
M.Shanmugaraj/ Elixir Comp. Sci. & Engg. 68 (2014) 22108-22112

22108

Introduction

Software is everywhere. It makes us wakeup, makes a call,

connectivity with friends, fly in space and lot more. A typical

cellphone comprise 2 million software codes; by 2010 it is

expected around 10 times as much as now [36]. A typical

software system consists of computer programs, software,

configuration files, documentation, associated programs and

etc... Software can empower or even accelerate human, social,

economic and technological changes [4]. There are many

different types of meaning associated with software depending

on the context. The areas where the software systems used are

database management systems, telecommunication networks,

military command and control systems, air traffic control

systems, operating systems, computer reservation systems,

online shopping, expert systems and etc…

Software System

A software system is a system of intercommunicating

components based on software forming part of a computer

system. Software system consists of few number of separate

programs, configuration files, which are used to set up these

programs, system documentation, which describes the structure

of the system, and user documentation, which explains how to

use the system [33]. Generally software is considered as normal

programs/instructions/commands which are stored in the device

of a computer. These programs allow the user to perform certain

specific task to be performed. These programs are often written

by software engineers. Software can be categories into system

software, application software and embedded software. System

software is the basic software needed for a computer to operate.

Figure 1: Software Development Process [35]

Understanding the problem

Generally it is difficult to completely understand how

software works. Because of software failure, we lose billions of

money every year. Even a small error can cause wastage of

billions. For example, in 2004, U.S. government spent around

$60 billion on software; a 5 percent failure rate means $3 billion

was probably wasted. There are many factors which contribute

to the failure of the project namely:

 unrealistic or unarticulated project goals,

 inaccurate estimates of needed resources,

 badly defined system requirements,

 poor reporting of the project‟s status,

 unmanaged risks,

 poor communication among customers, developers, and

users,

 use of immature technology,

 inability to handle the projects complexity,

 sloppy development practices,

 poor project management,

 stakeholder politics,

 Commercial pressures [36].

To make the software system autonomic the key properties

of a system should be self-configuring, self-healing, self-

protecting and self-optimizing with attribute properties such as

self-aware, environment-aware, self-monitoring and self-

adjusting [6]. This is how NASA‟s mission expects the next

generation software systems should be built on. Fig 2 explains

the various NASA‟s mission towards autonomic system nature.

This is very crucial in terms of operation cost & resource

constraints.

Figure 2: Evolution of Self properties in NASA's mission [6]

Challenges evolved in building a complex software system
M.Shanmugaraj

Department of Computer Science & Information Systems, University of Limerick,Limerick, Ireland.

ABSTRACT

New advancement in the field of Software Engineering increases more issues and problems.

After reviewing quite a few research papers & articles in the field of Software Engineering,

we obtained various challenges that rise in building a complex software system. This paper

describes several challenges evolved in building a complex software system.

 © 2014 Elixir All rights reserved

.

ARTICLE INFO

Article history:

Received: 13September 2013;

Received in revised form:

22 February 2014;

Accepted: 1 March 2014;

Keywords

Challenges,

Complex Systems,

Software Engineering.

Elixir Comp. Sci. & Engg. 68 (2014) 22108-22112

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Tele:

E-mail addresses: innoraj@gmail.com

 © 2014 Elixir All rights reserved

M.Shanmugaraj/ Elixir Comp. Sci. & Engg. 68 (2014) 22108-22112

22109

Most challenges for software system arise from automated

or autonomous systems [12]. There are various operations and

functionalities to be performed by software systems in space.

Those operations and functionalities should be integrated into

the system without any constraints. This is considered to be one

of the greatest challenges for people involved in the mission.

Software integration is another part involved in software

evolution. When two companies merge to produce software, the

company has to consider several factors such as architecture,

platform, technology used, reuse of the existing software,

upgrading system to the new requirement specified. The process

flow in such case could start with evaluation, design, decision,

analysis, user involvement, early meetings, separating

stakeholders, active upper management, architecture centric

process and managing different people [13].

Challenges evolved

With software engineering, several challenges evolve in a

number of different ways throughout the development of the

software. Certain challenges could be addressed [28], while

others are really complex and questionable. Challenges could

exist in development methods & models, software vs. hardware,

development of the environment, unpredicted behavior of the

system, lack of proper communication, rules & regulations,

software maintenance, software engineering education. These

are a list of few which obtained from research articles & papers.

