin.K.H[7] defined an interval valued fuzzy R-subgroups of
nearrings. Solairaju.A and Nagarajan.R[9] defined the
charactarization of interval valued Anti fuzzy Left h-ideals over
Hemirings. Azriel Rosenfeld[2] defined a fuzzy groups. We
introduce the concept of interval valued fuzzy subhemiring of a
hemiring and established some results.
Preliminaries
1.1 Definition: Let X be any nonempty set. A mapping [M] : X
— D[O0, 1] is called an interval valued fuzzy subset (briefly,
IVFS ) of X, where D[0,1] denotes the family of all closed
subintervals of [0,1] and [M](x) = [M~(x), M*(x)], for all x in X,
where M- and M" are fuzzy subsets of X such that M—(x) <
M*(x), for all x in X. Thus [M](x) is an interval (a closed subset
of [0,1] ) and not a number from the interval [0,1] as in the case
of fuzzy subset. Note that [0] = [0, 0] and [1] = [1, 1].
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Definition: Let [M] = {( X, [M~(x), M"(X)] } / xe X }, [N] = {( X,
[N-(x), N"(X)] } / xe X} be any two interval valued fuzzy subsets
of X. We define the following relations and operations:

(i) [M] c [N] if and only if M~(x) < N~(x) and M*(x) < N*(x),
for all x in X.

(i) [M]=[N]if and only if M—(x) = N-(x) and M*(x) = N*(x),
for all x in X.

(i) [M] A [N] = { ( x, [ min { M=(x), N"()}, min { M"(x),
N'(X)}]1)/xeX}.

(iv) [M] U NI ={(x [ max { M (x), N"(x)}, max { M"(x),
N'()}]1)/xeX}.

V) M]C=[1] - [M]={ (% [1-M'(x), I-M(x)] ) / xeX }.
Definition: Let ( R, +, - ) be a hemiring. An interval valued
fuzzy subset [M] of R is said to be an interval valued fuzzy
subhemiring(IVFSHR) of R if the following conditions are
satisfied:

(i) [M](x+y) > min { [M](x), [MI(y) }.

(it) [M](xy) > min { [M](x), [M](y) }, forall xand y in R.
Definition: Let [M] and [N] be any two interval valued fuzzy
subsets of sets R and H, respectively. The product of [M] and
[N], denoted by [M]%[N], is defined as
[MIX[N] = { ¢ (X, y), [IMIX[N]( %,y ))/forall xinR and y in
H}, where [M]x[N](x, y) = min { [M](x), [N](y) }.

Definition: Let [M] be an interval valued fuzzy subset in a set S,
the strongest interval valued fuzzy relation on S, that is an
interval valued fuzzy relation [V] with respect to [M] given by
[V1(x, y) = min { [M](x), [M](y) }, forall xand y in S.
Properties of interval valued fuzzy sub Hemirings:

Theorem: If [M] is an interval valued fuzzy subhemiring of a
hemiring ( R, +, -), then [M](x) < [M](0), for x in R, the zero
element 0 in R.

