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1. Introduction 

 Regarding the linearity of the differential operators Kontecky [17] and Matsuda and Ayabe [22] studied the series solution of 

semi-differential equations (see also Oldham and Spanier [24, p.159]).   

  King et al. [15, p.123] described the Fourier series solution of ordinary one-dimensional diffusion equation for temperature 

distribution in the bar. 

Özdemir et al. [25] obtained an analytic solution of fractional diffusion equation by applying Fourier series and also evaluated its 

numerical approximation formula. 

 Gorenflo, Luchko and Zabreiko [20] have solved the Cauchy problem and represented its series solution involving Mittag-Leffler 

function (),
.E

 
defined by   
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 £                                                                                      (1.1)   

 where £   is a set of complex numbers and   .  is the Gamma function (see Erdėlyi et al. [5] and  Kilbas et al. [14] ). 

Many researchers  such as Kilbas et al. [14], Oldham et al. [24], Podlubny [26],  Samko et al. [27], and Mathai, Saxena and Haubold 

[19] presented a systematic study with analytical properties and applications of fractional derivatives, integrals and differential 

equations. Recently, Diethelm [3] has developed the theory and analysis of fractional differential equations involving Caputo type 

differential operators. Our work is concerning with the method developed by Diethelm [3] in the spaces of integrable, absolutely 

continuous and orthogonal functions. 

 Let    , ,a b a b      be a finite or infinite interval of the real axis     , , , 1pL a b p    ¡   is the set 

of those Lebesgue complex-valued functions f on   for which 
p

f    where 
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1

1
b p p

p a
f f q p                                                                                                              (1.2)                                     

and   supa x bf ess f x 
  = essential maximum of function  f x .                                                      (1.3) 

 (see Nikol’ski [23,  p.12-13]).                                                           

The weighted 
pL -space with power of weight, denoted by   , ,1 ,pX a b p    ¡  consists of those complex-valued 

Lebesgue measurable functions f on   ,a b   for which 

   

1

1p p

pb p

X X a

dq
f with f q f q p

q 

 
      

 
                                                                            (1.4) 

 and  

 supa x bX
f ess x f x




   , particularly    1 , , .p

p

p

X a b L a b                                                                (1.5) 

  (See Kilbas et al. [14]).                                                                                                

  For finite interval      , , ,a b a b AC a b      be the space of functions f  which are absolutely continuous on   ,a b  

and  ,AC a b  coincides with space of primitives of Lebesgue summable functions 

          , ( ) , ,
x

a
f x AC a b f x c q dq q L a b                                                                (1.6) 

 provided that    ' ' df
q f q f

dq


 
  

 
almost everywhere on  ,a b  and on the triangle   ,a q x b    and  c f a . 

Again, for  , ,nn AC a b¥  be the space of complex-valued functions  f x  which have continuous derivatives up to order n-1 

on [a, b] such that    1 ,nf x AC a b    almost everywhere on  ,a b  and defined by 

          1, : , , ,n n d
AC a b f a b C and D f x AC a b D

dx

    ,  

particularly,    1 , ,AC a b AC a b .                                                                                                                      (1.7) 

Lemma 1.1 The space  ,nAC a b  consists of those and only these functions   f x   which can be represented in the form 

                  
1

0

, , , ,
n

kn n

ka
k

f x I x c x a q f q q L a b a q x b  





                               (1.8)  

where, 
 

 , 0,1,2,..., 1
!

k

k

f a
c k n

k
     are arbitrary constants.                                                                      (1.9) 

Also    
 

   
11

1

x nn

a a
I x x q q dq

n
 


 

                                                                                              (1.10)   

 (see Samko et al. [27] and Diethelm [3]).  

In our work we use the orthogonal property defined by  

     2 , ,
i n q x

e dx n q n q is a Dirac delta function n q 
 


     ¡                                              (1.11) 

                                                                       

From Eqn. (1.11), particularly, we have  
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2 , , ,

2 , 0

0,

i n q x

n q n q

e dx n q

n q












  


  
 



¡

                                                                                                             (1.12) 

   (see Bajpai [1] and Kumar [16]). 

