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Introduction 

 The literature on Ranked set sampling describes a great variety of techniques for using auxiliary information to obtain more 

efficient estimators. Ranked set sampling (RSS) was first suggested by McIntyre (1952) and Stratified Ranked Set Sampling  was 

introduced by Samawi (1996) to increase the efficiency of estimator of population mean. The performance of the combined and the 

separate ratio estimates using the stratified ranked set sample (SRSS) was given by Samawi and Siam (2003). Here we shall improve  

ratio cum product  estimators given by Singh et al.(2005) and Tailor et al. (2011),  respectively by using SRSS based on auxiliary 

variable.  

The combined ratio and product estimator of  population mean  Y   in stratified random sampling is defined by 
















st
stSSRSR

x

X
yy ,

                             (1.1) 
















X

x
yy

st

stSSRSP,

      (1.2) 

where   

h

L

h

hst yWy 



1

      and     

h

L

h

hst xWx 



1

   are the unbiased estimators of population mean    Y  and  X  

respectively. 

When the population coefficient of variation  
xC  is known, Motivated by Sisodia and Dwivedi (1981), Kadilar and Cingi (2003) 

suggested a modified ratio estimator for Y   in stratified random sampling as  
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Motivated by Singh and Kakran (1993), Kadilar and Cingi (2003) developed ratio-type estimator for  Y  as  

      
 

 












L

h

hhh

L

h

hhh

ststSK

xxW

xXW

yy

1

2

1

2

)(

)(




               (1.4) 

Estimators based on Upadhyaya and Singh (1999), using  both coefficient of variation and kurtosis in  stratified random sampling, 

Kadilar and Cingi (2003) considered the following ratio and product estimators  respectively 
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To estimateY , Singh  et al.(2005) suggested the combined  ratio- product estimator  as  
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where  is a real constant to be determined such that the mean squared error (MSE) is minimum. 

Utilizing the information on co-efficient of variation and co-efficient of   kurtosis of the auxiliary variable x , Tailor et al. (2011) 

proposed the modified ratio-cum-product estimator of population mean  under SSRS is given by  
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Where   is a suitably chosen scalar. It is to be noted that for  =1 and  =0, 

SSRSMY ,

  reduces to the estimators 
1stUS

y  and  
2stUS

y  

respectively. 
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Stratified ranked set sample 

In Ranked set sampling (RSS), r independent random sets, each of size r   and each unit in the set being selected with equal 

probability and without  replacement , are selected from the population. The members of each random set are ranked with respect to 

the characteristic of the study variable or auxiliary variable. Then, the smallest unit is selected from the first ordered set and the 

second smallest unit is selected from the second ordered set. By this way, this procedure is continued until the unit with the largest 

rank is chosen from the thr  set. This cycle may be repeated m  times, so mr )( n  units have been measured during this process. 

In Stratified ranked set sampling, for the h
th

 stratum of the population, first choose 
hr  independent samples each of size 

hr  h = 1, 

2, . . . ,L. Rank each sample, and use RSS scheme to obtain L independent RSS samples of size 
hr , one from each stratum. 

Let rrrr L  ........21
. This complete one cycle of stratified ranked set sample. The cycle may be repeated m times until n = 

mr elements have been obtained. A modification of the above procedure is suggested here to be used for the estimation of the ratio 

using stratified ranked set sample. For the h
th

 stratum, first choose 
hr  independent samples each of size 

hr  of independent  bivariate 

elements from the  h
th

  subpopulation, h = 1, 2, . . . , L. Rank each sample with respect to one of the variables say Y or X. Then use the 

RSS sampling scheme to obtain L independent RSS samples of size 
hr  one from each stratum. This complete one cycle of stratified 

ranked set sample. The cycle may be repeated m times until n = mr bivariate elements have been obtained. We will use the following 

notation for the stratified ranked set sample when the ranking is on the variable X. For the k
th

 cycle and the h
th 

stratum, the SRSS is 

denoted by  

 LhmkXYXYXY krhkrhkhkhkhkh hh
,...2,1;,...2,1:,..(),........,)(,( ))(][)2(]2[)1(]1[  ,           where 

kihY ][
 is the i

th  

Judgment ordering in the i
th 

set for the study variable and 
kihX )(

is the i
th 

order statistic in the i
th 

set for the auxiliary variable. 

