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1. Introduction

Regarding the linearity of the differential operators Kontecky [17] and Matsuda and Ayabe [22] studied the series solution of
semi-differential equations (see also Oldham and Spanier [24, p.159]).

King et al. [15, p.123] described the Fourier series solution of ordinary one-dimensional diffusion equation for temperature
distribution in the bar.
Ozdemir et al. [25] obtained an analytic solution of fractional diffusion equation by applying Fourier series and also evaluated its
numerical approximation formula.

Gorenflo, Luchko and Zabreiko [20] have solved the Cauchy problem and represented its series solution involving Mittag-Leffler
function EmB (.)defined by

Eaﬁ(z):gm (z .Bet;Re(a)>0) (L.1)

where £ is a set of complex numbers and F() is the Gamma function (see Erdélyi et al. [5] and Kilbas et al. [14] ).

Many researchers such as Kilbas et al. [14], Oldham et al. [24], Podlubny [26], Samko et al. [27], and Mathai, Saxena and Haubold
[19] presented a systematic study with analytical properties and applications of fractional derivatives, integrals and differential
equations. Recently, Diethelm [3] has developed the theory and analysis of fractional differential equations involving Caputo type
differential operators. Our work is concerning with the method developed by Diethelm [3] in the spaces of integrable, absolutely

continuous and orthogonal functions.

Let Q= [a, b],(—oo <a<bh< oo) be a finite or infinite interval of the real axis | = (—oo,oo), Lp (a, b)(lS p< oo) is the set

of those Lebesgue complex-valued functions f on €2 for which || f ||p < o0 where
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I, =(J;

and ” f ”OO = ESSSUP, .y py

f(q)\p); (1< p<w) (1.2)

f (X)| = essential maximum of function | f (X)| (1.3)
(see Nikol’ski [23, p.12-13]).
The weighted L -space with power of weight, denoted by X[ (a,b)(B e ,1< p<o0), consists of those complex-valued

Lebesgue measurable functions fon (a,b) for which

1

. dg \P
[l <oowith][ ], :Ub o't (q) qup (1< p<o) (1.4)
and
||f X3 =esssup,. ., [X” (X)‘ , particularly Xi’ (a,b) =L, (a,b). (1.5)

p
(See Kilbas et al. [14]).

For finite interval [a, b](—oo <a<b< 00) , AC[ a, tﬂ be the space of functions f which are absolutely continuous on [a, b]

and AC [a, b] coincides with space of primitives of Lebesgue summable functions
f(x)eAC[ab] < f(x)=c+[ ¢(q)da,4(q)L(ab) (16)

provided that ¢(q) = f (q)( f = j—;] almost everywhere on [a,b] and on the triangle (a < g <x<b), and c= f (a).

Again, for ne¥,AC" [a, b] be the space of complex-valued functions f (X) which have continuous derivatives up to order n-1

on [a, b] such that "™ (X) e AC [a, b] almost everywhere on [a, b] and defined by

AC”[a,b]:{f :[a,b]—>Cand(D”‘1f)(x)eAC[a,b]},D=%,

particularly, AC* [a, b] =AC [a, b]. (1.7)

Lemma 1.1 The space AC" [a, b] consists of those and only these functions f (X) which can be represented in the form

f(x) =(I2+¢)(x)+ S C, (x—a)k ¢(a)=1"(a).4(a)eL(ab),(a<g<x<b) (1.8)
where, C, = fkk('a),(k =0,], 2,...,n—1) are arbitrary constants. (1.9)
Ao (17.6)(x) = ——["(x-a) "¢(a)dg (110)

(n-1)
(see Samko et al. [27] and Diethelm [3]).

In our work we use the orthogonal property defined by

r@ (" gy = 276(n—q),8(n—q)isaDiracdelta function'vn,q e (1.11)

From Eqgn. (1.11), particularly, we have
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27,n=0,VNn,q €
f e dx={ 27,n=q=0 (1.12)
0,n=q

(see Bajpai [1] and Kumar [16]).

In our investigation, we also use following fractional derivatives:

The Caputo time fractional derivative ,D/ of order #,m—1< 8 <mand m= [ﬁ] +1, [ﬁ’] is greatest integer not less than /3,

is defined by
1 t d m f (?:) m-4-1
D/ f (t)= t— d 1.13
0™t () F(m—ﬂ)'[o d(:m ( é:) é: ( )
(see Sousa [28]).