In our investigation, we also use following fractional derivatives: 

 The Caputo time fractional derivative  0 , 1 1,tD of order m mand m          is greatest integer not less than  , 

is defined by 
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t m

t m
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D f t t d

m d

 
 

 

 
 
                                                                                      (1.13) 

 (see Sousa [28]). 

The Riesz-Feller space fractional derivative x D

  of order   and asymmetry   is defined by (see Feller [6], Gorenflo and Mainardi 

[10-11]) 

     

 

 

 
 

 

 

, , , 1,0 2, min ,2 , ;
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   (1.14) 

x xI and I  

  are the inverse of the Riemann-Liouville integrals of x xI and I 

   respectively given by (see Miller and Ross [22]) 
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                                                                           (1.15)  

The Riemann-Liouville fractional derivatives x D

   of order γ  for   1m γ  are defined as (see Samko et al. [27]) 

 
 

   
11

,

m x
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D f x x f d x

m dx







 
      
    

                                                              (1.16)  

and  
 

   
1( 1)

,
Γ

mm
m γγ

x

x

d
D f x ξ x f ξ dξ x

m γ dx


 



  
    

  
                                                      (1.17) 

                                            

Gorenflo and Mainardi [10-11] presented a generalized diffusion equation and solved it through stochastic processes from 

probabilistic stand point. Further Liu et al. [17] made its extension through considering the Lévy-Feller advection-dispersion equation 

in the form  

 
 

 , ,
,α

x θ

U x t U x t
a D U x t b

t x

 
 

 
                                                                                                   (1.18) 

with initial condition  

   ,0U x f x , ,  0,  0,  0.x t a b   ¡                                                                                         (1.19)  
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They [17] solved these Eqns. (1.18)-(1.19) through stochastic processes and obtained its numerical solution with the help of an 

explicit finite difference approximation formula.  

 Mathai, Saxena and Haubold [19] have derived an explicit solution of the fractional differential equation 

     0
, , , , , 0, ; , ,

t x
D U x t D U x t x t t x real parameters 


        ¡                            (1.20) 

 with the constraints   0 2,  min ,2 ,  0 2,α θ α α β                                                                 (1.21) 

also, with the initial conditions   

         
 

 

,
,0 , ,0 ,   ,  ,0  at 0

lim , 0,  0.

t t

x

U x t
U x f x U x g x x U x t

t

U x t t


  
      

 

 

¡
,                        (1.22) 

  Diethelm [3, Eqn. (7.9a, b), p.143], analyzed the following fractional differential equation   

       0 x
D U x f x U x g x                                                                                                                      (1.23) 

subject to the initial condition  

     
 

 k( ) ( )

0
0 , 0   at 0 ( 0,1,...., 1)

k

k k

k

d U x
U U U t k β

dx

 
     

 
                                              (1.24) 

and found its solution involving Volterra integral equation. 

Motivated by above work, we present an unified advection-dispersion equation containing Caputo time fractional derivative of 

order  β, β 0 , Riesz-Feller space fractional derivatives of order  , 0 1α α  and asymmetry  1 1
θ , θ min α,  1 α   and 

of order  , 1 2γ γ   and asymmetry  2 2
,  min ,  2       and then solve it by  introducing a Fourier series to obtain its 

solution consisting Volterra integral equation. A numerical approximation formula is also derived and then analyzed it through 

computation by using certain hypergeometric approximation results.  

2. An Unified Advection-Dispersion Equation and Analysis 

 In this section, we consider an unified advection-dispersion equation  

          
1 20

, , , ,
t x x

D U x t D U x t t D U x t x t  

 
                                                                  (2.1) 

Here ,t


  ¡ and  0
 ¡ ( ¡  is the set of positive real numbers) , , and      are real parameters with the 

constraints;    1 2
0 1, min ,  1 , 0,1 2, min ,  2                 , the initial conditions are: 

   ,0
k

U x are continuous functions of  ,x x  ¡ only, where    0,1,..., 1 ,  ,k m m     

and  lim , 0,  0.
x

U x t t


   

Here, we define the sets:   * :G t t


  ¡ and   , : ( , ) ,  ,  ,G x t x t x t
 

    ¡ ¡ ¡ ¡ the functions and   

are such that  
*:G


  ¡ and :G  ¡ . The  t is the diffusion coefficient which has the limit 

 0
lim ,  0.

