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Introduction 

Social Media allowing more connectivity and interaction 

between web users and it encourages contributions and feedback 

from anyone who is a member of any virtual community. Social 

media will alter new mass cooperative behaviors that unlock the 

ability of the collective and deliver new ways to enterprise 

results. Enterprises will use these collective behaviors because 

the link between business worth and social media technologies. 

Enterprises will use them to look at a target community and 

formulate new ways in which folks will move to realize 

enterprise worth. In gift World Social media facilitate folks of 

all walks of life to attach to every different. We tend to study 

however networks in social media will facilitate predict some 

kinds of human behavior and individual preference. In social 

media, countless actors in an exceedingly network area unit the 

norm. With this large variety of actors, the scale cannot even be 

command in memory, inflicting significant issue concerning the 

quantifiability. As an example, standard content- sharing sites 

like Del.icio.us, Flickr and YouTube enable users to transfer, tag 

and comment differing types of contents (bookmarks, photos, 

videos).Users registered at these sites may become friends, an 

addict or follower of others. The prolific and swollen use of 

social media has flipped on-line interactions into a significant a 

part of human expertise. 

In this work, we tend to study however networks in social 

media will facilitate predict some human behaviors and 

individual preferences. Above all, given the behavior of some 

people in an exceedingly network, how can we infer the 

behavior of other individuals in the same social network [1].This 

study will facilitate higher perceive activity patterns of users in 

social media for applications like social advertising and 

recommendation. A social-dimension-based approach has been 

shown effective in addressing the heterogeneity of connections 

presented in social media. But the networks in social media are 

normally of colossal size, involving hundreds of thousands of 

actors. The scale of these networks entails scalable learning of 

models for collective behavior prediction. 

To address the scalability issue, new method introduced an 

edge-centric clustering scheme to extract sparse social 

dimensions [1].With sparse social dimensions, the proposed 

approach can efficiently handle networks of millions of actors 

while demonstrating a comparable prediction performance to 

other non-scalable methods. Social media facilitate people of all 

walks of life to connect to each other. In this paper we are 

presenting and discussing the all algorithms involved in this 

study with its practical evaluation. 

Collective behavior refers to the behaviors of individuals in 

a social networking environment, but it is not simply the 

aggregation of individual behaviors. In a connected 

environment, individuals’ behaviors tend to be interdependent, 

influenced by the behavior of friends. This leads to behavior 

correlation between connected users. Take marketing as an 

example: if our friends buy something, there is a better-than-

average chance that we will buy it, too. This behavior 

correlation can also be explained by homophile. The recent 

boom of social media enables us to study collective behavior on 

a large scale. Here, behaviors include a broad range of actions: 

joining a group, connecting to a person, clicking on an ad, 

becoming interested in certain topics, dating people of a certain 

type, etc. In this work, we attempt to leverage the behavior 

correlation presented in a social network in order to predict 

collective behavior in social media. In next section sections we 

will discuss the algorithms those are presented to overcome the 

limitations of existing methods by improving the network 

scalability. Examples of Behavior, Joining a sports club, buying 

some products, Becoming interested in a topic voting for a 

presidential candidate. 
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For the many people in world social networks are playing major role day to day life. 

Depending on the user’s behavior and interaction with each other, the social networking 

sites are reshaped. Growing interest and development of social network sites like Facebook, 

Twitter, Flicker, YouTube etc. imposing many research challenges. And hence this is 

allowing researchers to do many research studies using data mining concepts. The main 

challenge of such online social networking websites is to find out the individuals behavior 

over social network. Understanding the user’s behavior on social networking websites is 

called as collective behavior. There are many data mining techniques presented to identify 

the behavior of individuals. Such methods of collective behavior allows to learn and predict 

the users online behavior and based on it assign the appropriate label to actor in network. 

