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Introduction 

A determination of the ratio W/D of electron drift velocity to diffusion coefficient have found application, more especially those 

dealing with collision phenomena for electrons with mean energy of several electron-volts, the accuracy of existing data is sufficient 

good. 

The relation between low energy electrons and gas molecules are one of the methods of examining collision phenomena is to 

measure the ratio of the drift velocity W to the diffusion coefficient D of an electron swarm moving under the influence of an electric 

field E in a gas at a pressure p. Since W/D is a pressure-dependent quantity, the experimental results are always given either in terms 

of D/μ, where μ defines as the ratio W/E, or of KT, a parameter closely related to the Townsend energy factor, Kt, which is defined as 

the ratio of the mean energy of agitation of the electrons to the mean thermal energy of the molecules of the gas through which the 

electron swarm moves. These quantities are related by the expression [1-7]: 
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 where, K, e and Tg respectively the Boltzmann’s constant, electronic charge and gas temperature, which is K1, D/μ  as a functions of  

the E/N and Tg. 

     This field a benefit in arc which is used in nuclear fusion systems to generate plasma state so to reach a certain collision 

between ions. The collision should be enough to trigger the fusion and to find the drift velocity to electrons diffusion coefficient ratio 

which ionize the gas.          

Theory 

   The partial differential equation for the electrons concentration n, in the d/dt=const. within the diffusion chamber is [1]: 
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Where n is the number of electros per unit volume, W the drift velocity in the Z direction, and D the diffusion coefficient of electrons. 

  Eq.(2) describes the distribution of electrons in a stream moving of agitational  motion in a uniform electric field Z parallel to Oz 

in a coordinate system. 
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Calculation of W/D in terms of E, K1 and KT 

The electron drift velocity W of the centre of mass of a group of electrons moving through a gas at constant and uniform electric 

field E is [8]:  
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where e, m and are respectively the electronic charge, mass and the mean free path of an electron whose agitation velocity is U. In 

diatomic gases   is not depend on U and no detectable error is introduced in Eq.(2) which is: 
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whereas P is the gas pressure, L the mean free path at unit pressure (p=1mm of mercury) and 
)( 1U

is the mean reciprocals of U 

along the free paths. 

  From the above Eqs.(3,4) the changes in the velocities U along a free path through the action of the force Ee, are small 

compared with  U , and that all directions of motion are equally probable after collision. 

  The simulation formula for the diffusion coefficient D according to the w is: 
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From Eqs.(2) obtained: 
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Substitute Eqs.(4,5) into Eq.(6) yields: 
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From definition of Townsend energy factor KT, which is: 
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whereas m and 2U
defines the mass and mean-square velocity of a agitation of an electron, and M , 2

the corresponding 

quantities for a gas molecule. 

from Eq.(8) obtained: 
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Where Q  is the mean energy of agitation of an electron, and 
tQ  is the mean energy of thermal agitation of a gas molecule.  
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Multiplying the numerous and dunumerous by 2U
for right hand of (9)and substitute into Eq.(7): 
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where: 
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Substitute Eqs.(14,15) into Eq.(13) yields: 
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where N is Avogadro’s number= 6.023×10
23

 atom mol
-1

, Rο is the gas constant= 8.3143 J ˚k
-1

 mol
-1 

and e is columbic charge= 

1.602x10
-19

 C, it follows for temperature T=(273+27)
ο
 Eq.(16) becomes: 
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Eq.(17) represents the present work where E expresses in unit of V/cm. When the velocities U are distributed according to the law 

of Maxwell obtained.  
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but for distributed according to the law of Druyvesteyn, which is KT notably exceeds units as show bellow: 

)19(14.11 TKK   

Theoretical procedure 

  Assume an electron swarm in a ionized gas. The velocity distribution function g(r, v, t) in the present of a uniform electric field 

E can be referred by the Boltzmann equation [9,10,11]: 
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Since v  refers the velocity of the electron. 
excielas JJ , and 

ionJ are respectively, the collision integral relative to elastic, 

excitation and ionization collisions. 

  After prepared the excitation, electronical, ionization and momentum transfer cross-section respectively, had been fed to the 

computer code solved numerically transport equation using Finite-Difference method as in Ref.[12]. Wherefore obtained the electron 

transport motion parameter, namely electric field E and the ratio of the diffusion coefficient to the electron mobility (D/μ). This 

parameters used as input to the Eqs.(1-17). 