They are challenging in various domains such as power systems

[15], software intensive systems [16, 22], data intensive system

[24], SPRUCE [20], embedded & networked aerospace software

systems [18], mobile software system [21], chemical industry,

automotive system [19], Control System Engineering (CSE)

[32], Bioinformatics [31], MPSoC [30], self-adaptive software

[26], space exploration [29], safety critical systems [25],

aviation industry and so on.

Development Methods & Models

Generally software development involves various activities

such as requirement gathering, analyzing the requirements,

planning, implementation, testing, documenting, deployment,

maintenance and etc… There are several development models

such as

 waterfall model,

 spiral model,

 iterative and incremental development,

 agile development,

 rapid application development

 code & fix.

Figure 3: Common NASA Software Development Process [3]

Each model follows different approach of developing

software. It is based on the team to select the appropriate model

for the project. Software system developed for aircraft is so

complex which contains a lot of software components and

associated programs. It is very important that the software

developed for aircraft should be perfect enough without any

error & fault. The software development is concerned with the

maintaining and extending existing software systems [8].

Software engineers find it easier to build from the existing

software system rather than starting from the new one. For

example [8] describes how various different features for the TV

could be added based on the user requirement using engineering

approach.

Few lines of codes could be added to solve various

problems. Figure 3. Describes the software development process

follow in NASA. This common process applies to all the

software development carried out in the entire mission for space

exploration. Software development process generally starts from

requirement phase until verification & validation phase.

Software Vs Hardware

Without hardware, software is nothing. It is very important

that we need to know the working of hardware to ensure the

correct operation of the software. Hardware is normally a

physical device connected to computer, but it contributes in

many ways such as infrastructure, data centers, storage, servers,

networking equipment‟s, cables & so on. Initial software

engineers have to consider various hardware limitations such as

memory & disk space. Today software engineers are provided

with highly sophisticated hardware. They find it really difficult

to understand and development software with the increasing

functionality of the hardware. So a large gap exists between

software possibility and hardware capability.

Figure 4: Gap between hardware capability and software

possibility [37]

This gap should be reduced so that the software

development could be matched with hardware. The fast

evolution of hardware gives the programmers not only the

performance improvement but also slower reaction of

development tools and new hardware functionalities [7]. These

new features make programmers & developers difficult.

Developing Environment

Software development is generally considered to be a

complex process. In today‟s world software is developed round

the clock people located in different parts of the world. There

exists lot of complexities such as geographical distance,

temporal distance, cultural difference, language &

communication barriers and etc… Even though with the great

communication technologies such as internet, certain

complexities are unavoidable. The software engineers are

expected to work in a global environment. They have to use

email, international communication via skype, video

conferencing and other social media. In developing a huge

software, some part of the software are outsourced to remote

organizations.

M.Shanmugaraj/ Elixir Comp. Sci. & Engg. 68 (2014) 22108-22112

22110

Software engineers are expected to collaborate with

different type of people from different culture & team. There

rise various issues such as global distance, temporal distance

and language constraints. It is important for engineers,

practitioners, developers and educators to understand the issues

with developing environment of the software. Requirements

vary with system to system. One of the important problems

faced during the development of e-scape software system [11]

was different requirement and priorities of the user. This made

to think whether separate the user into different system or to

integrate into hierarchy of users [11].

CLARAty [5] is robotic software used in the NASA

mission. It is difficult to build reusable software due to various

factors such as platform, information rate, architecture of the

system, device & system configuration and different application

program. The major challenge faced in CLARAty reusable

robotic software where control heterogeneous robots, integrate

and interoperate new capabilities, adjusts access levels and

implement a generic framework [5]. Since there is no specific

standard for robotic platforms, normal framework could be

sufficient to develop robotic system. They face several issues

such as physical variability, interface, sensor configurations,

robotic algorithms, hardware/software framework, architectural

mismatch, different forms of similar information, integrating

different technologies. In 1994, White House provided executive

order to agencies directing them to increase the use of

commercially available software systems. Changing from

traditional development to Commercial Off The Shelf (COTS)

development imposed several challenges to manufacturers and

integrators [14]. The engineering process should be tailored to

regulations and rules defined by the Department of Defense

(DOD).