Proof: For x in R and O is zero element of R. Now, [M](X) =
[M](x+0) > min {[M](x), [M](0)} and [M](0) = [M](x.0) > min
{IM](x), [M](0)}. If x+y =0, then [M](0) = [M](x+y) > min
{IM]1(%), [M](y)}. Hence, [M](0) > [M](x), for all x in R.
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Theorem: If [M] is an interval valued fuzzy subhemiring of a
hemiring (R, +, - ), then H= { x / xeR : [M](X) = [1] } is either
empty or is a subhemiring of R.
Proof: If no element satisfies this condition, then H is empty. If
x and y in H, then [M](x+y) > min { [M](x), [M](y) } = min {
[1], [1] } = [1]. Therefore, [M](x+y) = [1]. We get x+y in H.
And [M](xy) > min { [M](x), [M](y) } = min { [1], [1] } = [1].
Therefore, [M](xy) = [1]. We get xy in H. Therefore, H is a
subhemiring of R. Hence H is either empty or is a subhemiring
of R.
Theorem: If [M] is an interval valued fuzzy subhemiring of a
hemiring (R, +, - ), then H = { xeR: [M](x) = [M](0) } is a
subhemiring of R.
Proof: Let x and y be in H. Now, [M](x+y) > min { [M](x),
[MI(y) } = min { [M](0), [M](0) } = [M](0). Therefore,
[M](x+y) > [M](0). Hence [M](0) = [M](x+y ). Therefore, x+y
in H. And, [M](xy) > min { [M](x), [M](y) } = min { [M](0),
[M](0) } = [M](0). Therefore, [M](xy) > [M](0). Hence [M](0)
= [M](xy). Therefore, xyin H. Hence H is a subhemiring of R.
Theorem: Let [M] be an interval valued fuzzy subhemiring of a
hemiring (R, +, ). If (i) [M](x+y) = [0], then either [M](x) = [0]
or [M](y) = [0], for xand y in R.
(i) [M](xy) = [O], then either [M](x) = [0] or [M](y) = [0], for x
andyinR.
Proof: Let x and y in R. By the definition [M](x+y) > min {
[M](x), M](y) }, which implies that [0] > min { [M](x), [M]1(y)
}. Therefore, either [M](x) = [0] or [M](y) = [0]. By the
definition [M](xy) > min { [M](X), M](y) }, which implies that
[0] = min {IM](X), [M](y) }. Therefore, either [M](x) = [0] or
[MI(y) = [0].
Theorem: If [M] and [N] are two interval valued fuzzy
subhemirings of a hemiring R, then their intersection [M]~[N]
is an interval valued fuzzy subhemiring of R.
Proof: Let x and y belong to R, [M] = {( x, [M](x) } / x in R}
and [N] = {¢ x, [N](x) y / x in R}. Let [K] = [M]~[N] and [K] =
{(x [K](x) )/ xin R}. (i) [K](x+y) = min {
[MI(xty), [NI(x+y) } > min { min { [M](x), [M](y) }, min {
[NI(). [N](y) } } = min { min {[M](x), [N](x) }, min {[M](y),
[NI(y) } } = min { [K](x), [K](y) }. Therefore, [K](x+y) > min {
[KI(x), [KI(y) }, for all x and y in R. (ii) [K](xy) = min
{ IMI(xy), [NI(xy) } > min { min { [M](x), [M](y) }, min {
[N](x), [N](y) } } = min { min { [M](x), [N](x)}, min { [M](y),
[NI(y) } } = min { [K](x), [K](y) } Therefore, [K](xy) > min {
[KI(x), [K](y) }, for all x and y in R. Hence [M]~[N] is an
interval valued fuzzy subhemiring of the hemiring R.
Theorem: The intersection of a family of interval valued fuzzy
subhemirings of a hemiring R is an interval valued fuzzy
subhemiring of R.
Proof: Let {[Mi]}i., be a family of interval valued fuzzy
subhemirings of a hemiring R and [M] = I [M;i]. Then for x
iel
and y belongs to R, we have (i) [M](x+ty) =
inf [M.1(x+y)> jnf min { M1, M) } > min {
iel iel
inf [M1(0- inf [M,1(y)} = min £ IMIG9, IMIW)
iel iel

Therefore, [M](x+y) > min { [M](x), [M](y) }, for all x and y in

R (i) MICY) = jnf [M,1(xy) > jnf min { MI®),
iel iel

MI®) 2= min Gnf [M 109 jnf [M1(y) 3= min £

iel iel
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[M](x), [M](y)} Therefore, [M](xy) > min {[M](x), [M](y) },
for all x and y in R. Hence the intersection of a family of
interval valued fuzzy subhemirings of the hemiring R is an
interval valued fuzzy subhemiring of R.

Theorem: If [M] and [N] are interval valued fuzzy
subhemirings of the hemirings R and H, respectively, then
[M]x[N] is an interval valued fuzzy subhemiring of RxH.

Proof: Let [M] and [N] be interval valued fuzzy subhemirings
of the hemirings R and H respectively. Let x; and X, be in R, y;
and y, be in H. Then (x;, y1) and (X;, y2) are in RxH. Now,
[M]X[N] [(x1, Y1) + (X2, Y2)] = [MIX[N](Xi+X2, Yaity2) = min {
[M](x1+x2), [N](y2+y2) }= min { min { [M](x1), [M](x2) }, min {
[NI(y), INI(y2) } } = min { min { [M](x), [NI(y2)}, min {
[M](x2), [N](y2)} }= min { [M]x[N](x1, y1), [M]X[N](xz, y2) }.
Therefore, [M]X[N][(X1, y1)*+(X2, ¥2)] = min { [M]x[N](x1, y1),
[MIX[NI(x2, y2) } And, [MIX[N][(x;, yi)(x2 Y2)] =
[MIX[N](X1X2, Y1y2) = min { [M](x1X2), [N](y1y2) }> min {min {
[MI(x2), [M1(xz) }, min { [NI(ys), [NI(y2) } } = min { min {
[M](x1), [NI(y) }, min {[M](x), [NI(y2) } } = min {
[MIX[N](x1, y1), [M]X[N](x2, y2) }. Therefore, [M]x[N][(xs,
Y1)(X2, Y2)] = min {[M]x[N](x1, y1), [M]x[N](xz, y2) }. Hence
[M]%[N] is an interval valued fuzzy subhemiring of RxH.
Theorem: Let [M] and [N] be interval valued fuzzy subsets of
the hemirings R and H, respectively. Suppose that 0 and 0 'are
the identity element of R and H, respectively. If [M]X[N] is an
interval valued fuzzy subhemiring of RxH, then at least one of
the following two statements must hold.

