Notes on interval valued fuzzy subhemirings of a hemiring

S.Sangeethapriya ${ }^{1}$, K.Arjunan ${ }^{2}$ and R.Uthayakumar ${ }^{3}$
${ }^{1}$ Department of Mathematics, Yadava College, Madurai-14, Tamilnadu, India.
${ }^{2}$ Department of Mathematics, H.H.The Rajahs College, Pudukkottai - 622001, Tamilnadu, India.
${ }^{3}$ Department of Mathematics, Gandhigram Rural University, Gandhigram-624 302, Tamilnadu, India.

ARTICLE INFO

Article history:

Received: 6 December 2013;
Received in revised form:
10 February 2014;
Accepted: 15 February 2014;

Keywords

Interval valued fuzzy subset,
Interval valued fuzzy subhemiring, Interval valued fuzzy relation, Product of interval valued fuzzy subsets.

Abstract

In this paper, we study some of the properties of interval valued fuzzy subhemiring of a hemiring and prove some results on these.

Introduction

There are many concepts of universal algebras generalizing an associative ring ($R ;+;$.). Some of them in particular, nearrings and several kinds of semirings have been proven very useful. Semirings (called also halfrings) are algebras ($R ;+;$.) share the same properties as a ring except that $(R ;+)$ is assumed to be a semigroup rather than a commutative group. Semirings appear in a natural manner in some applications to the theory of automata and formal languages. An algebra ($\mathrm{R} ;+,$.) is said to be a semiring if $(\mathrm{R} ;+$) and ($\mathrm{R} ;.$) are semigroups satisfying $a .(b+c)=a . b+a . c$ and $(b+c) \cdot a=b . a+c$. a for all a, b and c in R. A semiring R is said to be additively commutative if $a+b=b+a$ for all a, b and c in R. A semiring R may have an identity 1 , defined by $1 . \mathrm{a}=\mathrm{a}=\mathrm{a} .1$ and a zero 0 , defined by $0+\mathrm{a}$ $=\mathrm{a}=\mathrm{a}+0$ and $\mathrm{a} .0=0=0$. a for all a in R . A semiring R is said to be a hemiring if it is an additively commutative with zero. Interval-valued fuzzy sets were introduced independently by Zadeh [10], Grattan-Guiness [4], Jahn [6], in the seventies, in the same year. An interval valued fuzzy set (IVF) is defined by an interval-valued membership function. Jun.Y.B and Kin.K.H[7] defined an interval valued fuzzy R-subgroups of nearrings. Solairaju.A and Nagarajan.R[9] defined the charactarization of interval valued Anti fuzzy Left h-ideals over Hemirings. Azriel Rosenfeld[2] defined a fuzzy groups. We introduce the concept of interval valued fuzzy subhemiring of a hemiring and established some results.

Preliminaries

1.1 Definition: Let X be any nonempty set. A mapping [M] : X $\rightarrow \mathrm{D}[0,1]$ is called an interval valued fuzzy subset (briefly, IVFS) of X, where $D[0,1]$ denotes the family of all closed subintervals of $[0,1]$ and $[M](x)=\left[M^{-}(x), M^{+}(x)\right]$, for all x in X, where M^{-}and M^{+}are fuzzy subsets of X such that $\mathrm{M}^{-}(\mathrm{x}) \leq$ $\mathrm{M}^{+}(\mathrm{x})$, for all x in X . Thus $[\mathrm{M}](\mathrm{x})$ is an interval (a closed subset of $[0,1])$ and not a number from the interval $[0,1]$ as in the case of fuzzy subset. Note that $[0]=[0,0]$ and $[1]=[1,1]$.

Definition: Let $[\mathrm{M}]=\left\{\left\langle\mathrm{x},\left[\mathrm{M}^{-}(\mathrm{x}), \mathrm{M}^{+}(\mathrm{x})\right]\right\rangle / \mathrm{x} \in \mathrm{X}\right\},[\mathrm{N}]=\{\langle\mathrm{x}$, $\left.\left.\left[N^{-}(x), N^{+}(x)\right]\right\rangle / x \in X\right\}$ be any two interval valued fuzzy subsets of X . We define the following relations and operations:
(i) $[\mathrm{M}] \subseteq[\mathrm{N}]$ if and only if $\mathrm{M}^{-}(\mathrm{x}) \leq \mathrm{N}^{-}(\mathrm{x})$ and $\mathrm{M}^{+}(\mathrm{x}) \leq \mathrm{N}^{+}(\mathrm{x})$, for all x in X .
(ii) $[\mathrm{M}]=[\mathrm{N}]$ if and only if $\mathrm{M}^{-}(\mathrm{x})=\mathrm{N}^{-}(\mathrm{x})$ and $\mathrm{M}^{+}(\mathrm{x})=\mathrm{N}^{+}(\mathrm{x})$, for all x in X .
(iii) $[\mathrm{M}] \cap[\mathrm{N}]=\left\{\left\langle\mathrm{x},\left[\min \left\{\mathrm{M}^{-}(\mathrm{x}), \mathrm{N}^{-}(\mathrm{x})\right\}, \min \left\{\mathrm{M}^{+}(\mathrm{x})\right.\right.\right.\right.$, $\left.\left.\left.\mathrm{N}^{+}(\mathrm{x})\right\}\right]>/ \mathrm{x} \in \mathrm{X}\right\}$.
(iv) $[\mathrm{M}] \cup[\mathrm{N}]=\left\{\left\langle\mathrm{x},\left[\max \left\{\mathrm{M}^{-}(\mathrm{x}), \mathrm{N}^{-}(\mathrm{x})\right\}, \max \left\{\mathrm{M}^{+}(\mathrm{x})\right.\right.\right.\right.$, $\left.\left.\left.\left.\mathrm{N}^{+}(\mathrm{x})\right\}\right]\right\rangle / \mathrm{x} \in \mathrm{X}\right\}$.
(v) $[M]^{C}=[1]-[M]=\left\{\left\langle x,\left[1-M^{+}(x), 1-M^{-}(x)\right]\right\rangle / x \in X\right\}$.