The Riesz-Feller space fractional derivative Dg of order o and asymmetry @ is defined by (see Feller [6], Gorenflo and Mainardi

[10-11])

Dy == 1, ==[c (a.0) 17 +¢ (,0) 17 |, @ £1,0<a<2,|0|<min(a,2-a),xe| ;
Sn‘][(a_za)ﬂ-] S|n((a+20)ﬂ-j (1.14)

c.(a,0)= ,andc_(a,0)=

sin(ar) sin(ar)

A and | 1~ are the inverse of the Riemann-Liouville integrals of . 17 and , 1 respectively given by (see Miller and Ross [22])

JEE ()= ——[* (x=&) £ (£)e,
and (1.15)

L (et t(eMea>0xe],

J () =]

I(a)”

The Riemann-Liouville fractional derivatives Diy of order y for m = [y] + 1are defined as (see Samko et al. [27])

o0

1 d " m-y-1
DI (%) :m(&) [O(x—a) f(E)dE x <00 (1.16)
_1 m d e m-y-1
w2105 QS T ey =

Gorenflo and Mainardi [10-11] presented a generalized diffusion equation and solved it through stochastic processes from
probabilistic stand point. Further Liu et al. [17] made its extension through considering the Lévy-Feller advection-dispersion equation
in the form

oU (x.t) oU (x.t)

:aXDgU(x,t)—bT (1.18)

with initial condition

U(x,0)=f(x),xe;,t>0 a>0, b>0. (1.19)
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They [17] solved these Egns. (1.18)-(1.19) through stochastic processes and obtained its numerical solution with the help of an
explicit finite difference approximation formula.

Mathai, Saxena and Haubold [19] have derived an explicit solution of the fractional differential equation
DU (x,t)=7,D;U (x,t)+¢(xt),n,t>0,xe| ;0,0,preal parameters (1.20)
with the constraints 0 < o < 2, |9| < min(a, 2 —a), 0<p<2, (1.21)

also, with the initial conditions

U (X,O)z f(X),Ut(X,O): g(X), VXej ’|: Ut(X,0)=w att :O] (1.22)

lim,_, U(xt)=0, t>0.

X—>too

Diethelm [3, Eqn. (7.9a, b), p.143], analyzed the following fractional differential equation
DU (x) = f (x)U (x)+9g(x) (1.23)

subject to the initial condition

u®(0) :u;k{u “(0)= % att = 0}(k =01....[8]-D) (1.24)

and found its solution involving Volterra integral equation.

Motivated by above work, we present an unified advection-dispersion equation containing Caputo time fractional derivative of

orderB,(B > 0) , Riesz-Feller space fractional derivatives of order «, (0 <a< 1) and asymmetry 0, 91| < min((x, 1- OL) and

of order 7, (1 <y< 2) and asymmetry O, |92| <min (y, 2 —y) and then solve it by introducing a Fourier series to obtain its

solution consisting Volterra integral equation. A numerical approximation formula is also derived and then analyzed it through
computation by using certain hypergeometric approximation results.
2. An Unified Advection-Dispersion Equation and Analysis

In this section, we consider an unified advection-dispersion equation
DU (x,t) =p, DU (x,t)+vy(t), DU (x,t)+(xt) 2.1)
Herev,te| andpej , U {0} (i , is the set of positive real numbers) o, f,yand @ are real parameters with the
constraints; 0 < oL < l,|91| <min (OL, 1- OL),B >0,1<y<2, |92| <min (y, 2— y), the initial conditions are:
u® (X, 0) are continuous functions of X,(‘V’X € ) only, where (k =0,1...,m —1), m= [B],

and lim U(X,t)zo, t>0.

Here, we define the sets: G z{(t)it €] +}andG ={(X,t) (xt)ej xj ., Xej,te; +},the functions y and ¢
are such that v:G > anddp:G—>j . The V\y(t)is the diffusion coefficient which has the limit
lim,_, vy (t)=v, v>0. 2.2)

In order to solve the above problem (2.1)-(2.2), we first present the following theorems:

Theorem 2.1 Let 3 >0. U *) (X, 0) (X e ;k=01...m-Lm= [B]) are continuous functions and are L, (i ) Again for

the sets G and G, the functions |\ and(j) defined in Eqgn. (2.2), also under the conditions given in Eqn. (2.2), the advection-
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dispersion  Egn.  (2.1) has  the  solution U (X,t) = ZUn (t)e"‘X whose  Fourier  inversion s