(i) [N](0") > [M](x), for all x in R, (ii) [M](0) > [N](y), for all y
inH.

Proof: Let [M]x[N] be an interval valued fuzzy subhemiring of
RxH.

By contra positive, suppose that none of the statements (i)
and (ii) holds. Then we can find a in R and b in H such that
[M](a) > [N](0') and [N](b) > [M](0). We have, [M]x[N](a, b) =
min { [M](a), [N](b) } > min { [M](0), [N](0") } = [M]x[N](0, O'
). Thus [M]x[N] is not an interval valued fuzzy subhemiring of
RxH. Hence either [N](0") > [M](x), for all x in R or [M](0) >
[N1(y), for all y in H.

Theorem: Let [M] and [N] be interval valued fuzzy subsets of
the hemirings R and H, respectively and [M]x[N] is an interval
valued fuzzy subhemiring of RxH. Then the following are true:
(i) if [M](X) < [N](0"), then [M] is an interval valued fuzzy
subhemiring of R.

(if) if [NJ(x) < [M](0), then [N] is an interval valued fuzzy
subhemiring of H.

(iii) either [M] is an interval valued fuzzy subhemiring of R or
[N] is an interval valued fuzzy subhemiring of H.

Proof: Let [M]x[N] be an interval valued fuzzy subhemiring of
RxH and x, y be in R. Then (x, 0') and (y, 0') are in RxH. Now,
using the property [M](x) < [N](0"), for all x in R, we get,
[M](x+y) = min{ [M](x+y), [N](0'0) } = [M]x[N]((x+y), (0'0') )
= [MIX[N][(x, 0') +(y, 0")] = min { [M]*[N](x, 0'), [M]x[N](y,
0) } = min { min { [M](x), [N](0)}, min { [M](y), [N](0) }} =
min { [M](x), [M](y) }. Therefore, [M](x+y) > min {[M](x),
[M](y) }, for all x, y in R. And, [M](xy) = min { [M](xy),
[N](0'0') } = [MIX[N]( (xy), (0'0") ) = [M]*[NI[ (x, 0')(y, 0')] >
min { [M]x[N](x, 0'), [MIx[N](y, 0)} = min {min { [M](x),
[N](0) 3, min { [MI(y), [N](0) } } = min { [M](x), [M](y) }.
Therefore, [M](xy) > min { [M](x), [M](y) }, for all x, y in R.
Hence [M] is an interval valued fuzzy subhemiring of R. Thus
(i) is proved. Now, using the property [N](x) < [M](0), for all x
in H, we get, [N](x+y) = min { [N](x+y), [M](00) } = [M]x[N](
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(00), (x+y) ) = [MIX[N][(0, x)+(0, y)] > min { [M]*[N](O, x),
[MIX[N](O, y)} = min {min {[N](x), [M](0) }, min { [N](y),
[M](0) } } = min { [N](x), [N1(y) }. Therefore, [N](x+y) > min
{ [N](x), [N](y) }, for all x and y in H. And, [N](xy) = min {
[NI(xy), [M](00) } = [M]x[N]( (00), (xy) ) = [M]x[N][(0, X)(O,
y)l > min { [M]X[N](O, x), [M]x[N](0, y) } = min { min {
[N](x). [M](0) }, min { [N](y), [M](0) } } = min { [N](x), [N](y)
}. Therefore, [N](xy) > min { [N](x), [N](y) }, for all x and y in
H. Hence [N] is an interval valued fuzzy subhemiring of H.
Thus (ii) is proved. (iii) is clear.

Theorem: Let [M] be an interval valued fuzzy subset of a
hemiring R and [V] be the strongest interval valued fuzzy
relation of R with respect to [M]. Then [M] is an interval valued
fuzzy subhemiring of R if and only if [V] is an interval valued
fuzzy subhemiring of RxR.