Unpredicted Behavior of the System

Software system built for critical real time systems are

particularly difficult and challenging. They depend on several

factors such as engineering & management, appropriate tools

and environment and developer. Several testing methods are

there to make sure the developed software system operates

safely in a given environment. The software developed for the

avionics require lot of efforts to make it successful. The avionic

software system developed for Saturn V flight software system

consist of eight programs, including the software operating

system, which consist of one half million 32 bit words of data

and executable instructions [2]. This software system is

considered to be the crucial part to the shuttle operations. They

perform various operations such as guidance, navigation, flight

control functions performed during all flight phases, gathering

data from the environment, sensor input, issuing of commands

to the vehicle/ground interface functions [2]. Apart from these

operations the software system takes care of management and

monitoring of onboard systems, fault detection, annunciation,

preflight, pre-entry checkout and safing procedures [2]. The

unpredicted behavior of the system could be determined using

various testing methods. Testing depends on the type of

software it is developed for. High quality software system needs

tested with various extreme conditions to make sure the software

operates in the proper manner. Model based testing [9] is one

the most common approach used to test the software system.

Lack of Proper Communication

One of the common challenges which are faced by the

software community is because due to the erroneous

communication or miscommunication. Communication failure

could be possible at any point of development which might rise

during any of the following requirement phase, documentation

phase, development phase, implementation phase, maintenance

phase & etc. If the requirements provided are incomplete & not

clearly specified, the team would develop software which might

be inappropriate. Developing space systems usually involve

various factors:

Multicomponent systems, elements of AI, autonomous

systems, evolving systems, high-risk and high cost systems,

rigid design constraints, potential for extremely tight design

space and highly risk driven systems [3]. If any of the factors is

not correctly built the system would ultimately result in disaster.

Proper communication plays a major part from building

requirements to the final software system. Most of the space

development system team involves various professionals and

people. Proper communication media should be provided to

ensure the information is communicated effectively and in time

bound.

Regulations and Law

Various critical software involved in military, space

exploration, defense, nuclear weapons, chemical industries and

etc. should strictly follow several rules and regulations imposed

by local government. Safety critical system tend to have

reliability requirements ranging from 10
-5

 to 10
-9

 over a given

time period [1]. Federal Aviation Authority (FAA) rules require

that any failure condition that could be catastrophic must be

extremely improbable [1]. Certain software systems are

identified as critical systems by various standards and criteria by

the government.

Software Maintenance

In today‟s world maintenance of software is considered to

be one of the importance challenges for most of the software

professionals. Around 50 to 70 percent of a software engineer‟s

time is spent making changes to mission critical software [17].

Some of the problems associated with software maintenance are:

poor system design and structure, excessive system complexity,

limited system flexibility, limited or nonexistent documentation,

inadequate project and process management, inadequate change

and version management, inadequate release management and

inadequate maintenance tools [17]. Implementing Knowledge

Management Systems in software engineering introduces

various challenges such as: Software Engineering is a vast

domain, convince software engineers to use KMS, impacts are

difficult to measure, KMS integration, technology related

knowledge obsolescence and KMS should support software

processes [34].

Software Engineering Education

Software engineering institution plays a key role by

producing effective software professionals who could take-up

job after the studies. The software engineering educators should

be well qualified & trained. So that they could identify and train

the students towards the global need. It is a great challenge for

teaching community people to meet the personal preference and

technical complexities. As educators how do we teach students

to build security into their software and to implement software

consistent with privacy policies? [10] The current education

trend totally differs in commitment, interaction, learning style,

and these create new challenges for education and usage of the

technology [10]. Each and every day new software emerges with

sophisticated functionalities & features making people learn

more easily without training.

Apart from these challenges [23] provides 13 challenges

with respect to software engineering namely: software quality,

return on investment, process improvement, metrics and

measurement, standards confusion, standards interoperability,

legacy software, testing stoppage criteria, interoperability and

M.Shanmugaraj/ Elixir Comp. Sci. & Engg. 68 (2014) 22108-22112

22111

compos ability, operational profiles, designing in, product

certification and services.

Conclusion

Thus with the increasing software development, the

challenges tend to be higher & complex. These complexities and

challenges should be considered by the software professionals.

We tried our best to describe the various complexities involved

in developing software.