U, (t), (t> O)(n =-,...,—2,—-1,0,1,2,..., OO) and consists the Volterra integral equation

_N (k>£ Lt —_a)* 1 - - H e on
t)—;U% k!+r(ﬁ)£(t q) H,( F(B! w(a)+p;)U, (a)da; H,(a)bel, [0,T]
triangle {(t,q):0<q<t<T, T >0}, H =i_|'e ™¢(x,t)dx,(t > 0),U =—Ie "U™®(x,0)dx,
(U¥ e ) foran (n=—,...,~2,-1,01,2,....,0) and (k =0,1,2,..m -1, m=[p]). 2.3)

Here the constraints areu:=un“{c+(oc,91)(i)a+Cf(oc,91)(—i)a},0<oc<1, 6,/ <min(a, 1-a), and

vy =vnt{e (1,0,)(i) " +c (1.0,)(-) *}, 1<y <2,]6,[<min(y, 2-v). (2.4
Proof: Consider the solution of Eqns. (2.1)-(2.2) in the form U (X, t) = iun (t)e™ (2.5)
Then, the Fourier inversion formula of U (X, )is given by 7

U,(t)= 2—ln :e‘i”*U (x,t)dx, (V n=—,...,—2,-1,0,1,2,....,), t >0, (2.6)

Now, make an appeal to Eqgns. (2.1), (2.2), (2.4), (2.5) and (2.6) and then using orthogonal property (1.11), we get the fractional
differential equation identical to Eqns. (1.23)-(1.24) due to Diethelm [3, p.143]

DU, (t)=(vow(t)+p; U, (t)+H,(t), B>0 2.7)
with the initial conditions:
u(0)=U,“ (Yn=-wx,..,-2,-10,12,..,%), (k=012,..,m-Lm=[p]). (28)

Again, make an appeal to the theorem due to Diethelm [3, theorem 7.9, p. 143] in Egns. (2.7)- (2.8), on the triangle

{(t, q) 0<g<t<T, T > 0} , We get the solution in form of Volterra integral equation (2.3) given by

I (k)tk 1 F p-1 1
Un(t):;U% m+m£(t—q) Hn(q)dq+m

(‘v’n:—oo,....,—2,—1,0,1,2,....,00), t>0. (2.9)

(t-a)"" (viw(a)+u;)Y, (a)da;

[SY S——

Lemma 2.1 Under the conditions of the Eqn. (2.2), the fractional differential Eqn. (2.1) has the solution in which on the
triangle {(t,q) 0<g<t<T, T> 0} and (Vn e {—x,....,—2,-1,0,1,2,....,0},

1 - .
K. (t.9)= m[(t ~0)" (O +v,) . v, =ess suppr

Also, here \V(q)and H,(a)eL,(0,T), then

€)] on above triangle the resolvent kernel Rn (t,q) has the inequality

\y(t)‘, (2.10)
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R, (t.a) (Vi lwl. +[wi])(t—a)"E,, (( v, ) —q)ﬁ’l) (2.11)

H,
where, EB,B () is the generalized Mittag-Leffler function defined in Eqgn. (1.1).

(b) The approximation function d)n‘j (t), vn e{-o,...., -2,-1,0,1,2,....,0}, je {0 12,. } t>0

has the equality @, ; (t) =| K, (t,q)¢n1j_l(q)dq Vje {0,1, 2,.....} (2.12a)

O t—

and the inequality

P, (t) < ( v,

m-1 U(ktﬁ1+k 1 . .
)Z J+k+1) (BHB)I(t_r) H, (r)dr (2.12b)

:0

Proof (a): On the set{(t, q) 0<g<t<T, T> 0} , we define the iterated kernel

K,.(t,a)=K,(t,q) (v ne{=x,..,-2,-1,0,1,2,....,55})
and K, (1,9) = [K, (1)K, | (r,q)dr,(j=23,.). (2.13)

Then on using Egns. (2.10) and (2.13), particularly, we have

Kn,z(t,Q)\S(V; nal (t-a)"

(2.14)
r'(28)
* < 1\3
(Vn © + un ) 3p-1
K,,(t,9)< t— _
s ( q)\ r(39) (t-a) (2.15)
By mathematical induction, Eqn. (2.15) gives us
* <1\
Vv, . +|U, . .
Kn,,-(t,q)\s( ) (t-9)"".(j=23,...). (2.16)

r(Bj)

Now use the resolvent kernel defined by R t q = Z t q (c.f. Diethelm [p.144]) in Egn. (2.16), we get the required
j=1

)(t_ ) Bﬁ((

1
Here in inequality (2.17), the resolvent kernel Rn (t, q) has the entire function EBY13 (.)(Of order = | and hence, Rn ('[, q) is

inequality‘Rn (t, q)‘ < ( v

)(t -q)"). 2.17)

- Ty

continuous on the set{(t, q) 0<g<t<T, T> 0} . Again R, ('[, q) is the infinite series consisting the terms K_ . (t, q)

(Vj =12,... ) and thus Kmj (t,q)is also continuous on the set {(t,q)ZOS g<t<T, T >O}.

