
M. Kannan

et al./ Elixir Comp. Sci. & Engg. 67 (2014) 21526-21529

21526

Introduction

Data robustness is a major requirement for storage systems.

There have been many proposals of storing data over storage

servers [1], [2], [3], [4], [5]. One way to provide data robustness

is to replicate a message such that each storage server stores a

copy of the message. It is very robust because the message can

be retrieved as long as one storage server survives. Another way

is to encode a message of k symbols into a codeword of n

symbols by erasure coding. To store a message, each of its

codeword symbols is stored in a different storage server. A

storage server failure corresponds to an erasure error of the

codeword symbol. the number of failure servers is under the

tolerance threshold of the erasure code, the message can be

recovered from the codeword symbols stored in the available

storage servers by the decoding process. This provides a tradeoff

between the storage size and the tolerance threshold of failure

servers. A decentralized erasure code is an erasure code that

indepen-dently computes each codeword symbol for a message.

Thus, the encoding process for a message can be split into n

parallel tasks of generating codeword symbols. A decentralized

erasure code is suitable for use in a distributed storage system.

After the message symbols are sent to storage servers, each

storage server independently computes a code-word symbol for

the received message symbols and stores it. This finishes the

encoding and storing process. The recovery process is the same.

Storing data in a third party’s cloud system causes serious

concern on data confidentiality. In order to provide strong

confidentiality for messages in storage servers, a user can

encrypt messages by a cryptographic method before apply-ing

an erasure code method to encode and store messages. When it

wants to use a message, it needs to retrieve the codeword

symbols from storage servers, decode them, and then decrypt

them by using cryptographic keys. There are three problems in

the above straightforward integration of encryption and

encoding. First, the user has to do most computation and the

communication traffic between the user and storage servers is

high. Second, the user has to manage his cryptographic keys. If

the user’s device of storing the keys is lost or compromised, the

security is broken. Finally, besides data storing and retrieving, it

is hard for storage servers to directly support other functions.

storage servers cannot directly forward a user’s messages to

another one. The owner of messages has to retrieve, decode,

decrypt and then forward them to another user.

Related work

Distributed Storage Systems

Network-Attached Storage (NAS) [7] and the Network File

System (NFS) [8] provide extra wants to share his messages, It

sends a re-encryption key to the storage server. The storage

server re-encrypts the encrypted messages for the authorized

user. Their system has data confidentiality and supports the data

forwarding function. Our work further integrates encryp-tion, re-

encryption, and encoding such that storage robust-ness is

strengthened.

Figure 1. Distributed storage system

Proxy Re-Encryption Schemes

Proxy re-encryption schemes are proposed by Mambo and

Okamoto [14] and Blaze et al. [15]. In a proxy re-encryption

scheme, a proxy server can transfer a ciphertext under a public

key PKA to a new one under another public key PKB by using

the re-encryption key RKA!B. The server does not know the

plaintext during transformation. Ateniese et al. [16] proposed

some proxy re-encryption schemes and applied them to the

A Safe Cloud Storage with Multiple Servers
M. Kannan

1,*
, P.K. Kumaresan

2
 and S. Palanivel

3

1
Department of Information Technology, Mahendra College of Engineering, Mallasamudram, Namakkal Dt, India,

2
Department of Information Technology, VMKV Engineering College, Vinayaka Missions Univerisity, Periyaseeragapadi, Salem,

India.
3
Department of Computer Science & Engineering, Annamalai University, Chidambaram, Tamilnadu,

ABSTRACT

The security of cloud users, a few proposals have been presented recently. Core objective of

using cloud is to provide Security, Scalability, Availability, Performance, and Cost effective.

A Safe Cloud Storage to provide confidentiality and fine-grained access control for data

stored in the cloud. This system enables the users to enjoy a secure outsourced data services

at a minimized security management overhead. Here outsources not only the data but also

the security management to the cloud in a trust way. Our system is fully integrates with

Encryption , storing and retrival operations. Propose a threshold proxy re-encryption

scheme and it integrates with decentralized erasure code such that a secure distributed

system is formulated. Analyze and suggest appropriate limitations for the number of copies

of a message transmitted to storage servers and the number of storage servers queried by a

key server. These restrictions allow more flexible regulation between the number of storage

servers and robustness.

 © 2014 Elixir All rights reserved

.

ARTICLE INFO

Article history:

Received: 28 December 2013;

Received in revised form:

24 January 2014;

Accepted: 6 February 2014;

Keywords

Decentralized erasure code,

Proxy re-encryption,

Threshold cryptography,

Secure storage system.

