
Gurpreet Singh et al./ Elixir Comp. Sci. & Engg. 67 (2014) 21251-21254

21251

Introduction

 The concept of code smell was introduced Fowler and

Beck as an indicator of problems within in the design or code of

software by presenting an informal definition of 22 code smells.

Code smells indicate that there are issues with code quality, such

as understandability and changeability, which can lead to the

introduction of faults [1]. A common set of design principles

such as data abstraction, encapsulation, and modularity should

be followed for object oriented software systems in order to

assure the non-functional requirements [2][3][4]. Although

developers are used to these techniques, but deadline pressure,

too much focus on pure functionality or just inexperience may

lead to violation of these design principle rules.

Code smells are usually not bugs—they are not technically

incorrect and don't currently prevent the program from

functioning. Instead, they indicate weaknesses in design that

may be slowing down development or increasing the risk of

bugs or failures in the future [5]. Each code smell examines a

specific kind of system element (e.g. classes or methods), that

can be evaluated by its inner and external characteristics. The

detection of code smells manually by code inspection [1], leads

to different issues which are identified by Marinescu [6] as:

time-expensive, non-repeatable and non-scalable. Even more

issues concerning the manual detection of design flaws were

identified by Mäntylä [7][8]. He showed that as the experience a

developer has with a certain software system increases, his

ability to perform an objective evaluation of the system as well

as his ability to detect design flaws decreases. Not necessarily

all the code smells have to be removed: it depends on the

system. When they have to be removed, it is better to remove

them as early as possible. If we want to remove smells in the

code, we have to locate and detect them; tool support for their

detection is particularly useful, since many code smells can go

unnoticed while programmers are working [9].

In this research paper an automated tool has been designed

and in rest of the paper numbers of questions were answered, i.e.

how and which kind of code smells can it identifies? , how many

languages does it support? , what refactoring has been applied

on the code smells identified? How it computes Maintainability

Index, Memory Utilization. This tool provides range of

functionalities that helps improve quality of code by rectifying

various code smells.

Detection Approach

In the study reported herein, we used automatic heuristics to

detect the smells. These detection strategies interpret a set of

code metrics that are extracted from a specific system

component by using set of threshold filter rules. The main goal

of this approach is to provide engineers with a mechanism that

will allow them to work with metrics on a more abstract level,

which is conceptually much closer to the real intentions in using

metrics. Each detection strategy is structured in three

consecutive elements: 1) A set of code metrics. 2) A set of

filtering rules, one rule for the interpretation of each metric

result. 3) The composition of filtered result.

C-Mean Algorithm is used to partition the code smells into

different clusters based on the ruleset defined. The C-Mean

algorithm starts with an initial partition then it tries all possible

moving or swapping of data from one group to others iteratively

[10].

1. Initially a set of m objects [O1,O2,…Om] which must be

grouped in c clusters. Each object is described by a set

R={x1,x2,…xn}of features.

2. Iteratively scan the objects and compare the features based on

the rules specified.

3. Update each cluster.

4. Repeat step 2 and 3 until all classes has been scanned for code

smells.

Design and implementation of testing tool for code smell rectification using C-

Mean algorithm
Gurpreet Singh and Vinay Chopra

Department of CSE, DAV Institute of Engineering and Technology, Kabir Nagar, Jalandhar.

ABSTRACT

A code smell is a hint or the description of a symptom that something has gone wrong

somewhere in your code. These are commonly occurring patterns in source code that

indicate poor programming practice or code decay. The presence of code smells can have a

severe impact on the quality of a program, i.e. making system more complex, less

understandable and cause maintainability problem. Herein, an automated tool have been

developed that can rectify code smells present in the source code written in java, C# and

C++ to support quality assurance of software. Also, it computes complexity, total memory

utilized/wastage, maintainability index of software. In this research paper an approach used

for the design and implementation of testing tool for code smell rectification is discussed

and is validated on three different projects.

 © 2013 Elixir All rights reserved

.

ARTICLE INFO

Article history:

Received: 3 July 2013;

Received in revised form:

20 January 2014;

Accepted: 1February 2014;

Keywords

Code Smell,

Refactoring,

Maintainability,

Memory Utilization,

Inspection,

McCabe Cyclomatic Complexity,

Halstead Measure.

Elixir Comp. Sci. & Engg. 67 (2014) 21251-21254

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Tele:

E-mail addresses: Gps_ghotra@yahoo.com

 © 2014 Elixir All rights reserved

Gurpreet Singh et al./ Elixir Comp. Sci. & Engg. 67 (2014) 21251-21254

21252

The Ultimate goal of clustering is to provide users with

meaningful insight from the original data, so that they can

effectively solve the problems encountered. The tool developed

herein, is able to detect Long method, Large Class, Long

Parameter list, Duplicated code, Switch Statements, Dead code,

Temporary fields, Lazy Class and comments code smell. Herein

the detection strategy for long method, large class and

duplicated code is discussed.