Proof (b): From Egn. (2.12b), we find that

(Vv )| S

U tﬂHk B 1 t
e

m 4 o
Bj+k— B+1) BJ n(r)dr}, (J —1,2,....) (2.18)
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m

1 k)t 1 -
t— H,(r)d :
2T (k+1) T(B)!( r)” H,(r)dr (2.19)

Now, making an appeal to the Egns. (2.10), (2.12a), (2.18) and (2.19), we find

b, (0) < [ {(t =) (v, e DY i o, )
{r:z: (U_rff)qﬁ”kﬁ + 1_ i(q—r)ﬁlen(r)dr dg

Again, suppose that ¢,

(2.20)

2 T(B)
= T(Bi+k—B+1) I(Bj)
From (2.20), we get

0, (8) < ([vil vl

+u2)j
t . 1

m-1 U(k) p1
% o t— BJ+k*Bd -
Lzérm)r(sm—w)!( U N ORC]

On changing the order of integration in Egn. (2.21), we get

b, (O < (|v:] vl + )
Sl [nofe-0r @]
X 0 — j+k— +— _ _rJ r
ST rEick—p+ni T TR e (i) VA |

r

(2.21)

q
-a)" (q-r)""H, drdq}

o!—,~

gives the required

Bi Bi-+B- 1F(B)F(BJ)
=) T )

t
which, in view of the definition of the beta integral f(t - q)[H(q

result (2.12).
Theorem 2.2: The fractional differential equation given in Eqn. (2.1), under the given conditions in Eqgn. (2.2) has the solution

U(X,t) given in  Egn. (25) whose Fourier inversion formula is equivalent to Un(t),t>0,

(vn ef{-ox,....,—2,-1,0,1,2,....,00}) (see Eqn. (2.6)) and then for M = [B], there exists

UJU=§UﬁEMJ(WOFMﬁﬂ

k=0

= e () )R o

Proof: From the theory of approximation method of Volterra integral equation and in consequence of lemma 2.1, we get the solution

(2.23)

of fractional differential Eqn. (2.1) under the given condition (2.2) in the form of U Zd)n i (2.24)

Then, making an appeal to the Egns. (2.22) and (2.24), we obtain the required Eqgn. (2.23).

3. Special Cases
set B—>Lu=-ba—>16=0v=a,y=1L¢p=0ad U (X,O) =f (X) in Eqns. (2.1)-(2.2). Then our unified

advection-dispersion equation becomes Lévy -Feller advection-dispersion equation due to Liu et al. [17] given in Egns. (1.18)-(1.19).
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Again if we set £ =0, 0<B<2 and O0<y<2, y=1 U(X,O)z f(X) and Ut(x,O):g(x) in Eqns. (2.1)-(2.2),

then our unified advection-dispersion equation becomes fractional differential equation of Mathai, Saxena and Haubold [19] given in
the Eqns. (1.20)-(1.22).

Further sett=0, w=1, $=0,0, =y;y>0,and1l<B<I; | €¥ in Eqn. (2.1).Then it becomes the equation due to

Kilbas, Srivastava and Trujillo [14, p.380 Eqgn. (6.4.1)] and its solution is equivalent to

Zur(l:)( Bk+1( tﬁ)emx (3.1)

k=0 n=—o0

m-1

Again, set y =1, U X, t ZU t)e in our unified Equation (2.1), then it becomes the equation of Kilbas, Srivastava and

Trujillo [14, p. 323 Eq. (5.3.69)] whose solution is U (X,t) = i U, (te™ (3.2)

where U (£) = S UL (1) By (v +10)0)+ [ (t= 1) By (v +12) G- 1)) H, (1), and H, (1)
k=0 0

(see also Eqn. (2.4)). (3.3)

Several other fractional differential equations may be found after making some manipulations in our Eqns. (2.1)-(2.6), see for example
Gorenflo and Mainardi [9], Gorenflo and Rutman [13], Gorenflo, Mainardi and Srivastava [17], Luchko and Gorenflo [18], Diethelm
[2], Gorenflo and Mainardi [8] and Diethelm and Ford [4].