Elixir Comp. Sci. & Engg. 67 (2014) 21526-21529

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Tele:

E-mail addresses: manikkannan@gmail.com

 © 2014 Elixir All rights reserved

M. Kannan

et al./ Elixir Comp. Sci. & Engg. 67 (2014) 21526-21529

21527

sharing function of secure storage systems. In their work,

messages are first encrypted by the owner and then stored in a

storage server. When a user key server KSi holds a key share

SKA;i, 1 _ i _ m. The key is shared with a threshold t.The data

forwarding phase, user A forwards his encrypted message with

an identifier ID stored in storage servers to user B such that B

can decrypt the forwarded message by his secret key. , A uses

his secret key SKA and B’s public key PKB to compute a re-

encryption key RKIDA!B and then sends RKIDA!B to all

storage servers. Each storage server uses the re-encryption key

to re-encrypt its codeword symbol for later retrieval requests by

B. The re-encrypted codeword symbol is the combination of

ciphertexts under B’s public key. In order to distinguish re-

encrypted codeword symbols from intact ones, we call them

original codeword symbols and re-encrypted codeword symbols,

respectively.

In the data retrieval phase, user A requests to retrieve a

message from storage servers. The message is either stored by

him or forwarded to him. User A sends a retrieval request to key

servers. Upon receiving the retrieval request and executing a

proper authentication process with user A, each key server KSi

requests u randomly chosen storage servers to get codeword

symbols and does partial decryption on the received codeword

symbols by using the key share SKA;i. Finally, user A combines

the partially decrypted codeword symbols to obtain the original

message M.

Integrity Checking Functionality

The important functionality about cloud storage is the

function of integrity checking. After a user stores data into the

storage system, he no longer possesses the data at hand. The

user may want to check whether the data are properly stored in

storage servers. The concept of provable data possession [20],

[21] and the notion of proof of storage [22], [23], [24] are

proposed. Public auditability of stored data is addressed in [25].

Nevertheless all of them consider the messages in the cleartext

form.

Methods and materials used

Rsa Algorithm

RSA is an algorithm for a public key encryption system. i.e

this is an asymmetric cipher , one person has a private key and

gives out a public key, any has the public key can encrypt some

message or data then only the person with the private key can

read this message , not even the person who encoded the

original message with the public key can now decoded this. The

idea behind this to prevent” man in the middle attacks”.

Public Key

In cryptography, a public key is a value provided by some

designated authority as an encryption key that combined with a

private key derived from the public key, that can be used to

effectively encrypt message and digital signatures. The use of

combined public and private key is known as asymmetric

cryptography. A system for using public keys is called a public

key infrastructure(PKI).

Symmetric Vs Asymmetric Algorithm

When using symmetric algorithms, both parties share the

same key for en-and decryption. To provide privacy, this key

needs to be kept secret. Once somebody else gets to know the

key, it is not safe anymore. Symmetric algorithm have the

advantage of not consuming too much computing power.

Asymmetric algorithm use pairs of keys. One is used for

encryption and the other one for decryption. The decryption key

is typically kept secretly, therefore called “ Private key” or “

secret key” , While the encryption key is spread to all who might

want to send encrypted message , therefore called “ Public key”.

Everybody having the public key is able to send encrypted

message to the owner of the secret key. The secret key can`t be

reconstructed from the public key. Asymmetric algorithm are

much slower than symmetric . Therefore, in many application, a

combination of both is being used. The asymmetric keys are

used for authentication and after this have been successfully

done. One or more symmetric keys are generate and exchange

using the asymmetric encryption.

Key Generation

RSA involves a public key and a private key. The public

key can be know to everyone and is used for encrypting

message. Message encrypted with the public key can only be

decrypted using the private key. The keys foe the RSA

algorithm are generated the following ways: Generate two large

random primes, p and q, of approximately equal size such that

their product n=pq is of the required bit length ,e.g. 1024bits.

 Compute n=pq and phi=(p-1)(q-1)

 Choose an integer e,1<e<phi, such that gcd(e,phi)=1

 Compute the secret exponent,1<d<phi, such that ed=1(mod

phi)

The public key is(n,e) and the private key(d,p,q). Keep all the

values d,p,q and phi secret, n knows as the modules.

 E is known as the public exponent or encryption exponent or

just the exponent.

 D is known as the secret exponent or decryption exponent.

File Rifting

As shown in the figure 7.2 the input text file is given by the

user, according to their wish they splits the file into chunks

mentioned by them. For providing effective data exchange and

prevention of file from intruders they split the file into number

of chunks. The chunks splitting is based on the user given

inputs.

Encryption

Encryption is the conversion of data into a form , called a

cipher text that cannot be easily understood by unauthorized

people. Splitter files are encrypted using corresponding keys.

Here RSA algorithm is used for encryption. The encryption

scheme used for providing high security. This is first step

storing process.

Figure 2 Encryption

Proxy Re-Encryption Scheme

Proxy re-encryption schemes are cryptosystems which

allow third-parties (Proxies)to alter a cipher text which has been

encrypted for one party, so that it may be decrypted by another.