Long Method

No matter what the program paradigm is, long procedures,

functions or methods are hard to understand [1]. The longer they

are, the more parameters and variables they use, and long

methods are more likely to do more than their name suggests.

To detect Long method logical lines of code (LLOC), McCabe’s

Cycomatic complexity, Halstead volume and number of local

variables left unused were considered.

 LLOC is a variant of of LOC. It shows the count of logical

statements in a program, it only counts the statements which end

at semi-colon. A threshold equal to 30 is taken for LLOC.

 Thomas McCabe introduced a metric in 1976 based on the

control flow structure of a program [11]. This metric is known

as McCabe cyclomatic complexity and it has been famous code

complexity metric throughout since it was first introduced. The

McCabe metric is based on measuring the linearly independent

path through a program and gives cyclomatic complexity of the

program which is represented by a single number. McCabe

noted that a program consists of code chunks that execute

according to the decision and control statements, e.g. if/else and

loop statements. McCabe metric ignores the size of individual

code chunks when calculating the code complexity but counts

the number of decision and control statements. A threshold

equal to 10 is taken.

 A suite of metrics was introduced by Maurice Howard

Halstead in 1977. Halstead volume can be calculated as:

V=N.log2 ɳ

Where, N= Program length, ɳ= Program vocabulary and V=

program volume. Volume can be interpreted as bits, hence is the

measure of storage volume required to represent the program

[12]. Halstead observed that there is a relationship between code

complexity and program volume. According to Halstead, code

complexity increases as volume increases.

Large Class

Large Classes are classes with too many responsibilities [1].

They have too much data and/or too many methods. The

problem behind this smell is that these classes are hard to

maintain and understand because of their size. Large Class code

smells often coincide with Duplicated Code or Shotgun Surgery

smells.

 If LLOC is greater than 300 and has more than 5 long

methods.

 If number of instance variables and methods are greater than

15 and 10 respectively.

 Weighted method count (WMC) is a count of sum of

complexities of all methods in a class. A threshold of 20 is taken

for a class to be large.

 Depth of Inheritance tree (DIT), it access how deep, a class is

in hierarchy structure i.e., maximum inheritance path from a

class to the root class. DIT greater than 6 is considered for a

class to be large.

 Coupling, when one object interact with another object that is

a coupling. Strong coupling is discouraged because it results in

less flexible, less scalable application. A threshold of 10 is

considered.

Duplicated Code

The same code structure in two or more places is a good

sign that the code need to be refactored: if you need to change in

one place, you’ll probably need to change the other one as well,

but you might miss it [1][2]. Rabin karp algorithm is used to

detect duplicated code. Given a text string t and a pattern string

p, find all occurrences of p in t [13]. The Rabin-karp string

searching algorithm calculates a hash value for the pattern, and

for each M-character subsequence of text to be compared. if the

hash values are equal, the algorithm will do a brute force

comparison between the pattern and the M-character sequence.

Herein five consecutive lines were considered to find duplicated

code.

Long Parameter List

Long parameter list means that a method takes too many

parameters. Long Parameter lists are prone to change, difficult

to use, and hard to understand. With objects you don’t need to

pass in everything the method needs, instead you pass in enough

so the method can get to everything it needs [1]. We thus need

to decide how many parameters are too many. McConnell’s

guidebook for procedural programming [14] recommends that

the number of parameters should be limited to seven. Object-

oriented programming generally requires less parameter passing,

since classes can encapsulate data and operations together.

Therefore, we also selected two other parameter limits with

values of three and five. We thus have ended up with three

opinions on what a long parameter list is. The can be understood

as three tolerance levels: low, medium, and high.

 The maximum number of parameters in these categories is

three for low, five for medium, and seven for high.

 If Number of parameters of a method is greater than

Average_Parameters+2 and some of which is not used, where

Average_parameters= (∑ n parameters of a method) / M,

for all method in C

M=number of methods in a class.

Switch Statements

Switch Statements also known as State Checking manifests

itself as conditional statements that select an execution path

based on the state of an object. Switch statements tends to cause

duplication [1]. You often find similar switch statements

scattered through the program in several places. If a new data

value is added to the range, you have to check all the various

switch statements. The presence of this smell essentially

signifies a violation of the Open-Closed Principle [15] since any

future modification in the actions associated with a particular

state or the addition of new states will require the modification

of existing code increasing the required effort and the possibility

of introducing errors.

 The McCabe cyclomatic greater than 10 is considered.

 If numbers of cases are greater than 10 and two or more cases

contain duplicated code.

Refactoring

Refactoring is the process of changing a software system in

such a way that it does not alter the external behaviour of the

code yet improves the internal structure [16]. It improves the

design of the software by eliminating redundancy and reducing

complexity. The resulting software is easier to understand and

maintain [17]. Refactoring opportunities are locations in the

source where a) there is a need for improvement regarding a

quality attribute; b) a refactoring can be applied that will

Gurpreet Singh et al./ Elixir Comp. Sci. & Engg. 67 (2014) 21251-21254

21253

reorganize the code while preserving the behaviour of the

software system; and c) the application of the refactoring will

indeed improve the quality attribute.