The obtained data are tabulated and graphically in tables (1, 2) and figures (1-6) respectively.   

Table (1): The input and output data for He 

E 

(V/cm) 

K1 

(eV) 

KT 

(eV) 

W/D (cm
-1

) 

(Maxwell) 

W/D (cm
-1

) 

(Druyvesteyn) 

3.05 1.160 1.018 115.85 101.63 

4.58 1.547 1.357 130.48 114.45 

11.44 1.547 1.357 325.91 285.88 

30.53 2.708 2.376 497 435.97 

45.77 3.869 3.394 521.57 457.51 

114.4 8.513 7.467 592.61 519.84 

305.3 20.121 17.65 668.98 586.82 

457.7 29.408 25.79 686.21 601.94 

611.1 39.082 34.28 689.42 604.76 

761.9 48.369 42.42 694.59 609.29 

 

Table (2): The input and output data for Air 

E (V/cm) K1 (eV) 

KT 

(eV) 

W/D (cm
-1

) 

(Maxwell) 

W/D (cm
-1

) 

(Druyvesteyn) 

0.099 3.83 3.36 0.999 0.876 

0.199 5.64 4.95 1.362 1.195 

0.299 6.92 6.07 1.669 1.464 

0.399 7.97 6.99 1.936 1.698 

0.599 10.09 8.85 2.294 2.012 

0.798 12.49 10.96 2.469 2.166 

0.998 14.97 13.13 2.577 2.261 

1.497 20.85 18.29 2.776 2.435 

1.999 25.46 22.33 3.037 2.664 

2.998 31.69 27.79 3.659 3.209 

3.990 35.90 31.49 4.298 3.770 

4.991 38.69 33.94 4.989 4.376 

9.983 45.66 40.05 8.457 7.418 

 

Results and Discussion 

Figs.(1, 4) are showing the increasing in the ratio of the drift velocity to the diffusion coefficient, W/D of an electron swarm 

moving under the influence of an electron field E, in Helium gas and air, from Fig.(1), at E= (3.05 - 45.77) V/cm the ratio W/D was 

rapidly increasing then after these values the ratio was stable with increasing of E for both Maxwell and Druyvesteyn, but the Fig.(4) 

at E= (0.099 – 0.599) V/cm, the ratio W/D was rapidly increasing then after these values, the increasing between W/D and E is 

approximately linear for both Maxwell and Druyvesteyn distribution law in air. 

Figs.(2, 5) are appearing the ratio W/D as a function of the apparent energy factor  K1. From fig.(2), at K1=(1.16087 – 2.708696) 

eV, the ratio W/D was rapidly increasing then after this values, the ratio W/D could be increasing gradually to show stability with K1 

increasing, but from Fig.(5) at K1= (3.83087 – 7.971304) eV, the relation between W/D and K1 is linear, after this values W/D 

increase exponentially with K1 for both Maxwell and Druyvesteyn law in air. 

Figs.(3, 6) are showing the ratio W/D against K1. From Fig.(3), at KT= (1.018307 – 2.376049) eV, the ratio W/D are rapidly 

increase, then after this values the ratio W/D could be stable with KT ,but from Fig.(6) at KT= (3.360412 – 6.992372) eV, the relation 
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between W/D and KT is linear, then after these values the relation could be exponential. These results are in good agreement with the 

experimental data published by [13]. 
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Fig.(1): The ratio of the electron drift velocity 

W to the diffusion coefficient D as a function of 

the applied electric field E in He gas. 
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Fig.(2): The ratio of the electron drift velocity 

W to the diffusion coefficient D as a function of 

K1 in He gas. 

W
/D

 (
cm

-1
) 

 

KT 

Fig.(3): The ratio of the electron drift velocity 

W to the diffusion coefficient D as a function of 

KT in He gas. 
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Fig.(4): The ratio of the electron drift velocity 

W to the diffusion coefficient D as a function of 

the applied electric field E in Air. 

W
/D

 (
cm

-1
) 

 

K1 

Fig.(5): The ratio of the electron drift velocity 

W to the diffusion coefficient D as a function of 

K1 in Air. 
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Fig.(6): The ratio of the electron drift velocity 

W to the diffusion coefficient D as a function of 

KT in Air. 
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