But the another main problem occurs in such methods is the networks scalability due to 

which this systems becomes poor in performance and many not be work if the network size 

is too big. To overcome this problem we need to have scalable learning of collective 

behavior to deal with any size of social networks. Recently one such method presented, in 

this method an edge-centric clustering technique is presented to extract social network 

dimensions. With sparse social dimensions, the proposed approach can efficiently handle 

networks of any size. In this paper we are presenting the detailed discussion on this method. 
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Material and Methodology 

There are many methods presented to learn and predict the 

collective behavior of users over online social networks. In [1], 

author presented all the related works and methods for learning 

collective behavior. Solution for the problem of scalability by 

using the new data mining methods is provided. Below are some 

of the methods presented previously [1].Classifications with 

networked instances are known as within-network classification, 

or a special case of relational learning [2, 3]. But network tends 

to present heterogeneous relations, and the Markov assumption 

can only capture the local dependency. In [4, 5], there is model 

network connections or class labels based on latent groups. 

Similar idea is also adopted to differentiate heterogeneous 

relations in a network by extracting social dimensions to 

represent the potential affiliations of actors in a network [6]. 

Modularity Maximization (ModMax) 

Some researchers presented methods to conduct soft 

clustering for graphs like modularity maximization [8]. 

Probabilistic methods are also developed [9, 10]. Special variant 

of modularity maximization is adopted to extract social 

dimension. Social dimension corresponds to the top 

eigenvectors of a modularity matrix. A disadvantage with soft 

clustering such as modularity maximization is that the resultant 

social dimensions are dense, posing thorny computational 

challenges for the extraction of extraction of social dimensions 

and discriminative learning. The modularity maximization 

requires the computation of the top eigenvectors of a modularity 

matrix which is of size n × n where n is the number of actors in 

a network. When the network scales to millions of actors, the 

eigenvector computation becomes a daunting task. Though the 

network is sparse, the social dimensions become dense. Efficient 

online updates of Eigen vectors with expanding matrices remain 

a challenge. It destroys the genuine sparsity presented in a 

network.  

Advantages 

 Use top eigenvectors of a modularity matrix as social 

dimensions. 

 Outperform representative methods based on collective 

inference. 

Disadvantage 

 Dense Representation. e.g.  1 M actors, 1000 dimensions, 

require 8G   memory. 

 Eigenvector computation can be expensive. 

 Difficult to update whenever the network changes. 

Bi–connected Components (BiComponents) 

Another related approach to finding edge partitions is bi-

connected components [11]. Bi-connected components of a 

graph are the maximal subsets of vertices such that the removal 

of a vertex from a particular component will not disconnect the 

component. Essentially, any two nodes in a bi-connected 

component are connected by at least two paths. It is highly 

related to cut vertices (a.k.a. articulation points) in a graph, 

whose removal will result in an increase in the number of 

connected components. Those cut vertices are the bridges 

connecting different bi-connected components. Thus, searching 

for bi-connected components boils down to searching for 

articulation points in the graph, this can be solved efficiently in 

O (n + m) time. Here n and m represent the number of vertices 

and edges in a graph, respectively. Each bi-connected 

component is considered a community, and converted into one 

social dimension for learning. 

Advantages: 

 BiComponents separates edges into disjoint sets which in turn 

deliver sparse social dimension. 

 BiComponents is very efficient and scalable. 

Disadvantage: 

 BiComponents gives output highly imbalanced communities. 

 It fails to extract informative social dimension for 

classification. 

 This technique yields poor performance. 

Node Clustering (NodeCluster) 

Note that social dimensions allow one actor to be involved 

in multiple affiliations. As a proof of concept, we also examine 

the case when each actor is associated with only one affiliation. 

Essentially, we construct social dimensions based on node 

partition. A similar idea has been adopted in a latent group 

model [21] for efficient inference. To be fair, we adopt k-means 

clustering to partition nodes of a network into disjoint sets, and 

convert the node clustering result into a set of social dimensions. 

Then, SVM is utilized for discriminative learning. For 

convenience, this method is denoted as NodeCluster. 

Advantage 

 SVM is used for discriminative learning. 

