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Introduction 

The term „ OR „ was coined in 1940 by M.C.Closky & T.ref 

then in a small town of Bawdsey in England . It is a science that 

came into existence in a military content . During world war II , 

the military management of UK called an Scientists from 

various disciplines & organized them into teams to assist it in 

solving strategic & tactical problems relating to air & land 

defence of the country . 

The transportation problem is a special class of LPP that 

deals with shipping a product from multiple origins to multiple 

destinations. The objective of the transportation problem is to 

find a feasible way of transporting the shipments to meet 

demand of each destination that minimizes the total 

transportation cost while satisfying the supply & demand 

constraints. The two basic steps of the transportation method are  

Step 1 : Determine the initial basic feasible solution  

Step 2 : Obtain the optimal solution using the solution obtained 

from step 1 . 

In this paper we introduce the new type of transportation 

problem called South east corner rule .I have presented that the 

proposed south east corner rule for finding optimal solution of a 

transportation problem do not reflect optimal solution 

continuously . Three examples are provided to my claim . Also 

by the North west corner rule process optimal solutions are 

showed to illustrate the comparison . 

Mathematical statement of the transportation problem  

A. In developing the LP model of the transportation problem the 

following notations are used  

ai - Amounts to be shipped from shipping origin i ( ai 0 ) .    

bj - Amounts to be received at destination j ( bj 0 ) . 

cij - Shipping cost per unit from origin i to destination j ( cij 0 ). 

xij - Amounts to be shipped from origin i to destination j to 

minimize the total cost   ( xij 0 ) . 

We assumed that the total amount shipped is equal to the 

total amount received , that is ,  

 ∑    ∑   
 
   

 
   . 

Transportation problem  

 Min ∑ ∑       
 
   

 
    . 

Subject to ∑    
 
   ai , i = 1 , 2 , … , m 

 ∑    
 
    = bj , j = 1 , 2 , … , n , where     0  i , j . 

Feasible solution : A set of non negative values     , i = 1 , 2 , 

… , n and j = 1 , 2 , … , m that satisfies the constraints is called 

a feasible solution to the transportation problem . 

Optimal solution :A feasible solution is said to be optimal if it 

minimizes the total transportation cost . 

Non degenerate basic feasible solution : A basic feasible 

solution to a ( m  n ) transportation problem that contains 

exactly m + n – 1 allocations in independent positions . 

Degenerate basic feasible solution : A basic feasible solution 

that contains less that m + n – 1 non negative allocations . 

Balanced and Unbalanced Transportation problem : A 

Transportation problem is said to be balanced if the total supply 

from all sources equals the total demand in the destinations and 

is called unbalanced otherwise . 

Thus , for a balanced problem ,  ∑    ∑   
 
   

 
    and for 

unbalanced problem , ∑    ∑   
 
   

 
    . 

South east corner rule  

In this section, we introduce a new method called the south 

east corner rule for finding an optimal solution to a 

transportation problem . This method is similar to that of north 

west corner rule . The south east corner rule proceeds as follows. 

This method starts at the south east corner cell ( route ) of 

the table variable ( x43 ) .   

Step 1 : Construct the transportation table for the given TPP . 

Step 2 : Allocate as much as possible to the selected cell and 

adjust the associated amounts of supply and demand by 

subtracting the allocated amount . 

Step 3 : Cross out the row or column with zero supply or 

demand to indicate that no further assignments can be made in 

that row or column . I both a row and column net to zero 

simultaneously , cross out one only and leave a zero supply ( 

demand in the uncrossed out row - column ).
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Step 4 : If exactly one row or column is left uncrossed out , 

stop . Otherwise , move to the cell to the right if a column has 

just been crossed out . Go to step 2 [ 8 ] . 

Numerical examples : 

Problem 3.1 : Obtain the IBFS of a Transportation problem 

whose cost & rim requirement table is given below  

Solution : 

By applying south east corner rule process allocations are 

obtained as follows : 

Since    =     there exists a feasible solution to the 

transportation problem . 