Abbreviations

FAA - Federal Aviation Authority

NASA - National Aeronautics and Space Administration

ACM - Association for Computing Machinery

IEEE - Institute of Electrical and Electronics Engineers

HRSM - Hubble Space Telescope Robotic Servicing Mission

ANTS - Autonomous Nano Technology Swarm

DS1 - Deep Space 1

CSE - Control System Engineering

DOD - Department Of Defense

COTS - Commercial Off The Shelf

MPSoC - Multiprocessor Systems-on-Chip

SPRUCE - Software Producibility Collaboration and

Experimentation Environment

References

Nancy G. Leveson, “Software Safety: Why, What, and How”,

ACM Computing Surveys, Vol.18, No.2, June 1986, Page No.

126-163.

William A. Madden and Kyle Y. Rone, “Design, Development,

Integration: Space shuttle primary flight software system”,

Communication of the ACM, Sep 1984 Vol 24 No.9, Page

No.914 – 925

Emil Vassev et al., “Swarm Technology at NASA: Building

Resilient Systems”, Published in IEEE Computer Society, IT

Pro Mar/Apr 2012, ISSN No.1520-9202, Page No. 36-42

Tom Mens et al., “Software Evolution”, Published by the IEEE

Computer Society 0740-7459/10, Page No.22-25

Issa A.D. Nesnas et al., “CLARAty: Challenges and Steps

Toward Reusable Robotic Software”, International Journal of

Advanced Robotic Systems, Vol.3, No.1 (2006), ISSN 1729-

8806, pp. 023-030.

Roy Sterritt et al., “Next generation system and software

architectures challenges from future NASA exploration

missions”, Science of Computer Programming 61 (2006) pp. 48-

57, DOI: 10.1016/j.scico.2005.11.005.

Yuzhong Sun et al., “Green challenges to system software in

data centers”, Front. Comput. Sci. China 2011, 5(3): 353-368,

DOI: 10.1007/s11704-011-0369-3.

Thein Than Tun et al., “Specifying features of an evolving

software system”, Softw. Pract. Exper. 2009;39:973-1002.

Published online 8 May 2009 in Wiley Inter Science, DOI:

10.1002/spe.923.

Alexandre Petrenko et al., “Model based testing of software and

systems: recent advances and challenges”, International Journal

of software tools technology transfer (2012) 14:383-386, DOI:

10.1007/s10009-012-0240-3.

Hossein Saiedian, “Software engineering challenges of the Net

generation”, Published in The Journal of Systems and Software,

82 (2009) 551-552.

Karim Derrick, “Developing the e-scape software system”,

International Journal of Technology Des Educ (2012) 22:171-

185, DOI: 10.1007/s10798-011-9193-1.

David J. Atkinson, “Constellation Program Return to the Moon:

Software Systems Challenges”, Proceedings of the third IEEE

International Workshop of Engineering of Autonomic &

Autonomous Sytems(EASE 2006), 0-7695-2544-X/06.

Rikard Land et al., “Integration of Software Systems”,

Proceedings of the 29
th

 EUROMICRO Conference “New Waves

in System Architecture”(EUROMICRO 2003), 1089-6503/03.

C. Stephen Kuehl, “A process direction for common avionics

developments using commercial hardware and software

components: the avionics systems engineering challenge”, 0-

7803-4150-3/97, 1997, pp. 6.4.1-6.4.9.

H.S. Gill et al., “Software Engineering in Power Systems:

Practices and Challenges”, 0-7803-7107-0/01, 2001, pp. 25-30.

Manfred Broy, “The „Grand Challenge‟ in Informatics:

Engineering Software-Intensive Systems”, Published in the

IEEE Computer Society, ISSN: 0018-9162/06/2006,Computer,

vol.39, no.10, pp. 72-80.

David Sharon, “Meeting the challenge of Software Maintenace”,

ISSN: 0740-7459/96, pp. 122-125.

David C. Sharp et al., “Challenges and Solutions for Embedded

and Networked Aerospace Software Systems”, Proceedings of

the IEEE, ISSN: 0018-9219, pp. 621-634.

Jurgen Mossinger, “Software in Automotive Systems”,

Published by the IEEE Computer Society, ISSN: 0740-7459/10,

pp no.92-94.