Disadvantage 

 Each actor to be involved in only one affiliation, yielding in 

inferior performance than EdgeCluster. 

Edge Clustering (EdgeCluster) 

Consequently, it is imperative to develop scalable Methods 

that can handle large-scale networks efficiently without 

extensive memory requirements. Next, we elucidate on an edge-

centric clustering scheme to extract sparse social dimensions. 

With such a scheme, we can also update the social dimensions 

efficiently when new nodes or new edges arrive. In a huge 

network, large number of social dimension needs to be 

extracted. Apply k-means algorithm to partition edges into 

disjoint sets. 

Space: O (n+m)    Time: O (m)  

Advantage  

 EdgeCluster method extract social dimension which are 

sparse. (Theoretically Guaranteed) 

 One actor can be assigned to multiple affiliations 

 Easy to update with new edges and nodes 

 Simply update the centroid. 

 We have studied that proposed approach of edge- centric 

view for social dimension extraction and liner SVM based 

approach for learning of collective behavior. From the 

experimental results it’s clear that proposed social dimension 

extraction technique outperforms existing social dimension 

extraction techniques [1]. 

In addition to this, one more advantage is that this model is 

that it easily scales to handle networks with millions of actors 

while the earlier models fail. However, generally in all social 

networks, multiple nodes of actors are involving in similar 

network and hence this is resulting as multimode network. For 

example For instance, in Flicker, photos, users, communities, 

comments etc. in YouTube, users, videos, tags, and comments 

are twist together in co-existence. Such heterogeneity of social 

networks needs to be handled during the edge-centric clustering 

so that we can improve the prediction performance especially in 

case of multimode networks. In this section we will discuss the 

recently scalable approach for learning collective behavior.  

Social Dimension Extraction using K- means variant 

algorithm 

In this algorithm we design the framework, design the input 

datasets, and implement the algorithm of k-means variant in 

order to extract the social dimension extraction based edge 

centric approach. As a simple k-means is adopted to extract 
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social dimensions, it is easy to update social dimensions if a 

given network changes. 

Input: Social Network Dataset like flicker, YouTube. 

Output: Social dimensions of this dataset. For example, 

following figures showing Input and Output of this module: 

 

Figure 1. A toy example 

Given a network (say, Figure 1), we take the Edge-centric 

view of the network data (Table 1 below):  

Table 1. Edge Centric view of input network data 

              

Further partition this information (edges) into the disjoint sets as 

per given in below figure 2: 

 

Figure 2. Edge Cluster 

Based on Edge clustering above, further social dimensions 

can be constructed as per given in below table 2 and this is the 

final output of this algorithm 1: 

Table 2. Social Dimension(s) of the Toy Example 

 

 

 

 

 

 

 

 

 

 

 

Discriminative Learning and Prediction 

We have applied the social extracted dimension input to the 

discriminative learning and prediction. We have to use 

algorithm given in [1] for this section. This algorithm is based 

on linear SVM. 

Input: network data, labels of some nodes, number of social 

dimensions; 

Output: labels of unlabeled nodes. 

Step 1: Apply regularization to social dimensions. 

Step 2: Construct classifier based on social dimensions of 

labeled nodes. 

Step 3: Use the classifier to predict labels of unlabeled ones 

based on their social dimensions. 

Comparative Results Analysis 

This prediction problem is essentially Multi-label. It is 

empirically shown that thresholding can affect the final 

prediction performance drastically [18, 19]. For evaluation 

purpose, we assume the number of labels of unobserved nodes is 

already known, and check whether the top-ranking predicted 

labels match with the actual labels. Such a scheme has been 

adopted for other multi-label evaluation works [20]. We 

randomly sample a portion of nodes as labeled and report the 

average performance of 10 runs in terms of Micro-F1 and 

Macro-F1 [19]. 

In this section, we first examine how prediction 

performances vary with social dimensions extracted following 

different approaches. Then we verify the sparsity of social 

dimensions and its implication for scalability. We also study 

how the performance varies with dimensionality. Finally, 

concrete examples of extracted social dimensions are given. 