Major of the refactoring on the code is a manual process.

The task of improving the code is done in three phases:

1. Identify various code smells in the code.

2. Select and apply suitable refactoring.

3. Assess the effect of refactored code i.e., whether any

improvement achieved.

Results

In order to test the tool developed, the source code for three

different projects namely, Banking System, Web Browser and

Hotel management system in .Net (C#), .java and C++

respectively were downloaded from http://www.planet-source-

code.com/. These source codes were tested for presence of

different code smells so as to improve its quality further.
S.No Project Name Language LOC

1. Banking Management System C# 2500

2. Web Browser Java 2255

3. Hotel Management System C++ 1900

Table 1: Description of projects under consideration

The tool takes source code as input and identifies different

types of code smells presents in it, computes memory utilization

and maintainability index for the same. Below Fig 1 to Fig 9

shows results computed by the tool for three different projects.

Fig 1: Different types of code smells in Banking System

Fig 2: Memory Utilization for Banking System

Fig 3: Maintainability Index of Banking System

Fig 4: Different types of code smells in Web Browser

Fig 5: Memory Utilization for Web Browser

Fig 6: Maintainability Index of Web Browser

Gurpreet Singh et al./ Elixir Comp. Sci. & Engg. 67 (2014) 21251-21254

21254

Fig 7: Different types of code smells in Hotel Management

System

Fig 8: Memory Utilization for HMS

Fig 9: Maintainability Index of HMS

Conclusion

The tool developed is capable of performing code analysis

automatically on regular basis. It can analyse source code

written in three different languages i.e., Java, C++ and .Net

(C#). With the help of this developers can view quality of their

code. As a result of this tool automatic measurement of source

code complexity is possible to implement. Potentially fault-

prone code can easily be identified which can suggest

developers about the code that require refactoring. It is also

possible to identify what parts of code have changed and how

much they are changed. The tool built can effectively compute

the memory utilization and measures maintainability index value

between 0-100 that represent relative ease of maintaining the

code.

References

[1] Fowler, M. and K. Beck, Refactoring: improving the design

of existing code. 1999: Addison-Wesley Professional.

[2] Johnson, R.E.; Foote, B. (1988). Designing reusable classes.

Journal of Object-Oriented Programming, Journal of Object

Oriented Programming 1, 2 (June/July 1988), 22-35.

[3] Rising, L.S.; Calliss, F.W. (1993). An experiment

investigating the effect of information hiding on maintainability.

12th Ann. Int. Phoenix Conference on Computers and

Communication, March, pp. 510-516.

[4] Wilde, N.; Mathews, P.; Ross, H. (1993). Maintaining

Object-Oriented Software. Addison-Wesley.

[5] Code Smells: http://en.wikipedia.org/wiki/code_smell.

[6] Marinescu, R. (2001). Detecting Design Flaws via Metrics

in Object-Oriented Systems. TOOLS (39): 173-182.

[7] Mäntylä, Mika. Vanhanen, Jari and Lassenius, Casper

(2003): A Taxonomy and an Initial Empirical Study of Bad

Smells in Code. ICSM 2003: 381-384.

[8] Mäntylä, M.; Vanhanen, J.; Lassenius, C. (2004). Bad

Smells - Humans as Code Critics. ICSM 2004: 399-408.

[9] Fontana, F.A. and Braione, P. and Zanoni, M. “Automatic

detection of bad smells in code: An experimental assess”,

Journal of Object Technology, Vol.11 No.2, 2012.

[10] Xu, Rui and Wunsch, Donald and others, Survey of

clustering algorithms, IEEE Transactions on Neural Networks,

vol.16 no.3 pp: 645-678,2005.

[11] T. J. McCabe, “A Complexity Measure,” ICSE '76:

Proceedings of the 2nd international conference on Software

engineering, 1976.

[12] Everald E. Mills, "Software Metrics", Software Engineering

Institute, 1988.

[13] Crespo, Yania, Carlos Lopez, Raul Marticorena, and

Esperanza Manso, "Language independent metrics support

towards refactoring inference,“ in 9th ECOOP Workshop on

QAOOSE 05 (Quantitative Approaches in Object-Oriented

Software Engineering, Glasgow: UK. ISBN: 2-89522-065-4,

July 2005.

[14] S. McConnell, Code Complete, Redmond, Washington,

USA: Microsoft Press, 1993.

[15] R. C. Martin, Agile Software Development: Principles,

Patterns and Practices, Prentice Hall, 2003.

[16] Martin Fowler “Improving the Design of Existing Code

”Addison Wesley, Massachusetts, April 2006.

[17] Van Emden, E. and Moonen, L. “Java quality assurance by

detecting code smells” Proceedings Ninth Working Conference

on Reverse Engineering, IEEE, pp.97-106, 2002.