Definition: Let ($\mathrm{R},+, \cdot$) be a hemiring. An interval valued fuzzy subset [M] of R is said to be an interval valued fuzzy subhemiring(IVFSHR) of R if the following conditions are satisfied:
(i) $[M](x+y) \geq \min \{[M](x),[M](y)\}$,
(ii) $[M](x y) \geq \min \{[M](x),[M](y)\}$, for all x and y in R.

Definition: Let [M] and [N] be any two interval valued fuzzy subsets of sets R and H, respectively. The product of [M] and $[\mathrm{N}]$, denoted by $[\mathrm{M}] \times[\mathrm{N}]$, is defined as $[\mathrm{M}] \times[\mathrm{N}]=\{\langle(\mathrm{x}, \mathrm{y}),[\mathrm{M}] \times[\mathrm{N}](\mathrm{x}, \mathrm{y})\rangle /$ for all x in R and y in $H\}$, where $[M] \times[N](x, y)=\min \{[M](x),[N](y)\}$.
Definition: Let [M] be an interval valued fuzzy subset in a set S, the strongest interval valued fuzzy relation on S, that is an interval valued fuzzy relation [V] with respect to [M] given by $[\mathrm{V}](\mathrm{x}, \mathrm{y})=\min \{[\mathrm{M}](\mathrm{x}),[\mathrm{M}](\mathrm{y})\}$, for all x and y in S .
Properties of interval valued fuzzy sub Hemirings:
Theorem: If $[M]$ is an interval valued fuzzy subhemiring of a hemiring $(R,+, \cdot)$, then $[M](x) \leq[M](0)$, for x in R, the zero element 0 in R.
Proof: For x in R and 0 is zero element of R. Now, $[M](x)=$ $[M](x+0) \geq \min \{[M](x),[M](0)\}$ and $[M](0)=[M](x .0) \geq \min$ $\{[M](x),[M](0)\}$. If $x+y=0$, then $[M](0)=[M](x+y) \geq \min$ $\{[M](x),[M](y)\}$. Hence, $[M](0) \geq[M](x)$, for all x in R.

Tele:

E-mail addresses: sspriyaguru@gmail.com

Theorem: If $[M]$ is an interval valued fuzzy subhemiring of a hemiring $(R,+, \cdot)$, then $H=\{x / x \in R:[M](x)=[1]\}$ is either empty or is a subhemiring of R.
Proof: If no element satisfies this condition, then H is empty. If x and y in H, then $[M](x+y) \geq \min \{[M](x),[M](y)\}=\min \{$ [1], [1] $\}=[1]$. Therefore, $[M](x+y)=[1]$. We get $x+y$ in H. And $[M](x y) \geq \min \{[M](x),[M](y)\}=\min \{[1],[1]\}=[1]$. Therefore, $[M](x y)=[1]$. We get $x y$ in H. Therefore, H is a subhemiring of R. Hence H is either empty or is a subhemiring of R.
Theorem: If $[M]$ is an interval valued fuzzy subhemiring of a hemiring $(R,+, \cdot)$, then $H=\{x \in R:[M](x)=[M](0)\}$ is a subhemiring of R.
Proof: Let x and y be in H. Now, $[M](x+y) \geq \min \{[M](x)$, $[\mathrm{M}](\mathrm{y})\}=\min \{[\mathrm{M}](0),[\mathrm{M}](0)\}=[\mathrm{M}](0)$. Therefore, $[M](x+y) \geq[M](0)$. Hence $[M](0)=[M](x+y)$. Therefore, $x+y$ in H. And, $[M](x y) \geq \min \{[M](x),[M](y)\}=\min \{[M](0)$, $[M](0)\}=[M](0)$. Therefore, $[M](x y) \geq[M](0)$. Hence $[M](0)$ $=[M](x y)$. Therefore, $x y$ in H. Hence H is a subhemiring of R.
Theorem: Let $[\mathrm{M}]$ be an interval valued fuzzy subhemiring of a hemiring $(R,+, \cdot)$. If (i) $[M](x+y)=[0]$, then either $[M](x)=[0]$ or $[M](y)=[0]$, for x and y in R.
(ii) $[M](x y)=[0]$, then either $[M](x)=[0]$ or $[M](y)=[0]$, for x and y in R.
Proof: Let x and y in R. By the definition $[M](x+y) \geq \min \{$ $[M](x), M](y)\}$, which implies that $[0] \geq \min \{[M](x),[M](y)$ $\}$. Therefore, either $[M](x)=[0]$ or $[M](y)=[0]$. By the definition $[M](x y) \geq \min \{[M](x), M](y)\}$, which implies that $[0] \geq \min \{[M](x),[M](y)\}$. Therefore, either $[M](x)=[0]$ or $[\mathrm{M}](\mathrm{y})=[0]$.
Theorem: If $[\mathrm{M}]$ and $[\mathrm{N}]$ are two interval valued fuzzy subhemirings of a hemiring R, then their intersection $[M] \cap[N]$ is an interval valued fuzzy subhemiring of R.
Proof: Let x and y belong to $R,[M]=\{\langle x,[M](x)\rangle / x$ in $R\}$ and $[N]=\{\langle x,[N](x)\rangle / x$ in $R\}$. Let $[K]=[M] \cap[N]$ and $[K]=$ $\{\langle x,[K](x)\rangle / x$ in $R\}$. (i) $[K](x+y)=\min$
$[M](x+y),[N](x+y)\} \geq \min \{\min \{[M](x),[M](y)\}, \min \{$ $[\mathrm{N}](\mathrm{x}),[\mathrm{N}](\mathrm{y})\}\}=\min \{\min \{[\mathrm{M}](\mathrm{x}),[\mathrm{N}](\mathrm{x})\}, \min \{[\mathrm{M}](\mathrm{y})$, $[N](y)\}\}=\min \{[K](x),[K](y)\}$. Therefore, $[K](x+y) \geq \min \{$ $[K](x),[K](y)\}$, for all x and y in R. (ii) $[K](x y)=\min$ $\{[M](x y),[N](x y)\} \geq \min \{\min \{[M](x),[M](y)\}, \min \{$ $[N](x),[N](y)\}\}=\min \{\min \{[M](x),[N](x)\}, \min \{[M](y)$, $[N](y)\}\}=\min \{[K](x),[K](y)\}$. Therefore, $[K](x y) \geq \min \{$ $[K](x),[K](y)\}$, for all x and y in R. Hence $[M] \cap[N]$ is an interval valued fuzzy subhemiring of the hemiring R.
Theorem: The intersection of a family of interval valued fuzzy subhemirings of a hemiring R is an interval valued fuzzy subhemiring of R.
Proof: Let $\left\{\left[\mathrm{M}_{\mathrm{i}}\right]\right\}_{\mathrm{i}_{\mathrm{i}} \mathrm{I}}$ be a family of interval valued fuzzy subhemirings of a hemiring R and $[M]=I \quad\left[M_{i}\right]$. Then for x $i \in I$
and y belongs to R , we have (i) $[\mathrm{M}](\mathrm{x}+\mathrm{y})=$ $\inf _{i \in I}\left[M_{i}\right](x+y) \geq \inf _{i \in I} \min \left\{\left[\mathrm{M}_{\mathrm{i}}\right](\mathrm{x}),\left[\mathrm{M}_{\mathrm{i}}\right](\mathrm{y})\right\} \geq \min \{$ $\left.\inf _{i \in I}\left[M_{i}\right](x), \inf _{i \in I}\left[M_{i}\right](y)\right\}=\min \{[\mathrm{M}](\mathrm{x}),[\mathrm{M}](\mathrm{y})\}$. Therefore, $[M](x+y) \geq \min \{[M](x),[M](y)\}$, for all x and y in R. (ii) $[\mathrm{M}](\mathrm{xy})=\inf _{i \in I}\left[M_{i}\right](x y) \geq \inf _{i \in I} \min \left\{\left[\mathrm{M}_{\mathrm{i}}\right](\mathrm{x})\right.$, $\left.\left[M_{i}\right](y)\right\} \geq \min \left\{\inf _{i \in I}\left[M_{i}\right](x), \inf _{i \in I}\left[M_{i}\right](y)\right\}=\min \{$