Proof: Suppose that [M] is an interval valued fuzzy subhemiring
of R. Then for any x = (X1, Xz) and y = (ys, Y») are in RxR. We
have, [V](x+y) = [V][(X1, X2)+(y1, Y2)] = [VI(X1+Y1, Xa*Y2) = min
{ IMI(xatyy), [MI(xzty2) } > min { min { [M](x1), [M](y1) },
min {[M](x2), [M](y2) }} = min { min{[M](x4), [M](x2) }, min {
[MI(ys), [M](y2) }} = min {[V]I(x1, Xz), [VI(y1, ¥2)} = min {
[VIX). [VI(Y) }. Therefore, [V](x+y) > min {[V](x), [VI(y) }.
for all x and y in RxR. And we have, [V](xy) = [V]I[(X1, X2)(Y1,
Y2)l = [VI(Xwy1, X2y2) = min { [M](x1y), [M](X2y2)} > min {min
{IM](x), [MI(yn}, min{[M](xz), [M](y2)}}= min {min
{IM](x1), [M](x2) }, min {[M](ys), [MI(y2) }} = min {[V](xs,
X2), [VI(ys, ¥2)} = min {[VI(x), [VI(y)}. Therefore, [V](xy) >
min {[V1(x), [V1(y)}, for all x and y in RxR. This proves that
[V] is an interval valued fuzzy subhemiring of RxR. Conversely,
assume that [V] is an interval valued fuzzy subhemiring of RxR,
then for any x = (Xy, X;) and y = (yi, Y») are in RXR, we have
min {[M](xi+y1), [Ml(xz+y2) } = [VI(xitys, Xety2) = [VII( X4,
X2)+(y1, Y2)I = [VI(xty) > min {[V](x), [VI(¥)}= min { [V](xy,
X2), [V1(y1, y2) } = min { min {[M](x1), [M](x2) }, min {[M](y1),
[M](y2) } }. If we put x, =y, = 0, where 0 is the zero element of
R. We get, [M](x1+y1)> min{[M](x1), [M](y1) }, for all X;, y1 in
R. And min { [M](x1y1), [M](x2 ¥2)} = [VI(X1y1, XaY2) = [VI[(X,
X)(Y1 Y2)] = [VI(xy)> min{[V](x), [VI(y)}= min{[V](xs, Xz),
[VI(yn, ¥2)} = min { min {[M](x1), [M](x2)}, min {[M](ys),
[M](y2)} }. If we put X, =y, = 0, where e is the identity element
of R. We get, [M](X1y1) > min {[M](x1), [M](y1)}, for all x; and
y1 in R. Hence [M] is an interval valued fuzzy subhemiring of R.
Theorem: Let [M] be an interval valued fuzzy subset of a
hemiring R. Then [M] is an interval valued fuzzy subhemiring
of R if and only if M~ and M" are fuzzy subhemiring of R.
Proof: Let x and y belong to R and [M] be an interval valued
fuzzy subhemiring of R, [M] = {( X, [M~(X), M"(X)] ) / xeX }.
So, [M](x+y) > min { [M](x), [M](y) }= [ min {M~(x), M~(y)},
min { M(x), M*(y)}]. Thus [M](x+y) > [ min { M~(x), M~(y)},
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min {M*(x), M*(y)}]. Therefore [M-(x+y), M*(x+y)] > [ min
{M-(x), M~(y)}, min { M*(x), M*(y)}]. Thus M~(x+y) > min
{M~(x), M~(y)} and M'(x+y) > min {M*(x), M*(y)}. And
[M](xy) > min { [M](x), [M](y) }= [ min {M~(x), M=(y)}, min {
M*(x), M*(y)}]. Thus [M](xy) > [ min { M~(x), M~(y)}, min
{M*(x), M*(y)}]. Therefore [M~(xy), M*(xy)] > [min {M~(X),
M-(y)}, min { M*(x), M*(y)}]. Thus M-(xy) > min {M~(x),
M-(y)} and M*(xy) > min {M*(x), M*(y)}. Hence M~ and M*
are fuzzy subhemiring of R. Conversely, assume that M~ and M*
are fuzzy subhemiring of R. So, M~(x+y) > min {M~(x), M~(y)}
and M*(x+y) > min {M"(x), M"(y)} which implies that
[M-(x+y), M*(x+y)] > [ min {M~(x), M~(y)}, min { M"(x),
M*(y)}] which implies that [M](x+y) > [min { M~(x), M~(y)},
min {M*(x), M*(y)}] which implies that [M](x+y) > min {
[MI(x), [MI(y) }. And M~(xy) > min {M*(x), M~(y)} and
M*(xy) > min {M*(x), M*(y)} which implies that [M-(xy),
M*(xy)] = [ min {M~(x), M=(y)}, min { M(x), M"(y)}] which
implies that [M](xy) > [ min { M~(xX), M~(y)}, min {M*(x),
M*(y)}] which implies that [M](xy)> min {{M](x), [M]1(y)}.
Hence [M] is an interval valued fuzzy subhemiring of R.
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