From all practical analysis this proposed methods showing good 

performances against the existing methods as well as improves 

scalability as well. 

Prediction Performance  

Prediction Performance on all data is shown in Tables 3-5. 

The entries in bold face denote the best performance in each 

column. Obviously, EdgeCluster is the winner most of the time. 

Edge-centric clustering shows comparable performance to 

modularity maximization on Blog Catalog network, yet it 

outperforms ModMax on Flickr. ModMax on YouTube is not 

applicable due to the scalability constraint. Clearly, with sparse 

social dimensions, we are able to achieve comparable 

performance as that of dense social dimensions. We note that the 

prediction performance on the studied social media data is 

around 20-30% for F1 measure. This is partly due to the large 

number of distinctive labels in the data. Another reason is that 

only the network information is exploited here. 

Observations 

(ModMax-500 corresponds to modularity maximization to 

select 500 social dimensions and EdgeCluster-x denotes edge-

centric clustering to construct x dimensions. Time denotes the 

total time (seconds) to extract the social dimensions; Space 

represents the memory footprint (mega-byte) of the extracted 

social dimensions; Density is the proportion of non-zeros entries 

in the dimensions; Upper bound is the density upper bound 

computed. Max-Aff and Ave-Aff denote the maximum and 

average number of affiliations one user is involved in). 

The social dimensions constructed according to edge-

centric clustering are guaranteed to be sparse because the 

density is upper bounded by a small value. Here, we examine 

how sparse the social dimensions are in practice. We also study 

how the computation time (with a Core2Duo E8400 CPU and 

4GB memory) varies with the number of edge clusters. The 

computation time, the memory footprint of social dimensions, 

their density and other related statistics on all three data sets are 

reported in Tables 6-8. 

Concerning the time complexity, it is interesting that 

computing the top eigenvectors of a modularity matrix is 

actually quite efficient as long as there is no memory concern. 

This is observed on the Flickr data. However, when the network 

scales to millions of nodes (YouTube), modularity maximization 

becomes difficult (though an iterative method or distributed 

computation can be used) due to its excessive memory 

requirement. On the contrary, the EdgeCluster method can still 

work efficiently as shown in Table 8. The computation time of 

EdgeCluster for YouTube is much smaller than for Flickr, 

because the YouTube network is extremely sparse. The number 

of edges and the average degree in YouTube are smaller than 

those in Flickr.  

Actor Modularity Maximization Edge Partition 

1 

2 

3 

4 

5 

6 

7 

8 

9 

-0.1185 

-0.4043 

-0.4473 

-0.4473 

0.3093 

0.2628 

0.1690 

0.3241 

0.3522 

1          1 

1          0 

1          0 

1          0 

0          1 

0          1 

0          1 

0          1 

0          1 
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Table 3. Performance on Blog Catalog Network 
Proportion of Labeled Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Micro-F1 (%) EdgeCluster 27.94 30.76 31.85 32.99 34.12 35.00 34.63 35.99 36.29 

BiComponents 16.54 16.59 16.67 16.83 17.21 17.26 17.04 17.76 17.61 

ModMax 27.35 30.74 31.77 32.97 34.09 36.13 36.08 37.23 38.18 

NodeCluster 18.29 19.14 20.01 19.80 20.81 20.86 20.53 20.74 20.78 

Macro-F1 (%) EdgeCluster 16.16 19.16 20.48 22.00 23.00 23.64 23.82 24.61 24.92 

BiComponents 2.77 2.80 2.82 3.01 3.13 3.29 3.25 3.16 3.37 

ModMax 17.36 20.00 20.80 21.85 22.65 23.41 23.89 24.20 24.97 

NodeCluster 7.38 7.02 7.27 6.85 7.57 7.27 6.88 7.04 6.83 

 
Table 4. Performance on Flickr Network 

Proportion of Labeled Nodes 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 

Micro-F1 (%) EdgeCluster 25.75 28.53 29.14 30.31 30.85 31.53 31.75 31.76 32.19 32.84 