$[M](x),[M](y)\}$. Therefore, $[M](x y) \geq \min \{[M](x),[M](y)\}$, for all x and y in R. Hence the intersection of a family of interval valued fuzzy subhemirings of the hemiring R is an interval valued fuzzy subhemiring of R.
Theorem: If $[\mathrm{M}]$ and [N] are interval valued fuzzy subhemirings of the hemirings R and H , respectively, then $[M] \times[N]$ is an interval valued fuzzy subhemiring of $R \times H$.
Proof: Let $[\mathrm{M}]$ and $[\mathrm{N}]$ be interval valued fuzzy subhemirings of the hemirings R and H respectively. Let x_{1} and x_{2} be in R , y_{1} and y_{2} be in H. Then (x_{1}, y_{1}) and (x_{2}, y_{2}) are in $R \times H$. Now, $[M] \times[N]\left[\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right]=[M] \times[N]\left(x_{1}+x_{2}, y_{1}+y_{2}\right)=\min \{$ $\left.[M]\left(x_{1}+x_{2}\right),[N]\left(y_{1}+y_{2}\right)\right\} \geq \min \left\{\min \left\{[M]\left(x_{1}\right),[M]\left(x_{2}\right)\right\}, \min \{\right.$ $\left.\left.[\mathrm{N}]\left(\mathrm{y}_{1}\right),[\mathrm{N}]\left(\mathrm{y}_{2}\right)\right\}\right\}=\min \left\{\min \left\{[\mathrm{M}]\left(\mathrm{x}_{1}\right),[\mathrm{N}]\left(\mathrm{y}_{1}\right)\right\}, \min \{\right.$ $\left.\left.[\mathrm{M}]\left(\mathrm{x}_{2}\right),[\mathrm{N}]\left(\mathrm{y}_{2}\right)\right\}\right\}=\min \left\{[\mathrm{M}] \times[\mathrm{N}]\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),[\mathrm{M}] \times[\mathrm{N}]\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right\}$. Therefore, $[\mathrm{M}] \times[\mathrm{N}]\left[\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)+\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right] \geq \min \left\{[\mathrm{M}] \times[\mathrm{N}]\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\right.$, $\left.[\mathrm{M}] \times[\mathrm{N}]\left(\mathrm{x}_{2}, \quad \mathrm{y}_{2}\right) \quad\right\} . \quad$ And, $\quad[\mathrm{M}] \times[\mathrm{N}]\left[\left(\mathrm{x}_{1}, \quad \mathrm{y}_{1}\right)\left(\mathrm{x}_{2}, \quad \mathrm{y}_{2}\right)\right]=$ $[M] \times[N]\left(x_{1} x_{2}, y_{1} y_{2}\right)=\min \left\{[M]\left(x_{1} x_{2}\right),[N]\left(y_{1} y_{2}\right)\right\} \geq \min \{\min \{$ $\left.\left.[M]\left(x_{1}\right),[M]\left(x_{2}\right)\right\}, \min \left\{[N]\left(y_{1}\right),[N]\left(y_{2}\right)\right\}\right\}=\min \{\min \{$ $\left.\left.[\mathrm{M}]\left(\mathrm{x}_{1}\right), \quad[\mathrm{N}]\left(\mathrm{y}_{1}\right)\right\}, \min \left\{[\mathrm{M}]\left(\mathrm{x}_{2}\right), \quad[\mathrm{N}]\left(\mathrm{y}_{2}\right)\right\} \quad\right\}=\min \{$ $\left.[\mathrm{M}] \times[\mathrm{N}]\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),[\mathrm{M}] \times[\mathrm{N}]\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right\}$. Therefore, $[\mathrm{M}] \times[\mathrm{N}]\left[\left(\mathrm{x}_{1}\right.\right.$, $\left.\left.y_{1}\right)\left(x_{2}, y_{2}\right)\right] \geq \min \left\{[M] \times[N]\left(x_{1}, y_{1}\right),[M] \times[N]\left(x_{2}, y_{2}\right)\right\}$. Hence $[M] \times[N]$ is an interval valued fuzzy subhemiring of $R \times H$.
Theorem: Let [M] and $[\mathrm{N}]$ be interval valued fuzzy subsets of the hemirings R and H, respectively. Suppose that 0 and 0 are the identity element of R and H, respectively. If $[M] \times[N]$ is an interval valued fuzzy subhemiring of $\mathrm{R} \times \mathrm{H}$, then at least one of the following two statements must hold.
(i) $[N]\left(0^{\prime}\right) \geq[M](x)$, for all x in R, (ii) $[M](0) \geq[N](y)$, for all y in H .
Proof: Let $[\mathrm{M}] \times[\mathrm{N}]$ be an interval valued fuzzy subhemiring of $\mathrm{R} \times \mathrm{H}$.