t
t


                                                                                                                                         (2.2) 

In order to solve the above problem (2.1)-(2.2), we first present the following theorems: 

Theorem 2.1 Let 
   0. ,0
k

U x     ; 0,1,..., 1;x k m m    ¡  are continuous functions and are  1
L ¡ . Again for 

the sets 
*G and G , the functions   and  defined in Eqn. (2.2), also under the conditions given in Eqn. (2.2), the advection-
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dispersion Eqn. (2.1) has the solution    , inx

n

n

U x t U t e




  whose Fourier inversion is 

   ,  ( 0) ,..., 2, 1,0,1,2,...,
n

U t t n       and consists the Volterra integral equation 
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1 1 * *
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t tkm
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U t U t q H q dq t q q U q dq

k


 



       
   

    n
H q be  1

0,L T on 

triangle   , : 0 ,  0 ,t q q t T T         
1

, , 0 ,
2

inx

n
H t e x t dx t







  



     
0

1
,0 ,

2

k kinx

n
U e U x dx











  
0

k

n
U  ¡  for all  ,...., 2, 1,0,1,2,....,n      and   0,1,2,... 1;  k m m    .                     (2.3)  

 Here the constraints are       *

1 1
, , ,0 1

n
n c i c i

 

 
            ,  1

min ,  1    , and 

      2 2*

2 2
, , ,  1 2,

n
n c i c i

 

 
             2

min ,  2 .                                     (2.4) 

Proof: Consider the solution of Eqns. (2.1)-(2.2) in the form    , inx

n

n

U x t U t e




                                           (2.5) 

Then, the Fourier inversion formula of  ,U x t is given by 

    
1

, ,
2

inx

n
U t e U x t dx








 

  ,...., 2, 1,0,1,2,...., ,  0n t       .                                           (2.6) 

Now, make an appeal to Eqns. (2.1), (2.2), (2.4), (2.5) and (2.6) and then using orthogonal property (1.11), we get the fractional 

differential equation identical to Eqns. (1.23)-(1.24) due to Diethelm [3, p.143] 

                  * *

0
,  0

t n n n n n
D U t t U t H t                                                                                 (2.7) 

with the initial conditions: 

         
0

k
0    ,...., 2, 1,0,1,2,...., , ( 0,1,2,...., 1; ).

k

n n
U U n k m m                               (2.8) 

 Again, make an appeal to the theorem due to Diethelm [3, theorem 7.9, p. 143]  in Eqns. (2.7)- (2.8), on the triangle 

  , : 0 ,  0 ,t q q t T T    we get the solution in form of Volterra integral equation (2.3) given by 

   

 
   

 
      

0

1
1 1 * *

0 0 0

1 1
;

!

t tkm
k

n n n n n n

k

t
U t U t q H q dq t q q U q dq

k


 



       
   

    

  ,...., 2, 1,0,1,2,...., ,  0n t       .                                                                                                     (2.9) 

Lemma 2.1 Under the conditions of the Eqn. (2.2), the fractional differential Eqn. (2.1) has the solution in which on the 

triangle   , : 0 ,  0t q q t T T    and ( { ,...., 2, 1,0,1,2,...., },n        

 
 

    
1 * *1

, ,
n n n

K t q t q t


     
  

 0
 sup

q r t T
ess t

   
   ,                                       (2.10) 

Also, here  q and    1 0,nH q L T , then 

 
(a) on above triangle the resolvent kernel  ,

n
R t q  has the inequality 
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         1 1* * * *

,
, . .

n n n n n
R t q t q E t q

 

  
                                                     (2.11) 

where,  ,
.E

 
 is the generalized  Mittag-Leffler  function defined in Eqn. (1.1). 

(b) The approximation function  ,
,

n j
t { ,...., 2, 1,0,1,2,...., },n       0,1,2,... , 0j t    

has the equality        , , 1

0

,    0,1,2,.....
t

n j n n j
t K t q q dq j


                                                            (2.12a) 

and the inequality 

   
 

   
   0

1
1* *

,

0 0

1
.