Cryptosystem consists of three algorithms. That is One for key

generation, One for encryption, One for decryption. A proxy

server is a server that acts as an intermediate for request from

clients seeking resources from other servers. In the proposed

system encrypted files are re-encrypted usinf threshold proxy

re-encryption scheme.

Data Storage On Cloud

As mention earlier the input file which was splitted and

encrypted was stored in the cloud server, where the user

specified. Cloud was having multiple servers. The re-encrypted

M. Kannan

et al./ Elixir Comp. Sci. & Engg. 67 (2014) 21526-21529

21528

chunks are stored in the cloud servers using the ip address of the

server name.

Data Retrieval On Cloud

Data are downloaded form the cloud , and then the files are

re-decrypted by referring the corresponding keys in key server.

Re-decrypted files are then decrypted. Decrypted files are joined

using joining function. Then we get the original text file.

Results and discussion

A Secure Cloud Storage System with Secure Forwarding

Data retrieval. There are two cases for the data retrieval

phase. The first case is that a user A retrieves his own message.

When user A wants to retrieve the message with the identifier

ID, he informs all key servers with the identity token _. A key

server first retrieves original codeword symbols from u

randomly chosen storage servers and then performs partial

decryption ShareDecð_Þ on every retrieved original codeword

symbol C0. The result of partial decryption is called a partially

decrypted codeword symbol. The key server sends the partially

decrypted codeword symbols _ and the coefficients to user A.

After user A collects replies from at least t key servers and at

least k of them are originally from distinct storage servers, he

executes Combineð_Þ on the t partially decrypted codeword

symbols to recover the blocks m1; m2; . . . ; mk. The second

case is that a user B retrieves a message forwarded to him. User

B informs all key servers directly. The collection and combining

parts are the same as the first case except that key servers

retrieve re-encrypted codeword symbols and perform partial

decryption Share-Decð_Þ on re-encrypted codeword symbols.

Analysis

The computation cost by the number of pairing operations,

modular exponentiations in G1 and G2, modular multiplications

in G1 and G2, and arithmetic operations over GF ðpÞ. These

operations are denoted as Pairing, Exp1, Exp2, Mult1, Mult2,

and Fp, respectively. The cost is summarized in Table 1.

Computing an Fp takes much less time than computing a Mult1

or a Mult2. The methodology of analysis is similar to that in [13]

and [6]. However, we consider a different system model from

the one in [13] and a more flexible parameter setting for n ¼ akc

than the settings in [13] and [6]. The difference between our

system model and the one in [13] is that our system model has

key servers. In [13], a single user queries k distinct storage

servers to retrieve the data. On the other hand, each key server in

our system independently queries u storage servers. The use of

distributed key servers increases the level of key protection but

makes the analysis harder.

Conclusions

The performance and security will be high compared to the

existing system because of using encryption and re-encryption,

for the data stored in the cloud. In existing system the data are

stored in single server and no encryption decryption techniques

are used. So data loss is high .Cryptographic keys are managed

by the user. But in the proposed system, data are stored in

multiple servers; proxy re-encryption scheme is used for

providing security and confidentially. Cryptographic keys are

maintained by the key server. The user provides the input text

file and it was safely stored in the cloud servers by means of

doing encryption and proxy re-encryption scheme.

Reference

[1] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R.

Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells,

and B. Zhao, “Oceanstore: An Architecture for Global-Scale

Persis-tent Storage,” Proc. Ninth Int’l Conf. Architectural

Support for Programming Languages and Operating Systems

(ASPLOS), pp. 190-201, 2000.

[2] A. Haeberlen, A. Mislove, and P. Druschel, “Glacier: Highly

Durable, Decentralized Storage Despite Massive Correlated

Fail-ures,” Proc. Second Symp. Networked Systems Design and

Implemen-tation (NSDI), pp. 143-158, 2005.

[3] Z. Wilcox-O’Hearn and B. Warner, “Tahoe: The Least-

Authority Filesystem,” Proc. Fourth ACM Int’l Workshop

Storage Security and Survivability (StorageSS), pp. 21-26, 2008.

[4] H.-Y. Lin and W.-G. Tzeng, “A Secure Decentralized

Erasure Code for Distributed Network Storage,” IEEE Trans.

Parallel and Distributed Systems, vol. 21, no. 11, pp. 1586-1594,

Nov. 2010.

[5] D.R. Brownbridge, L.F. Marshall, and B. Randell, “The

Newcastle Connection or Unixes of the World Unite!,” Software

Practice and Experience, vol. 12, no. 12, pp. 1147-1162, 1982.

[6] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B.

Lyon, “Design and Implementation of the Sun Network

Filesystem,” Proc. USENIX Assoc. Conf., 1985.