Patrick Lardieri et al., “SPRUCE: A Web Portal for the

Collaboration Engineering of Software Intensive Systems

Producibility Challenges Problems and Solutions”, ISBN: 978-

1-4244-8/09, pp No. 276-283.

V.Rahimian, J.Habibi, “Performance Evaluation of Mobile

Software Systems: Challenges for a Software Engineer”,

Proceedings of 5
th

 International Conference on Electrical

Engineering, Computing Science and Automatic Control (CCE

2008), ISBN: 978-1-4244-2499-3/08, pp No. 346-351.

Mats P.E. Heimdahl, “Safety and Software Intensice Systems:

Challenges Old and New”, Proceedings of Future of Software

Engineering(FOSE „07), ISBN: 0-7695-2829-5/07.

Jeffrey Voas, “A Bakers‟s Dozen: 13 Software Engineering

Challenges”, IT Pro Mar/Apr 2007, ISSN: 1520-9202/07, pp

No. 48-53.

Anthony Cleve et al., “Data Intensive System Evolution”,

Published by the IEEE Computer Society, ISSN: 0018-9262/10,

pp. 110-112.

John C. Knight, “Safety Critical Systems: Challenges and

Directions”, Proceedings of ICSE ‟02, ACM 1-58113-472-X/02,

pp no. 547-550.

Mazeiar Salehie, Ladan Tahvildari, “Self-Adaptive Software:

Landscape and Research Challenges”, ACM Transactions on

Autonomous and Adaptive Systems, Vol.4, No.2, Article 14,

DOI 10.1145/1516533.1516538.

Martin et al., “Software-engineering Challenges of building and

deploying reusable problem solvers”, Artificial Intelligence for

Engineering Design, Analysis and Manufacturing (2009), 23,

339-356, doi: 10.1017/S0890060409990047.

Joe W. Heil, “Addressing the Challenges of Software Growth

and Rapidly Evolving Software Technologies”, American

Society of Naual Engineers, DOI: 10.1111/j.1559-3584.2010, pp

no.45-58.

Robyn Lutz, “Software Engineering for Space Exploration”,

Published in the IEEE Computer Society, ISSN: 0018-9162/11,

pp no.41-46.

Ian Gray, Neil C.Audsley, “Challenges in Software

Development for Multicore System-on-Chip Development”,

ISBN: 978-1-4673-2789-3/12, pp no. 115-121.

Jonathan Barker, Janet Thornton, “Software engineering

challenges in bioinformatics”, Proceedings of the 26
th

International Conference on Software Engineering (ICSE „04),

ISSN:0270-5257/04.

M.Shanmugaraj/ Elixir Comp. Sci. & Engg. 68 (2014) 22108-22112

22112

Matt M. Eskandar and Vahid Garousi, “Engineering Control

Software Systems: A Multi-Disciplinary Challenge”, ISBN:

978-1-4673-0750-5/12, pp no.1-6.

Sommerville Ian, “Software Engineering”, Addison Wesley, pp

5-6, ISBN: 978-0-321-31379-9.

Mostefai Mohammed Amine and Mohamed Ahmed-Nacer,

“Implementing Knowledge Management Systems in Software

Engineering: Opportunities and Challenges”, Proceedings of 36
th

IEEE International Conference on Computer Software and

Applications, ISSN:-730-3157/12,

DOI:10.1109/COMPSAC.2012.10.

http://www.managedmayhem.com/2009/05/06/sashimi-

waterfall-software-development-process/

http://spectrum.ieee.org/computing/software/why-software-

fails/0

http://www.gophoto.it/view.php?i=http://newspaint.files.wordpr

ess.com/2012/05/softwarevhardware.png#.UZDft8o1eSo

http://www.managedmayhem.com/2009/05/06/sashimi-waterfall-software-development-process/
http://www.managedmayhem.com/2009/05/06/sashimi-waterfall-software-development-process/
http://spectrum.ieee.org/computing/software/why-software-fails/0
http://spectrum.ieee.org/computing/software/why-software-fails/0
http://www.gophoto.it/view.php?i=http://newspaint.files.wordpress.com/2012/05/softwarevhardware.png#.UZDft8o1eSo
http://www.gophoto.it/view.php?i=http://newspaint.files.wordpress.com/2012/05/softwarevhardware.png#.UZDft8o1eSo