1

k j k tmj jn

n j n n n

k

U t
t t r H r dr

j k j

 
 




 
        

        
                   (2.12 b) 

Proof (a): On the set   , : 0 ,  0t q q t T T     , we define the iterated kernel 

   ,1
, ,

n n
K t q K t q  (  { ,...., 2, 1,0,1,2,...., })n        

and        , ,
, , , , 2,3,..

t

n j n n j r

q

K t q K t r K r q dr j


  .                                                                            (2.13) 

Then on using Eqns. (2.10) and (2.13), particularly, we have 

 
 

 
 

2
* *

2 1

,2

.
,

2

n n

n
K t q t q


   

 
 

                                                                                                    (2.14) 

and  
 

 
 

3
* *

3 1

,3

.
,

3

n n

n
K t q t q


   

 
 

                                                                                             (2.15) 

By mathematical induction, Eqn. (2.15) gives us 

  
 

 
 

* *

1

,

.
,

j

jn n

n j
K t q t q

j

 
   

 
 

, ( 2,3,....)j  .                                          (2.16) 

Now use the resolvent kernel defined by    ,

1

, ,
n n j

j

R t q K t q




   (c.f. Diethelm [p.144]) in Eqn. (2.16), we get the required 

inequality        
1 1* * * *

,
, . ( . )

n n n n n
R t q t q E t q

 

  
           .                            (2.17) 

Here in inequality (2.17), the resolvent kernel  ,
n

R t q  has the entire function  ,

1
.E of order

 

 
 

 
  and hence,  ,

n
R t q   is 

continuous on the set   , : 0 ,  0t q q t T T    . Again   ,
n

R t q  is the infinite series consisting the terms  ,
,

n j
K t q  

 1,2,....j    and thus  ,
,

n j
K t q is also continuous on the set   , : 0 ,  0t q q t T T    . 

Proof (b): From Eqn. (2.12b), we find that 

    
 

   
   0

11 1* *

, 1

0 0

1
.

1

k j k tmj jn

n j n n n

k

U t
t t r H r dr

j k j

    

 


 
        

       
  ,  1,2,....j    (2.18) 



Hemant Kumar et al./ Elixir Space Sci. 68C (2014) 22133-22146 
 

22139 

Again, suppose that    
 

   
   0

1
1

,0

0 0

1

1

k k tm
jn

n n n

k

U t
t M t t r H r dr

k


 



    
   

                                       (2.19) 

Now, making an appeal to the Eqns. (2.10), (2.12a), (2.18) and (2.19), we find 
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11 * * * *
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1
1

0 0

1
. .

1

1

t
j

n j n n n n

k j k qm
jn

n

k

t t q

U q
q r H r dr dq

j k j



 

  
 



          
 

 
   

      



 

                                                             (2.20)  

From (2.20), we get  

   
 

   
 

   
     0

* *

,

1
1 1 1

0 0 0 0

.

1

1

j

n j n n

k qt tm
jn j k

n

k

t

U
t q q dq t q q r H r drdq

j k j




     



     

 
     

          
   

   (2.21) 

On changing the order of integration in Eqn. (2.21), we get 

   
 

   
 

   
     0

* *

,

1
1 1 1

0 0 0

.

1

1

j

n j n n

k t t tm
jn j k

n

k r

t

U
t q q dq H r t q q r dqdr

j k j




     



     

 
     

          
   

   (2.22)              

which, in view of the definition of the beta integral      
   
 

1 1 1
t

j j

r

j
t q q r dq t r

j

        
   

   gives  the required 

result (2.12). 

 Theorem 2.2: The fractional differential equation given in Eqn. (2.1), under the given conditions in Eqn. (2.2) has the solution 

 ,U x t  given in Eqn. (2.5) whose Fourier inversion formula is equivalent to  ,  0,
n

U t t   

( { ,...., 2, 1,0,1,2,...., })n      (see Eqn. (2.6)) and then for  β ,m   there exists 

       

       

0

1
* *

, 1

0

1 * *

,

0

( )

n

m
k k

n k n n

k

t

n n n

U t U t E t t

t r E t t r H r dr




 



 

 

   

     





                                                                                            (2.23) 

Proof: From the theory of approximation method of Volterra integral equation and in consequence of lemma 2.1, we get the solution 

of fractional differential Eqn. (2.1) under the given condition (2.2) in the form of    ,

0

n n j

j

U t t




  .                      (2.24) 

Then, making an appeal to the Eqns. (2.22) and (2.24), we obtain the required Eqn. (2.23). 