 M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu,

“Plutus: Scalable Secure File Sharing on Untrusted Storage,”

Proc. Second USENIX Conf. File and Storage Technologies

(FAST), pp. 29-42, 2003.

[7] S.C. Rhea, P.R. Eaton, D. Geels, H. Weatherspoon, B.Y.

Zhao, and J. Kubiatowicz, “Pond: The Oceanstore Prototype,”

Proc. Second USENIX Conf. File and Storage Technologies

(FAST), pp. 1-14, 2003.

[8] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G.M.

Voelker, “Total Recall: System Support for Automated

Availability Management,” Proc. First Symp. Networked

Systems Design and Implementation (NSDI), pp. 337-350,

2004.

[9] A.G. Dimakis, V. Prabhakaran, and K. Ramchandran,

“Ubiqui-tous Access to Distributed Data in Large-Scale Sensor

Net-works through Decentralized Erasure Codes,” Proc. Fourth

Int’l Symp. Information Processing in Sensor Networks (IPSN),

pp. 111-117, 2005.

[10] A.G. Dimakis, V. Prabhakaran, and K. Ramchandran,

“Decen-tralized Erasure Codes for Distributed Networked

Storage,” IEEE Trans. Information Theory, vol. 52, no. 6 pp.

2809-2816, June 2006.

[11] M. Mambo and E. Okamoto, “Proxy Cryptosystems:

Delegation of the Power to Decrypt Ciphertexts,” IEICE Trans.

Fundamentals of Electronics, Comm. and Computer Sciences,

vol. E80-A, no. 1, pp. 54-63, 1997.

[12] M. Blaze, G. Bleumer, and M. Strauss, “Divertible

Protocols and Atomic Proxy Cryptography,” Proc. Int’l Conf.

M. Kannan

et al./ Elixir Comp. Sci. & Engg. 67 (2014) 21526-21529

21529

Theory and Applica-tion of Cryptographic Techniques

(EUROCRYPT), pp. 127-144, 1998.

[13] G. Ateniese, K. Fu, M. Green, and S. Hohenberger,

“Improved Proxy Re-Encryption Schemes with Applications to

Secure Distributed Storage,” ACM Trans. Information and

System Security, vol. 9, no. 1, pp. 1-30, 2006.

[14] Q. Tang, “Type-Based Proxy Re-Encryption and Its

Construction,” Proc. Ninth Int’l Conf. Cryptology in India:

Progress in Cryptology (INDOCRYPT), pp. 130-144, 2008.

[15] G. Ateniese, K. Benson, and S. Hohenberger, “Key-Private

Proxy Re-Encryption,” Proc. Topics in Cryptology (CT-RSA),

pp. 279-294, 2009.

[16] J. Shao and Z. Cao, “CCA-Secure Proxy Re-Encryption

without Pairings,” Proc. 12th Int’l Conf. Practice and Theory in

Public Key Cryptography (PKC), pp. 357-376, 2009.

[17] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner,

Z. Peterson, and D. Song, “Provable Data Possession at

Untrusted Stores,” Proc. 14th ACM Conf. Computer and Comm.

Security (CCS), pp. 598-609, 2007.

[18] G. Ateniese, R.D. Pietro, L.V. Mancini, and G. Tsudik,

“Scalable and Efficient Provable Data Possession,” Proc. Fourth

Int’l Conf. Security and Privacy in Comm. Netowrks

(SecureComm), pp. 1-10, 2008.

[19] H. Shacham and B. Waters, “Compact Proofs of

Retrievability,” Proc. 14th Int’l Conf. Theory and Application of

Cryptology and Information Security (ASIACRYPT), pp. 90-

107, 2008.

[20] G. Ateniese, S. Kamara, and J. Katz, “Proofs of Storage

from Homomorphic Identification Protocols,” Proc. 15th Int’l

Conf. Theory and Application of Cryptology and Information

Security (ASIACRYPT), pp. 319-333, 2009.

[21] A. Shamir, “How to Share a Secret,” ACM Comm., vol. 22,

pp. 612-613, 1979.

[22] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W.

Kilian, P. Strzelczak, J. Szczepkowski, C. Ungureanu, and M.

Welnicki, “Hydrastor: A Scalable Secondary Storage,” Proc.

Seventh Conf. File and Storage Technologies (FAST), pp. 197-

210, 2009.

[23] C. Ungureanu, B. Atkin, A. Aranya, S. Gokhale, S. Rago,

G. Calkowski, C. Dubnicki, and A. Bohra, “Hydrafs: A High-

Throughput File System for the Hydrastor Content-Addressable

Storage System,” Proc. Eighth USENIX Conf. File and Storage

Technologies (FAST), p. 17, 2010.

[24] W. Dong, F. Douglis, K. Li, H. Patterson, S. Reddy, and

P. Shilane, “Tradeoffs in Scalable Data Routing for

Deduplication Clusters,”