By contra positive, suppose that none of the statements (i) and (ii) holds. Then we can find a in R and b in H such that $[\mathrm{M}](\mathrm{a})>[\mathrm{N}]\left(0^{\prime}\right)$ and $[\mathrm{N}](\mathrm{b})>[\mathrm{M}](0)$. We have, $[\mathrm{M}] \times[\mathrm{N}](\mathrm{a}, \mathrm{b})=$ $\min \{[\mathrm{M}](\mathrm{a}),[\mathrm{N}](\mathrm{b})\}>\min \left\{[\mathrm{M}](0),[\mathrm{N}]\left(0^{\prime}\right)\right\}=[\mathrm{M}] \times[\mathrm{N}]\left(0,0^{\prime}\right.$). Thus $[\mathrm{M}] \times[\mathrm{N}]$ is not an interval valued fuzzy subhemiring of $R \times H$. Hence either $[N]\left(0^{\prime}\right) \geq[M](x)$, for all x in R or $[M](0) \geq$ [N$](\mathrm{y})$, for all y in H .
Theorem: Let [M] and [N] be interval valued fuzzy subsets of the hemirings R and H, respectively and $[\mathrm{M}] \times[\mathrm{N}]$ is an interval valued fuzzy subhemiring of $\mathrm{R} \times \mathrm{H}$. Then the following are true: (i) if $[M](x) \leq[N]\left(0^{\prime}\right)$, then $[M]$ is an interval valued fuzzy subhemiring of R.
(ii) if $[\mathrm{N}](\mathrm{x}) \leq[\mathrm{M}](0)$, then $[\mathrm{N}]$ is an interval valued fuzzy subhemiring of H .
(iii) either [M] is an interval valued fuzzy subhemiring of R or $[\mathrm{N}]$ is an interval valued fuzzy subhemiring of H .
Proof: Let $[\mathrm{M}] \times[\mathrm{N}]$ be an interval valued fuzzy subhemiring of $\mathrm{R} \times \mathrm{H}$ and x, y be in R . Then $\left(\mathrm{x}, 0^{\prime}\right)$ and $\left(\mathrm{y}, 0^{\prime}\right)$ are in $\mathrm{R} \times \mathrm{H}$. Now, using the property $[M](x) \leq[N]\left(0^{\prime}\right)$, for all x in R, we get, $[\mathrm{M}](\mathrm{x}+\mathrm{y})=\min \left\{[\mathrm{M}](\mathrm{x}+\mathrm{y}),[\mathrm{N}]\left(0^{\prime} 0^{\prime}\right)\right\}=[\mathrm{M}] \times[\mathrm{N}]\left((\mathrm{x}+\mathrm{y}),\left(0^{\prime} 0^{\prime}\right)\right)$ $=[M] \times[N]\left[\left(x, 0^{\prime}\right)+\left(y, 0^{\prime}\right)\right] \geq \min \left\{[M] \times[N]\left(x, 0^{\prime}\right),[M] \times[N](y\right.$, $\left.\left.0^{\prime}\right)\right\}=\min \left\{\min \left\{[\mathrm{M}](\mathrm{x}),[\mathrm{N}]\left(0^{\prime}\right)\right\}, \min \left\{[\mathrm{M}](\mathrm{y}),[\mathrm{N}]\left(0^{\prime}\right)\right\}\right\}=$ $\min \{[M](x),[M](y)\}$. Therefore, $[M](x+y) \geq \min \{[M](x)$, $[M](y)\}$, for all x, y in R. And, $[M](x y)=\min \{[M](x y)$, $\left.[\mathrm{N}]\left(0^{\prime} 0^{\prime}\right)\right\}=[\mathrm{M}] \times[\mathrm{N}]\left((\mathrm{xy}),\left(0^{\prime} 0^{\prime}\right)\right)=[\mathrm{M}] \times[\mathrm{N}]\left[\left(\mathrm{x}, 0^{\prime}\right)\left(\mathrm{y}, 0^{\prime}\right)\right] \geq$ $\min \left\{[M] \times[N]\left(x, 0^{\prime}\right),[M] \times[N]\left(y, 0^{\prime}\right)\right\}=\min \{\min \{[M](x)$, $\left.\left.[\mathrm{N}]\left(0^{\prime}\right)\right\}, \min \left\{[\mathrm{M}](\mathrm{y}),[\mathrm{N}]\left(0^{\prime}\right)\right\}\right\}=\min \{[\mathrm{M}](\mathrm{x}),[\mathrm{M}](\mathrm{y})\}$. Therefore, $[M](x y) \geq \min \{[M](x),[M](y)\}$, for all x, y in R. Hence [M] is an interval valued fuzzy subhemiring of R. Thus (i) is proved. Now, using the property $[\mathrm{N}](\mathrm{x}) \leq[\mathrm{M}](0)$, for all x in H , we get, $[\mathrm{N}](\mathrm{x}+\mathrm{y})=\min \{[\mathrm{N}](\mathrm{x}+\mathrm{y}),[\mathrm{M}](00)\}=[\mathrm{M}] \times[\mathrm{N}]($
$(00),(x+y))=[M] \times[N][(0, x)+(0, y)] \geq \min \{[M] \times[N](0, x)$, $[\mathrm{M}] \times[\mathrm{N}](0, y)\}=\min \{\min \{[\mathrm{N}](\mathrm{x}),[\mathrm{M}](0)\}, \min \{[\mathrm{N}](\mathrm{y})$, $[M](0)\}\}=\min \{[N](x),[N](y)\}$. Therefore, $[N](x+y) \geq \min$ $\{[N](x),[N](y)\}$, for all x and y in H. And, $[N](x y)=\min \{$ $[\mathrm{N}](\mathrm{xy}),[\mathrm{M}](00)\}=[\mathrm{M}] \times[\mathrm{N}]((00),(\mathrm{xy}))=[\mathrm{M}] \times[\mathrm{N}][(0, \mathrm{x})(0$, $\mathrm{y})] \geq \min \{[\mathrm{M}] \times[\mathrm{N}](0, \mathrm{x}),[\mathrm{M}] \times[\mathrm{N}](0, \mathrm{y})\}=\min \{\min \{$ $[\mathrm{N}](\mathrm{x}),[\mathrm{M}](0)\}, \min \{[\mathrm{N}](\mathrm{y}),[\mathrm{M}](0)\}\}=\min \{[\mathrm{N}](\mathrm{x}),[\mathrm{N}](\mathrm{y})$ $\}$. Therefore, $[N](x y) \geq \min \{[N](x),[N](y)\}$, for all x and y in H. Hence [N] is an interval valued fuzzy subhemiring of H . Thus (ii) is proved. (iii) is clear.