3. Special Cases 

    Set 
1

1, , 1, 0, , 1, 0b a             and    ,0U x f x in Eqns. (2.1)-(2.2). Then our unified 

advection-dispersion equation becomes Lévy -Feller advection-dispersion equation due to Liu et al. [17] given in Eqns. (1.18)-(1.19).  
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Again if we set 0,  0 2      and 0 2,  1,         ,0U x f x  and    ,0
t

U x g x  in Eqns. (2.1)-(2.2), 

then our unified advection-dispersion equation becomes fractional differential equation of Mathai, Saxena and Haubold [19] given in 

the Eqns. (1.20)-(1.22). 

Further set 0,  1,  0      ,
2

; 0, 1 ;  and l l       ¥ in Eqn. (2.1).Then it becomes the equation due to 

Kilbas, Srivastava and Trujillo [14, p.380 Eqn. (6.4.1)] and its solution is equivalent to  

     
0

1
*

, 1

0

, ( )
m

kk inx

n k n

k n

U x t U t E t e
 



 

 

                                                                                                               (3.1) 

Again, set    1,  , inx

n

n

U x t U t e




     in our unified Equation (2.1), then it becomes the equation of Kilbas, Srivastava and 

Trujillo [14, p. 323 Eq. (5.3.69)] whose solution is    , inx

n

n

U x t U t e




                                                               (3.2) 

where                
0

1
1* * * *

, 1 ,

0 0

( ) ,
tm

kk

n n k n n n n n

k

U t U t E t t r E t r H r dr


 

   



          and  n
H r   

 (see also Eqn. (2.4)).                                                                                                                                                           (3.3) 

Several other fractional differential equations may be found after making some manipulations in our Eqns. (2.1)-(2.6), see for example 

Gorenflo and Mainardi [9], Gorenflo and Rutman [13], Gorenflo, Mainardi and Srivastava [17], Luchko and Gorenflo [18], Diethelm 

[2], Gorenflo and Mainardi [8] and Diethelm and Ford [4]. 

4. G L Approximation for Numerical Solution 

To obtain the approximation formula for numerical solution, we define mesh points 

0 0
,  0,1,2,...., ,  

j
t t jh j N t t T     ,where h denotes the uniform time steps.                                               (4.1)                                                                                                        

 The shifted Grünwald-Letnikov formula is       ,

, 1

0

1 j

h

GL S j k j k

k

D U t U t
h



 


                                                        (4.2)                                                                          

  where, 
   

     1 1 ...... 1
1

!

k

k

k

k

k k


      

    
 

                                                                                (4.3) 

   
   1

k

k
or

k

  
 

   
                                                                                                                                        (4.4) 

 Particularly, from eqns. (4.3) or (4.4) we find the recurrence relation  

     
0 1

1
1;  1 , 1,2,3,....

k k
k

k

  



 
       

 
                                                                                                       (4.5) 

Again, let the function   ,U t  is 1m times differentiable in  0
,t T  and that the m th  derivative of  U t  is integrable in 

 0
,t T . Then, for every 1 ,m m   there exists    ,

, 0
,  h

GL S j RL
D U t D U t t t T                                     (4.6) 

where  RL
D U t

 is the Riemann-Liouville fractional derivative of order    of in    0
,t T . Further, for every 1m m    and 

for 
0

,t t T   the relation between Caputo fractional derivative  β

0
β

t
D of order and the Riemann-Liouville fractional 

derivative  RL
D of order    is given by      

 
 

1
0

0 0

0

.
Γ 1

β k
km

β β

t RL k
k

t td U
D U t D U t t

dt β k

 





 

  
                  (4.7) 
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Therefore, making an appeal to Eqns. (4.2)-(4.7) in Eqn. (2.7), for 
0

0,t   and for the real value of 
* *μ ν
n n
and  , we obtain the 

approximation formula 

 

 
  

 
 

 
   

* *

β

β1

β
0 1

1

1
μ ν ψ

β0 1
1  

Γ β 1

n

n n

k km M
kn

n nk
k k

U t

t
h

d U t
H t U hM hk

kdt k h

 

 


 

  
 

  
      

     
 

                                            (4.8) 

where 
* *,  β 0, μ ν
n n

M
t also and

h
   may be found by Eqn. (2.4). 