BiComponents 16.45 16.46 16.45 16.49 16.49 16.49 16.49 16.48 16.55 16.55 

ModMax 22.75 25.29 27.30 27.60 28.05 29.33 29.43 28.89 29.17 29.20 

NodeCluster 22.94 24.09 25.42 26.43 27.53 28.18 28.32 28.58 28.70 28.93 

Macro-F1 (%) EdgeCluster 10.52 14.10 15.91 16.72 18.01 18.54 19.54 20.18 20.78 20.85 

BiComponents 0.45 0.46 0.45 0.46 0.46 0.46 0.46 0.46 0.47 0.47 

ModMax 10.21 13.37 15.24 15.11 16.14 16.64 17.02 17.10 17.14 17.12 

NodeCluster 7.90 9.99 11.42 11.10 12.33 12.29 12.58 13.26 12.79 12.77 

 
Table 5. Performance on YouTube Network 

Proportion of Labeled Nodes 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 

Micro-F1 (%) EdgeCluster 23.90 31.68 35.53 36.76 37.81 38.63 38.94 39.46 39.92 40.07 

BiComponents 23.90 24.51 24.80 25.39 25.20 25.42 25.24 24.44 25.62 25.53 

ModMax - - - - - - - - - - 

NodeCluster 20.89 24.57 26.91 28.65 29.56 30.72 31.15 31.85 32.29 32.67 

Macro-F1 (%) EdgeCluster 19.48 25.01 28.15 29.17 29.82 30.65 30.75 31.23 31.45 31.54 

BiComponents 6.80 7.05 7.19 7.44 7.48 7.58 7.61 7.63 7.76 7.91 

ModMax - - - - - - - - - - 

NodeCluster 17.91 21.11 22.38 23.91 24.47 25.26 25.50 26.02 26.44 26.68 

 
Table 6. Sparsity Comparison on Blog Catalog data with 10,312 Nodes 
Methods Time Space Density Upper Bound Max-Aff Ave Aff 