Theorem: Let [M] be an interval valued fuzzy subset of a hemiring R and $[\mathrm{V}]$ be the strongest interval valued fuzzy relation of R with respect to $[M]$. Then $[M]$ is an interval valued fuzzy subhemiring of R if and only if $[\mathrm{V}]$ is an interval valued fuzzy subhemiring of $R \times R$.
Proof: Suppose that $[\mathrm{M}]$ is an interval valued fuzzy subhemiring of R. Then for any $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ are in $R \times R$. We have, $[V](x+y)=[V]\left[\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right]=[V]\left(x_{1}+y_{1}, x_{2}+y_{2}\right)=\min$ $\left\{[M]\left(x_{1}+y_{1}\right),[M]\left(x_{2}+y_{2}\right)\right\} \geq \min \left\{\min \left\{[M]\left(x_{1}\right),[M]\left(y_{1}\right)\right\}\right.$, $\left.\min \left\{[M]\left(x_{2}\right),[M]\left(y_{2}\right)\right\}\right\}=\min \left\{\min \left\{[M]\left(x_{1}\right),[M]\left(x_{2}\right)\right\}, \min \{\right.$ $\left.\left.[M]\left(y_{1}\right),[M]\left(y_{2}\right)\right\}\right\}=\min \left\{[V]\left(x_{1}, x_{2}\right),[V]\left(y_{1}, y_{2}\right)\right\}=\min \{$ $[\mathrm{V}](\mathrm{x}),[\mathrm{V}](\mathrm{y})\}$. Therefore, $[\mathrm{V}](\mathrm{x}+\mathrm{y}) \geq \min \{[\mathrm{V}](\mathrm{x}),[\mathrm{V}](\mathrm{y})\}$, for all x and y in $R \times R$. And we have, $[V](x y)=[V]\left[\left(x_{1}, x_{2}\right)\left(y_{1}\right.\right.$, $\left.\left.\mathrm{y}_{2}\right)\right]=[\mathrm{V}]\left(\mathrm{x}_{1} \mathrm{y}_{1}, \mathrm{x}_{2} \mathrm{y}_{2}\right)=\min \left\{[\mathrm{M}]\left(\mathrm{x}_{1} \mathrm{y}_{1}\right),[\mathrm{M}]\left(\mathrm{x}_{2} \mathrm{y}_{2}\right)\right\} \geq \min \{\min$ $\left.\left\{[\mathrm{M}]\left(\mathrm{x}_{1}\right), \quad[\mathrm{M}]\left(\mathrm{y}_{1}\right)\right\}, \quad \min \left\{[\mathrm{M}]\left(\mathrm{x}_{2}\right), \quad[\mathrm{M}]\left(\mathrm{y}_{2}\right)\right\}\right\}=\min \quad\{\min$ $\left.\left\{[\mathrm{M}]\left(\mathrm{x}_{1}\right),[\mathrm{M}]\left(\mathrm{x}_{2}\right)\right\}, \min \left\{[\mathrm{M}]\left(\mathrm{y}_{1}\right),[\mathrm{M}]\left(\mathrm{y}_{2}\right)\right\}\right\}=\min \left\{[\mathrm{V}]\left(\mathrm{x}_{1}\right.\right.$, $\left.\left.\mathrm{x}_{2}\right),[\mathrm{V}]\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\}=\min \{[\mathrm{V}](\mathrm{x}),[\mathrm{V}](\mathrm{y})\}$. Therefore, $[\mathrm{V}](\mathrm{xy}) \geq$ $\min \{[\mathrm{V}](\mathrm{x}),[\mathrm{V}](\mathrm{y})\}$, for all x and y in $\mathrm{R} \times \mathrm{R}$. This proves that $[\mathrm{V}]$ is an interval valued fuzzy subhemiring of $\mathrm{R} \times \mathrm{R}$. Conversely, assume that [V$]$ is an interval valued fuzzy subhemiring of $\mathrm{R} \times \mathrm{R}$, then for any $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ are in $R \times R$, we have $\min \left\{[M]\left(x_{1}+y_{1}\right),[M]\left(x_{2}+y_{2}\right)\right\}=[V]\left(x_{1}+y_{1}, x_{2}+y_{2}\right)=[V]\left[\left(x_{1}\right.\right.$, $\left.\left.\mathrm{x}_{2}\right)+\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right]=[\mathrm{V}](\mathrm{x}+\mathrm{y}) \geq \min \{[\mathrm{V}](\mathrm{x}),[\mathrm{V}](\mathrm{y})\}=\min \left\{[\mathrm{V}]\left(\mathrm{x}_{1}\right.\right.$, $\left.\left.x_{2}\right),[V]\left(y_{1}, y_{2}\right)\right\}=\min \left\{\min \left\{[M]\left(x_{1}\right),[M]\left(x_{2}\right)\right\}, \min \left\{[M]\left(y_{1}\right)\right.\right.$, $\left.\left.[\mathrm{M}]\left(\mathrm{y}_{2}\right)\right\}\right\}$. If we put $\mathrm{x}_{2}=\mathrm{y}_{2}=0$, where 0 is the zero element of R. We get, $[M]\left(x_{1}+y_{1}\right) \geq \min \left\{[M]\left(x_{1}\right),[M]\left(y_{1}\right)\right\}$, for all x_{1}, y_{1} in R. And $\min \left\{[M]\left(x_{1} y_{1}\right),[M]\left(x_{2} y_{2}\right)\right\}=[V]\left(x_{1} y_{1}, x_{2} y_{2}\right)=[V]\left[\left(x_{1}\right.\right.$, $\left.\left.\mathrm{x}_{2}\right)\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right]=[\mathrm{V}](\mathrm{xy}) \geq \min \{[\mathrm{V}](\mathrm{x}),[\mathrm{V}](\mathrm{y})\}=\min \left\{[\mathrm{V}]\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right.$, $\left.[\mathrm{V}]\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\}=\min \left\{\min \left\{[\mathrm{M}]\left(\mathrm{x}_{1}\right),[\mathrm{M}]\left(\mathrm{x}_{2}\right)\right\}, \min \left\{[\mathrm{M}]\left(\mathrm{y}_{1}\right)\right.\right.$, $\left.\left.[M]\left(y_{2}\right)\right\}\right\}$. If we put $x_{2}=y_{2}=0$, where e is the identity element of R. We get, $[M]\left(x_{1} y_{1}\right) \geq \min \left\{[M]\left(x_{1}\right),[M]\left(y_{1}\right)\right\}$, for all x_{1} and y_{1} in R. Hence $[M]$ is an interval valued fuzzy subhemiring of R. Theorem: Let [M] be an interval valued fuzzy subset of a hemiring R. Then $[M]$ is an interval valued fuzzy subhemiring of R if and only if M^{-}and M^{+}are fuzzy subhemiring of R .