We obtain initial feasible solution as follows :  

The initial basic feasible solution is given by  

 x43 = 14 , x33 = 4 , x32 = 3 , x22 = 6 , x21 = 2 , x11 = 5 . 

Total cost = 2  14 + 7  4 + 4  3 + 3 6  + 3  2 + 2  5  

      = 28 + 28 + 12 + 18 + 6 + 10 

     = 56 + 30 + 16 

= Rs.102 . 

By applying North west corner rule the allocations are obtained 

as follows    

The initial basic feasible solution is given by  

 x11 = 5 , x21 = 2 , x22 = 6 , x32 = 3 , x33 = 4 , x43 = 14 . 

Total cost = 2  5 + 2  3 + 6  3 + 3  4 + 4 7  + 2  14   

      = Rs. 102 . 

Commits : The South east corner rule process shows that the 

optimal solution is Rs. 102 and it is exact and North west corner 

rule gives the same result . 

Problem 3.2 : Solve the transportation problem when the unit 

transportation costs , demands and supplies are as given below . 

Solution  

By applying south east corner rule process allocations are 

obtained as follows : 

Since the total demand    = 215 is greater than the total 

supply   = 195 , the problem is an unbalanced TP . 

We convert into a balanced TP by introducing a dummy 

origin O4 with cost zero and giving supply equal to 215 – 195 = 

20 units . Hence , we have the converted problem as follows :  

Total cost matrix :  

The initial basic feasible solution is given by  

x44 = 20 , x34 = 25 , x33 = 45 , x23 = 5 , x22 = 35, x21 = 15, x11 = 

70 . 

Total cost = 0 20 + 7  25 + 4 45 + 25  +535 + 1115 + 6 

 70 = Rs.1010 . 

By applying north west corner rule process allocations are 

obtained as follows : 

The initial basic feasible solution is given by  

X11 = 65 , x12 = 5 , x22 = 30 , x23 = 25 , x33 = 25, x34 = 45, x41 = 

20 . 

Total cost = 6  65 + 5  1 + 5  30 + 2 25  + 4  25 + 7  45 + 

0  20  = Rs.1010 . 

Commits : The South east corner rule process shows that the 

optimal solution is Rs. 1010 and it is exact and North west 

corner rule gives the same result . 

Comparison : 

In this section we compare the relationship between the 

transportation problem like south west corner rule and north 

west corner rule , least cost method . The numerical examples 

are given below . 

Problem 4.1 : Obtain initial basic feasible solution to the 

following transportation problem using south east corner rule 

and north west corner rule , least cost method  , VAM . 

 

 

Solution : 

By applying North west corner rule the allocations are 

obtained as follows  :  

The IBFS is  

x11 = 200 , x12 = 50 , x22 = 175 , x23 = 125 , x33 = 150 , x34 = 250. 

Total cost = 11  200 + 13  50 + 18  175 + 14  125 + 13  

150 + 10  250 = Rs. 12 , 200 

By applying Least cost method the allocations are obtained as 

follows  :  

The IBFS is  

x11 = 200 , x12 = 50 , x22 = 50 , x24 = 250 , x32 = 125 , x33 = 215  . 

Total cost = 11  200 + 13  50 + 18  50 + 10  250 + 24  

125 + 13  215 = Rs.12,825 . 

By applying Vogels Approximation method the allocations are 

obtained as follows : 
The IBFS ( using north west corner rule ) is  

x11 = 200 , x12 = 50 , x22 = 175 , x24 = 125 , x33 = 275 , x34 = 215. 

Total cost = 11  200 + 13  50 + 18  175 + 10  125 + 13  

275 + 10  125 = 12,075 

By applying South east corner rule the allocations are obtained 

as follows : 

The IBFS is  

x11 = 200 , x12 = 50 , x22 = 175 , x23 = 125 , x24 = 250 , x32 = 125 

, x34 = 125, x33 = 150 . 