Now, for 0 β 2,  1 γ 2,  0 α 1,< £ < £ < <  the above approximation formula (4.8) becomes  

 
  

 
 

   
 

   0

0

* *

β

β 1β
2

1

β
1

1

1
μ ν ψ

β1
1  
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where 
* *, μ ν
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t
M and

h
=  may be found by Eqn. (2.4). 

Example: Consider 
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                                                                                      (4.10) 

  Then, make an appeal to Eqns. (1.14), (2.4) and (4.10) to get 
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Again, using the Eqns. (4.9), (4.10) and (4.11), we get following computational formulae (4.12) and (4.13) and their graphs (By 

Wolfram
.7Mathematica  ) 
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 0,  t n I  (the set of Integers). 
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0,  t x  ¡  (the set of real numbers).                                                                                 

 

 

Further on using the Eqns. (2.5) and (2.23), we get the following results  
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and  
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                     (4.15)                                                                                                

0,  t x  ¡ . 

         .                                                                                                       

Now, in Eqns. (4.14) and (4.15), the series involving integral is not valid for computation of structures as 0,  t   therefore we 

convert it in the series consisting Kummer hypergeometric function and thus  on using the approximate value of  
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 and ,c a  are bounded (see Srivastava and Manocha [29, p. 38]) at time t  large (as  

t  ), , we get the following approximation formulae (4.16) and (4.17) and their structures respectively 
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where 0,  .t n I    
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Again, on using the approximate value of   1 1 ; ; , ,aF a c z e c    and ,a z  are bounded (see Srivastava and Manocha [29, 

p. 38]) and large c  (as c ), in Eqns. (4.14) and (4.15), we get the following approximation formulae (4.18) and (4.19) 

respectively for computational work 
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and 
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Conclusions: 

(a) When we consider the dimensions   , , nn t U t and   , , ,n t U x t  the structures (I) and (II) found on using numerical G-L 

numerical approximation formulae (4.12) and (4.13) are similar to the structures (IV) and (V) obtained due to our approximation 

formulae (4.16) and (4.17) respectively. Again to get these same structures of advection- dispersion for these dimensions, it take more 

time and greater values of  nU t and  ,U x t  than above G-L numerical approximation formulae. This shows that in our results, 
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advection-dispersion is slow and the values of  nU t  and  ,U x t  require larger to achieve the same action of advection- 

dispersion due to the G-L formulae. 

(b)  The structures (VII) and (VIII) found on using our approximation formulae (4.18) and (4.19) in above dimensions are similar to 

the structures (I) and (II) respectively and also identical to the structures (IV) and (V). But in these results the advection- dispersion is 

slow. The ratio of values of  nU t and  ,U x t  due to our results to take the same action of advection-dispersion from the G-L 

formulae is given below: 

The values of  nU t  and  ,U x t  to take similar action of advection-dispersion due to numerical G-L numerical approximation 

formulae {(4.12) and (4.13)} < the values of  nU t  and  ,U x t  on using our approximation formulae {(4.18) and (4.19)} <  the 

values of   nU t  and  ,U x t  on using our approximation formulae {(4.16) and (4.17)}. 

(c) The structures (III), (VI) and (IX), in dimension   , , ,x t U x t , seem to be different to perform the action of advection-

dispersion but most part of this action is lateral in these three structures and also the ratio of values of   ,U x t  due to our results 

and G-L numerical approximation formula is same as given above.  

The value of  ,U x t  to take action of advection-dispersion due to numerical G-L numerical approximation formulae {(4.12) and 

(4.13)} <  the value of  ,U x t  on using our approximation formulae {(4.18) and (4.19)} < the value of  ,U x t  on using our 

approximation formulae {(4.16) and (4.17)}. 
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