Proof: Let x and y belong to R and $[\mathrm{M}]$ be an interval valued fuzzy subhemiring of $R,[M]=\left\{\left\langle x,\left[M^{-}(x), M^{+}(x)\right]\right\rangle / x \in X\right\}$. So, $[M](x+y) \geq \min \{[M](x),[M](y)\}=\left[\min \left\{M^{-}(x), M^{-}(y)\right\}\right.$, $\left.\min \left\{\mathrm{M}^{+}(\mathrm{x}), \mathrm{M}^{+}(\mathrm{y})\right\}\right]$. Thus $[\mathrm{M}](\mathrm{x}+\mathrm{y}) \geq\left[\min \left\{\mathrm{M}^{-}(\mathrm{x}), \mathrm{M}^{-}(\mathrm{y})\right\}\right.$,
$\left.\min \left\{\mathrm{M}^{+}(\mathrm{x}), \mathrm{M}^{+}(\mathrm{y})\right\}\right]$. Therefore $\left[\mathrm{M}^{-}(\mathrm{x}+\mathrm{y}), \mathrm{M}^{+}(\mathrm{x}+\mathrm{y})\right] \geq[\min$ $\left.\left\{\mathrm{M}^{-}(\mathrm{x}), \mathrm{M}^{-}(\mathrm{y})\right\}, \min \left\{\mathrm{M}^{+}(\mathrm{x}), \mathrm{M}^{+}(\mathrm{y})\right\}\right]$. Thus $\mathrm{M}^{-}(\mathrm{x}+\mathrm{y}) \geq \min$ $\left\{\mathrm{M}^{-}(\mathrm{x}), \mathrm{M}^{-}(\mathrm{y})\right\}$ and $\mathrm{M}^{+}(\mathrm{x}+\mathrm{y}) \geq \min \left\{\mathrm{M}^{+}(\mathrm{x}), \mathrm{M}^{+}(\mathrm{y})\right\}$. And $[M](x y) \geq \min \{[M](x),[M](y)\}=\left[\min \left\{M^{-}(x), M^{-}(y)\right\}, \min \{\right.$ $\left.\left.\mathrm{M}^{+}(\mathrm{x}), \mathrm{M}^{+}(\mathrm{y})\right\}\right]$. Thus $[\mathrm{M}](\mathrm{xy}) \geq\left[\min \left\{\mathrm{M}^{-}(\mathrm{x}), \mathrm{M}^{-}(\mathrm{y})\right\}\right.$, min $\left.\left\{M^{+}(x), M^{+}(y)\right\}\right]$. Therefore $\left[M^{-}(x y), M^{+}(x y)\right] \geq\left[\min \left\{M^{-}(x)\right.\right.$, $\left.\left.\mathrm{M}^{-}(\mathrm{y})\right\}, \min \left\{\mathrm{M}^{+}(\mathrm{x}), \mathrm{M}^{+}(\mathrm{y})\right\}\right]$. Thus $\mathrm{M}^{-}(\mathrm{xy}) \geq \min \left\{\mathrm{M}^{-}(\mathrm{x})\right.$, $\left.\mathrm{M}^{-}(\mathrm{y})\right\}$ and $\mathrm{M}^{+}(\mathrm{xy}) \geq \min \left\{\mathrm{M}^{+}(\mathrm{x}), \mathrm{M}^{+}(\mathrm{y})\right\}$. Hence M^{-}and M^{+} are fuzzy subhemiring of R. Conversely, assume that M^{-}and M^{+} are fuzzy subhemiring of R . So, $\mathrm{M}^{-}(\mathrm{x}+\mathrm{y}) \geq \min \left\{\mathrm{M}^{-}(\mathrm{x}), \mathrm{M}^{-}(\mathrm{y})\right\}$ and $\mathrm{M}^{+}(\mathrm{x}+\mathrm{y}) \geq \min \left\{\mathrm{M}^{+}(\mathrm{x}), \mathrm{M}^{+}(\mathrm{y})\right\}$ which implies that $\left[\mathrm{M}^{-}(\mathrm{x}+\mathrm{y}), \mathrm{M}^{+}(\mathrm{x}+\mathrm{y})\right] \geq\left[\min \left\{\mathrm{M}^{-}(\mathrm{x}), \mathrm{M}^{-}(\mathrm{y})\right\}, \min \left\{\mathrm{M}^{+}(\mathrm{x})\right.\right.$, $\left.\left.\mathrm{M}^{+}(\mathrm{y})\right\}\right]$ which implies that $[\mathrm{M}](\mathrm{x}+\mathrm{y}) \geq\left[\min \left\{\mathrm{M}^{-}(\mathrm{x}), \mathrm{M}^{-}(\mathrm{y})\right\}\right.$, $\left.\min \left\{\mathrm{M}^{+}(\mathrm{x}), \mathrm{M}^{+}(\mathrm{y})\right\}\right]$ which implies that $[\mathrm{M}](\mathrm{x}+\mathrm{y}) \geq \min \{$ $[\mathrm{M}](\mathrm{x}),[\mathrm{M}](\mathrm{y})\}$. And $\mathrm{M}^{-}(\mathrm{xy}) \geq \min \left\{\mathrm{M}^{-}(\mathrm{x}), \mathrm{M}^{-}(\mathrm{y})\right\}$ and $\mathrm{M}^{+}(\mathrm{xy}) \geq \min \left\{\mathrm{M}^{+}(\mathrm{x}), \mathrm{M}^{+}(\mathrm{y})\right\}$ which implies that $\left[\mathrm{M}^{-}(\mathrm{xy})\right.$, $\left.\mathrm{M}^{+}(\mathrm{xy})\right] \geq\left[\min \left\{\mathrm{M}^{-}(\mathrm{x}), \mathrm{M}^{-}(\mathrm{y})\right\}, \min \left\{\mathrm{M}^{+}(\mathrm{x}), \mathrm{M}^{+}(\mathrm{y})\right\}\right]$ which implies that $[\mathrm{M}](\mathrm{xy}) \geq\left[\min \left\{\mathrm{M}^{-}(\mathrm{x}), \mathrm{M}^{-}(\mathrm{y})\right\}, \min \left\{\mathrm{M}^{+}(\mathrm{x})\right.\right.$, $\left.\left.M^{+}(y)\right\}\right]$ which implies that $[M](x y) \geq \min \{[M](x),[M](y)\}$. Hence $[\mathrm{M}]$ is an interval valued fuzzy subhemiring of R.