ModMax  500 194.4 41.2M 1 - 500 500 

EdgeCluster -100 300.8 3.8M 1.1 x 10-1 2.2 x 10-1 187 23.5 

EdgeCluster -500 357.8 4.9M 6.0  x10-2 1.1 x 10-1 344 30.0 

EdgeCluster -1000 307.2 5.2M 3.2 x 10-2 6.0 x 10-2 408 31.8 

EdgeCluster -2000 294.6 5.3M 1.6 x 10-2 3.1 x  10-2 598 32.4 

EdgeCluster -5000 230.3 5.5M 6 x 10-3 1.3 x 10-2 682 32.4 

EdgeCluster -10000 195.6 5.6M 3 x 10-3 7 x 10-3 882 33.3 

 
Table 7. Sparsity Comparison on Flickr Data with 80, 513 Nodes 

Methods Time Space Density Upper Bound Max-Aff Ave Aff 

ModMax  500 2.2 x 103 322.1M 1 - 500 500.0 

EdgeCluster -200 1.2 x 104 31.0M 1.2 x 10-1 3.9 x 10-1 156 24.1 

EdgeCluster -500 1.3 x 104 44.8M 7.0 x 10-2 2.2 x 10-1 352 34.8 

EdgeCluster -1000 1.6 x 104 57.3M 4.5 x 10-2 1.3 x 10-1 619 44.5 

EdgeCluster -2000 2.2 x 104 70.1M 2.7 x 10-2 7.2 x 10-1 986 54.4 

EdgeCluster -5000 2.6 x 104 84.7M 1.3 x 10-2 2.9 x 10-2 1405 65.7 

EdgeCluster -10000 1.9 x 104 91.4M 7 x 10-3 1.5 x 10-2 1673 70.9 

 
Table 8. Sparsity Comparison on YouTube Data with 1, 138,499 Nodes 

Methods Time Space Density Upper Bound Max-Aff Ave Aff 

ModMax  500 N/A 4.5G 1 - 500 500.00 

EdgeCluster -200 574.7 36.2M 9.9 x 10-3 2.3 x 10-2 121 1.99 

EdgeCluster -500 606.6 39.9M 4.4 x 10-3 9.7 x 10-3 255 2.19 

EdgeCluster -1000 779.2 42.3M 2.3 x 10-3 5.0 x 10-3 325 2.32 

EdgeCluster -2000 558.9 44.2M 1.2 x 10-3 2.6 x 10-3 375 2.43 

EdgeCluster -5000 554.9 45.6M 5.0 x 10-4 1.0 x 10-3 253 2.50 

EdgeCluster -10000 561.2 46.4M 2.5 x 10-4 5.1 x 10-4 356 2.54 

EdgeCluster -20000 507.5 47.0M 1.3 x 10-4 2.6 x 10-4 305 2.58 

EdgeCluster -50000 597.4 48.2M 5.2 x 10-5 1.1 x 10-4 297 2.62 
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Another observation is that the computation time of EdgeCluster 

does not change much with varying numbers of clusters. No 

matter how many clusters exist, the computation time of 

EdgeCluster is of the same order. This is due to the efficacy of 

the proposed k-means variant. In the algorithm, we do not iterate 

over each cluster and each centroid to do the cluster assignment, 

but exploit the Sparsity of edge-centric data to compute only the 

similarity of a centroid and those relevant instances. This, in 

effect, makes the computational cost independent of the number 

of edge clusters. As for the memory footprint reduction, sparse 

social dimension does an excellent job. On Flickr, with only500 

dimensions, ModMax requires 322.1M, whereas EdgeCluster 

requires less than 100M. This effect is stronger on the mega-

scale YouTube network, where ModMax becomes impractical 

to compute directly. Itis expected that the social dimensions of 

ModMax would occupy 4.6G memory. On the contrary, the 

sparse social dimensions based on EdgeCluster require only 30-

50M. The steep reduction of memory footprint can be explained 

by the density of the extracted dimensions. 

For instance, in Table 8, when we have 50,000 dimensions, 

the density is only 5.2 x 10
-5

. Consequently, even if the network 

has more than 1 million nodes, the extracted social dimensions 

still occupy only a tiny memory space. The upper bound of the 

density is not tight when the number of clusters k is small. As k 

Increases, the bound becomes tight. In general, the true density 

is roughly half of the estimated bound. 

Conclusion and Future Work 

In this paper we have studied efficient method for collective 

behavior. This method is presented to address the issues of 

scalability of all existing methods.  

(i) This method is presented to address the issues of scalability 

using an edge-centric clustering scheme to extract social 

dimensions and a scalable k-means variant to handle edge 

clustering.  

(ii) From the experimental studies it shows comparable 

prediction performance as earlier proposed approaches to extract 

social dimensions 

(iii) In actual, each edge can be associated with multiple 

affiliations while our current model assumes only one dominant 

affiliation. 

(iv) This investigated method is sensitive to the number of social 

dimensions. The advantage of this method is that it easily scales 

to handle networks with millions of actors while existing 

methods was failed to do so. This scalable approach offers a 

viable solution to effective learning of online collective behavior 

on a large scale. However as per stated in limitations, this 

method further needs to improve in different directions. In social 

media, multiple modes of actors can be involved in the same 

network, resulting in a multimode network [17]. Extending the 

edge-centric clustering scheme to address this object 

heterogeneity can be a promising future direction. Since the 

proposed EdgeCluster model is sensitive to the number of Social 

dimensions as shown in the experiment, further research are 

needed to determine a suitable dimensionality automatically. 

Since the proposed EdgeCluster model is sensitive to the 

number of social dimensions as shown in the experiment, further 

research is needed to determine a suitable dimensionality 

automatically. It is also interesting to mine other behavioral 

features (e.g., user activities and temporal spatial information) 

from social media, and integrate them with social networking 

information to improve prediction performance. 
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