4.G L Approximation for Numerical Solution

To obtain the approximation formula for numerical solution, we define mesh points

t =t + jh, j=0,1,2,....,N, t, <t <T ,where h denotes the uniform time steps. (4.1)
i
The shifted Grinwald-Letnikov formula is DthSU (tJ ) = %;off)u (tj+1_k) 4.2)
~1)'B(B-1)..... —k+1
where, (fo) = (—1)k b = ( ) B(B ) (B ) (4.3)
k k!
I'(k-
or o) —— L K=P) (4.4)
I'(—B)r(k+1)
Particularly, from eqns. (4.3) or (4.4) we find the recurrence relation
D=1, o :(1—B+1j o k=123,. (4.5)
k

Again, let the function U (t), is m—21times differentiable in ['[O,T] and that the m—th derivative of U (t) is integrable in
[to,T] . Then, for every M—1< 3 < m, there exists D(EL U (tj ) = DgLU (t), t,<t<T (4.6)
where DgLU ('[) is the Riemann-Liouville fractional derivative of order £ of in [tO,T] . Further, for every m -1< B <M and

for 1, <t <T, the relation between Caputo fractional derivative 0DIB(Of order [’)) and the Riemann-Liouville fractional

1 Ak . —p+k
du (t,) (t-t) 4.7)

derivative Df, (Of order B) isgivenby ,D/U (t) =DRU (t)_mz di< \° F( ﬂ+k+1).
k=0 -
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Therefore, making an appeal to Eqns. (4.2)-(4.7) in Egn. (2.7), for to =0, and for the real value of },l; and V: , We obtain the

approximation formula

(4.8)

{Hn(m dkL;tnk(O) r(_éi +1)_%i(_1)k [Ej U, (hM —hk)}

k=1

M * *
where t = o B > 0,also|;|and v, | may be found by Eqn. (2.4).

Now, for 0O< B£ 2, 1< y£ 2, 0< a< 1, the above approximation formula (4.8) becomes

B 1
- f1
v
ut® oM 1

T s w—FZ(—l)k(Ej U, (hM —hk)}

k=1

+|v

o)}

n

I,
(4.9)

U and
where M = IS i, |and |v, | may be found by Eqn. (2.4).

Example: Consider

2t

1
= = 2 = = = = = —
o(x,t)= " 2W(t)=@0+1)°, =056,=05y=15p=15h 0

11 2 4
uzz,\/:g,u(x,o):“xz,ut(x,o)=4+xz (4.10)

Then, make an appeal to Egns. (1.14), (2.4) and (4.10) to get

H,(t)=e™ U, =e"UY=e™ |u|= 4

Again, using the Eqgns. (4.9), (4.10) and (4.11), we get following computational formulae (4.12) and (4.13) and their graphs (By

_Inlyin

*

6,/]=0.5and|0,|=0.5. (4.11)

b b

Wolfram Mathematica'7 )

U,(t)= !
{(10)1'5 \/HM;/HQH)Z}

4

(4.12)
. e—\“\t N e—\n\tfl.s +e72\n\t70.5
r(-0.5)" 1(0.5)

t >0, ne | (the set of Integers).

+1.5(10)* ¢ +1.125(10)"° ™ } ,
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U(xt)= i cos nx 1
o {(10)1-5@“”@(1“)2}

. e—\n\t e—\n\t—l.s +e72\n\t—0.5
0(-05)  T(03)

(4.13)

+1.5(10)* e +1.125(10) e ™ } ,

t>0, Xe | (thesetof real numbers).

@ (1D

Further on using the Egns. (2.5) and (2.23), we get the following results

B L N R A A L b seos
U"(t){z[T(l”) "y J {F(1.5k+1)+F(1.5k+2)+F(1.5k+1.5)-([(t_r) edr}]

k=0

(Il e ] [ et e M s T(15k+1.5)(t) " t>0,nel
-y T(1+t) Rt + e (L 1.5k +25; —|n|t) |’ :
k=0

4 (1.5k+1) T(1.5k+2)  T(1.5k+2.5)

(4.14)
and

i

U(xt)= nicos nxé[@(bt)z +TJ

e—\n\tl.sk efz\n\t1.5k 1 t

1.5k+0.5 {n‘r

X + + j(t— r e ""dr
r(1.5k+1) T(1.5k+2) T(1.5k+1.5)7
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k
_ i[—w\/ﬂ(ut)%@J
0| O 4

(4.15)
1.5k+1.5

e "t etk T(1.5k+1.5)(t)
X + +
I(1.5k+1) I'(1.5k+2) I'(1.5k+2.5)

P (L 1.5k +2.5; —|n|t)H,
t>0, xe; .