Reference

1. Akram.M and Dar.K.H, On fuzzy d-algebras, Punjab university journal of mathematics, 37, 61-76 (2005).
2. Azriel Rosenfeld, Fuzzy Groups, Journal of mathematical analysis and applications, 35, 512-517 (1971).
3. Biswas.R, Fuzzy subgroups and Anti-fuzzy subgroups, Fuzzy sets and systems, 35,121-124 (1990).
4. Grattan-Guiness, Fuzzy membership mapped onto interval and many valued quantities, Z.Math.Logik. Grundladen Math. 22, 149-160 (1975).
5. Indira.R, Arjunan.K and Palaniappan.N, Notes on IV-fuzzy rw-Closed, IV-fuzzy rw-Open sets in IV-fuzzy topological space, International Journal of Fuzzy Mathematics and Systems, Vol. 3, Num.1, pp 23-38 (2013).
6. Jahn.K.U., interval wertige mengen, Math Nach.68, 115-132 (1975).
7. Jun.Y.B and Kin.K.H, interval valued fuzzy R-subgroups of nearrings, Indian Journal of Pure and Applied Mathematics, 33(1), 71-80 (2002).
8. Palaniappan. N \& K. Arjunan, Operation on fuzzy and anti fuzzy ideals, Antartica J. Math., 4(1): 59-64 (2007).
9. Solairaju.A and Nagarajan.R, Charactarization of interval valued Anti fuzzy Left h-ideals over Hemirings, Advances in fuzzy Mathematics, Vol.4, No. 2, 129-136 (2009).
10.Zadeh.L.A, The concept of a linguistic variable and its application to approximation reasoning-1, Inform. Sci. 8, 199249 (1975).