Total cost = 10  125 + 13  150 + 24125 + 14125 + 18 

 175 + 10  250 + 11  200 +13 50 . 

        = Rs.10,625 

Commits : The South east corner rule processes shows that the 

optimal solution is Rs.10,625 whereas North west corner rule , 

least cost method and VAM gives the wrong results which are 

not optimal . 

Solving transportation problem using JAVA language 

In this section we solve the transportation problem ( south 

east corner and north west rule ) using JAVA language .The 

main ideas from design Java programs are save time , money 

and effort . 

JAVA Program me : 

In Problem 3.1 , we use the java programs to minimize the 

cost of transportation and determine the number of units 

transported from source i to destination j . 

The result are shown as follows : 

The result of south east corner program by JAVA language 

is the cost of transportation = Rs. 102 . 

The number of units transported from source i to destination j 

                       We transport  

 Supply [ 3 ] to demand [ 2 ] = 14 

 Supply [ 2 ] to demand [ 2 ] = 4 

 Supply [ 2 ] to demand [ 1 ] = 3 

 Supply [ 1 ] to demand [ 1 ] = 6 

 Supply [ 1 ] to demand [ 0 ] = 2 

 Supply [ 0 ] to demand [ 0 ] = 5 

Press any key to continue  

The result of north west corner program by JAVA language 

is the cost of transportation = Rs. 102 . 

The number of units transported from source i to destination j 

                       We transport  

 Supply [ 0 ] to demand [ 0 ] = 5 

 Supply [ 1 ] to demand [ 0 ] = 2 

 Supply [ 1 ] to demand [ 1 ] = 6 

 Supply [ 2 ] to demand [ 1 ] = 3 

 Supply [ 2 ] to demand [ 2 ] = 4 

 Supply [ 3 ] to demand [ 2 ] = 14 
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Origin / Destination  D1 D2 D3 Supply  

O1 2 7 4 5 

O2 3 3 1 8 

O3 5 4 7 7 

Demand  7 9 18 34 

 
Table 3.1 

Origin / Destination  D1 D2 D3 Supply  

O1 5 

2 

 

7 

 

4 

 

5 

O2 2 

3 

6 

3 

 

1 

 

8 

O3  

5 

3 

4 

4 

7 

 

7 

O4  

1 

 

6 

14 

2 

 

14 

Demand 7 9 18 34 

 
Origin / Destination  D1 D2 D3 Supply  

O1 5 

2 

 

7 

 

4 

 

5 

O2 2 

3 

6 

3 

 

1 

 

8 

O3  

5 

3 

4 

4 

7 

 

7 

O4  

1 

 

6 

14 

2 

 

14 

Demand 7 9 18 34 

 
Origin / Destination  D1 D2 D3 D4 Supply  

O1 6 1 9 3 70 

O2 11 5 2 8 55 

O3 10 12 4 7 70 

Demand  85 35 50 45  

 

Table 3.2 
Origin / Destination  D1 D2 D3 D4 Supply  

O1 6 1 9 3 70 

O2 11 5 2 8 55 

O3 10 12 4 7 70 

O4 0 0 0 0 20 

Demand  85 35 50 45 215 

 

Table 3.3 
Origin / Destination  D1 D2 D3 D4 Supply  

O1 70 

6 

 

1 

 

9 

 

3 

70 

O2 15 

11 

35 

5 

5 

2 

 

8 

55 

O3  

10 

 

12 

45 

4 

25 

7 

70 

O4  

0 

 

0 

 

0 

20 

0 

20 

Demand  85 35 50 45 215 

 
70 

6 

 

1 

 

9 

 

3 

15 

11 

35 

5 

5 

2 

 

8 

 

10 

 

12 

45 

4 

25 

7 

 

0 

 

0 

 

0 

20 

 0 
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Conclusion: 

Running the above JAVA programs , the result of the 

programs are equal to LP solution but the solution using JAVA 

language faster and easier then LP solution . There is scope for 

further development of these topics . 
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