Now, in Eqns. (4.14) and (4.15), the series involving integral is not valid for computation of structures as t >0, therefore we
convert it in the series consisting Kummer hypergeometric function and thus on using the approximate value of
" r(c) , ya | .
1Fl(a,C,—Z) = —(Z) ,Z —> 00, and C,a are bounded (see Srivastava and Manocha [29, p. 38]) at time t large (as
I'(c—a)

t — 00), , we get the following approximation formulae (4.16) and (4.17) and their structures respectively

I~ |n|\/ﬂ 15 2 15 |n| k e e 2N JE
Un(t)= Z[T(t) ety + ()5 J {r(1.5k+1)+r(1.5k+2)+|n|r(1.5k+1.5)} - (19

k=0

where t >0, nel.

N N |n| |n| 15 2 15 |n| k e g 2 Jt
U (xt)= 2, cosmx Z[ 5 () @+t) +(1) 4 } {F(1.5k+1)+F(1.5k+2)+|n|1“(1.5k+1.5)} ’

n=—0 k=0

t>0, xej . (4.17)

Iv) V)
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Again, on using the approximate value of 1F1 (a;c; —Z) = e‘a, C — o0, and A, Z are bounded (see Srivastava and Manocha [29,

p. 38]) and large C (as C— ), in Egns. (4.14) and (4.15), we get the following approximation formulae (4.18) and (4.19)
respectively for computational work
k
<N RIURILLIFReT 2 15 4/|N g g2 ty/te
0,0~ 35| P g ol . -

4 | |r(1.5k+1) T(1.5k+2) I(1.5k+2.5)

k=0
t>0,nel. 4.18)
and

k

g 2 ([N as e s IN) gl = 1t

U(xt)= t)” (1+t) +(t
(x.t) nZ;ocosnX kz(; 5 ()" (A1) + () 4 F(1.5k+1)+F(1.5k+2)+|n|F(1.5k+2.5)

t>0, xej. (4.19)

(VII) (VIID)

Conclusions:
(a) When we consider the dimensions (n,t,Un (t)) and (n,t,U (X,t)) the structures (1) and (1) found on using numerical G-L

numerical approximation formulae (4.12) and (4.13) are similar to the structures (IV) and (V) obtained due to our approximation

formulae (4.16) and (4.17) respectively. Again to get these same structures of advection- dispersion for these dimensions, it take more

time and greater values of Un (t) and U (X,t) than above G-L numerical approximation formulae. This shows that in our results,
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advection-dispersion is slow and the values of Un ('[) and U (X,t) require larger to achieve the same action of advection-

dispersion due to the G-L formulae.
(b) The structures (VII) and (VIII) found on using our approximation formulae (4.18) and (4.19) in above dimensions are similar to

the structures (1) and (I1) respectively and also identical to the structures (IV) and (V). But in these results the advection- dispersion is
slow. The ratio of values of Un (t) and U (X,t) due to our results to take the same action of advection-dispersion from the G-L
formulae is given below:

The values of Un (t) and U (X,t) to take similar action of advection-dispersion due to numerical G-L numerical approximation
formulae {(4.12) and (4.13)} < the values of Un (t) and U (X,'[) on using our approximation formulae {(4.18) and (4.19)} < the
values of U (t) and U (X,t) on using our approximation formulae {(4.16) and (4.17)}.

(c) The structures (111), (VI) and (IX), in dimension (X,t,U (X,t)), seem to be different to perform the action of advection-

dispersion but most part of this action is lateral in these three structures and also the ratio of values of U (X,t) due to our results
and G-L numerical approximation formula is same as given above.

The value of U (X,t) to take action of advection-dispersion due to numerical G-L numerical approximation formulae {(4.12) and

(4.13)} < the value of U (X,t) on using our approximation formulae {(4.18) and (4.19)} < the value of U (X,t) on using our

approximation formulae {(4.16) and (4.17)}.
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