The combined ratio and product estimator of population mean Y  given by Samawi and Siam (2003) and Bouza (2008) using 

stratified ranked set sampling are respectively,  defined as  
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Proposed Estimators based on SRSS 

Motivated by Kadilar and Cingi (2003), we suggest ratio-type estimator for Y  using stratified ranked set sampling, when the 

population coefficient of variation of auxiliary variable 
xC  is known  as  follows- 
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Adapting the estimators in (1.3), given by Kadilar and Cingi (2003), we suggest the new ratio estimator in stratified ranked set 

sampling is as follows 
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The Bias and MSE of 
2strMM

y  can be found as follows- 

 (B
2strMM

y )= (E
2strMM

y )-Y  
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Motivated by Kadilar and Cingi (2003), we suggest the ratio –type estimators based on Upadhyaya and Singh (1999) considered 

both coefficients of variation and Kurtosis in stratified ranked set sampling as  
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The Bias and MSE of 
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The Bias and MSE of 
4strMM

y  can be found as follows- 
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Ratio-Cum-Product estimators  in Stratified Ranked Set Sampling 

Adapting the estimators in (1.7), given by Singh et al. (2005) and utilizing the information on co-efficient of variation
xC  and co-

efficient of   kurtosis )(2 x  of the auxiliary variable, we propose  modified ratio-cum-product estimator of  population mean using 

Stratified ranked set sampling as  
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Where   is a suitably chosen scalar. It is to be noted that for  =1 and  =0, 

SRSSMMY ,

  reduces to the estimators 
3strMM

y  and  
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Optimality of    

The optimum values of   to minimize the MSE’s of 

SRSSMMY ,

  can easily be found as follows 
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Efficiency Comparison   
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It is easily seen that the MSE of the suggested estimators given in (3.1), (3.4), (3.7), (3.8) and (4.1) are  always smaller than the 

estimator given  in (1.3),(1.4), (1.5), (1.6) and (1.8) respectively, because 
1A ,

2A 3A 4A  and 
5A  all are non-negative values. As a 

result, show that the various  proposed ratio type, product type and  ratio-cum-product estimators 
1strMM

y ,
2strMM

y  ,
3strMM

y  

,
4strMM

y and 

SRSSMMY ,

  for the population mean using SRSS are more efficient than the corresponding usual estimators  of stratified 

sampling. 

Numerical Example 

To compare efficiencies of various estimators of our study, here we take a Stratified population with 3 strata of sizes 12,30 & 17 

respectively of page 1119(Appendix) from the book entitled “Advanced Sampling Theory with Applications”, Vol.2 , by Sarjinder 
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Singh published from Kluwer Academic Publishers. The example considers the data of Tobacco for Area and Production in specified 

countries during 1998, where y  is production (study variable)  in metric tons  and x  is area  (auxiliary variable) in hectares. 

For the above population, the parameters are summarized as below: 

For total population, 59N , 42.76485Y ,      29.26942X . 

 

 

We took ranked set samples of sizes 31 r ,  52 r  &  43 r  from stratum 1
st
 , 2

nd
 and 3

rd
 respectively. Further each ranked 

set sample from each stratum were repeated with number of cycles 3m . So that  sample sizes of stratified ranked set samples are  

equivalent to stratified simple random samples with )( hh mrn   for the thh  stratum, 1h , 2 ,3. 

The estimated relative efficiencies of various proposed Stratified ranked set estimators in comparison with corresponding  

Stratified SRS estimators  are as shown in the next table:  

Variances of various 

Stratified SRS estimators stSD
y

 
stSK

y
 

1stUSy
 

2stUS
y

 

SSRSMY ,

  

2245878377 2245739510 2245816148 4863538453 2158910787 

Variances of 

corresponding proposed  

Stratified ranked set 

sampling estimators 

1strMM
y

 
2strMM

y
 

3strMM
y

 
4strMM

y
 

SRSSMMY ,

  

1938091889 1938094290 1938095047 3822937792 1605469167 

Relative Efficiencies in 

% 115.8809 115.8736 115.8775 127.2199 134.4723 

In the table above, we see that the proposed Stratified ranked set estimators are more efficient than corresponding Stratified SRS 

estimators. 
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