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Introduction 

 After the introduction of fuzzy sets by L.A.Zadeh[15], 

several researchers explored on the generalization of the concept 

of fuzzy sets. The notion of fuzzy subgroups, anti-fuzzy 

subgroups, fuzzy fields and fuzzy linear spaces was introduced 

by Biswas.R[4, 5 ]. In this paper, we introduce the some 

theorems in anti S-fuzzy subfield of a field.  

Preliminaries: 

Definition: Let X be a non-empty set. A fuzzy subset A of X is 

a function A : X → [0, 1].  

Definition: A S-norm is a binary operation S: [0, 1][0, 1] [0, 

1] satisfying the following requirements; 

(i) S(0, x) = x, S(1, x) = 1 (boundary condition) 

(ii) S(x, y) = S (y, x) (commutativity) 

(iii) S( x, S (y, z) )=S ( S(x, y), z )(associativity) 

(iv) if x  y and w  z, then S(x, w ) S (y, z )( monotonicity). 

Definition: Let ( F, +, ∙ ) be a field. A fuzzy subset A of F is 

said to be an anti S-fuzzy subfield ( anti fuzzy subfield with 

respect to S-norm ) of F if the following conditions are satisfied: 

(i) A(x+y )  S (A(x), A(y) ), for all x and y in F, 

(ii) A( x
 
)  A( x ), for all x in F, 

(iii) A( xy )  S (A(x), A(y) ), for all x and y in F, 

(iv) A(x
-1

)  A(x), for all x ≠ 0 in F, where 0 is the additive 

identity of F. 

Definition: Let ( F, +, ∙ ) and ( F
׀
, +, ∙ )  be any two fields. Let                         

f : F → F
׀
  be any function and A be an anti S-fuzzy subfield in 

F, V be an anti S-fuzzy subfield in f(F) = F
׀
, defined by V(y) 

= inf
)(1 yfx 

A(x), for all x in F and y in F
׀
. Then A is called a 

preimage of V under f and is denoted by f 
-1

(V). 

Definition: Let A and B be any two fuzzy subsets of sets G and 

H, respectively. The anti-product of A and B, denoted by A×B, 

is defined as A×B = {  ( x, y ), A×B( x, y )  / for all x in G and 

y in H }, where A×B( x, y ) = max {A(x), B(y)}, for all x in G 

and y in H. 

Definition: Let A be a fuzzy subset in a set S, the anti-

strongest fuzzy relation on S, that is a fuzzy relation on A is 

V= {(x,y), V(x,y)   / x and y in S } given by V(x, y) = max 

{A(x), A(y) }, for all x and y in S. 

Definition: Let A be an anti S-fuzzy subfield of a field (F,  +, ∙ ) 

and a in F. Then the pseudo anti S-fuzzy coset (aA)
p
 is defined 

by  ((aA)
p
)(x) = p(a)A(x), for every x in F and for some p in P. 

Properties: 

Theorem: If A is an anti S-fuzzy subfield of a field ( F, +, ∙ ), 

then A(x) = A(x), for all x in F and A(x
-1

) = A(x), for all x ≠ 0 

in F and A(x)  A(0), for all x in F and A(x)  A(1), for all x in 

F, where 0 and 1 are identity elements in F.  

Proof: For x in F and 0, 1 are identity elements in F. Now, A(x) 

= A( (x)
 
)  A(x)  A(x). Therefore, A(x) = A(x), for all x 

in F. And, A(x) = A((x
-1

)
-1

)  A( x
-1

)  A( x). Therefore, A(x
-1

) 

= A(x), for all x ≠ 0 in F. And, A(0) =  A(xx)  S (A(x), A(x) 

) = A(x). Therefore, A(0)  A(x), for all x in F. And, 

A(1)=A(xx
-1

)  S(A(x), A(x
-1

))=A(x). Therefore, A(1)A(x), for 

all x ≠ 0 in F. 

Theorem: If A is an anti S-fuzzy subfield of a field ( F,  +, ∙ ), 

then 

(i) A( xy) = A(0)  gives A(x) = A(y), for all x and y in F,  

(ii) A(xy
-1

) = A(1) gives A(x) = A(y), for all x and y ≠ 0 in F, 

where 0 and 1are identity elements in F. 

Proof: Let x and y in F and 0, 1 are identity elements in F. (i) 

Now, A(x) = A(xy +y )  S( A( xy), A(y ) ) = S( A( 0), A( y) 

) = A(y) = A( x(xy) )  S(A(xy), A(x) ) = S (A(0), A(x) ) = 

A(x). Therefore, A(x) = A(y), for all x and y in F. (ii) Now, A(x) 

= A(xy
-1

y)  S (A(xy
-1

), A(y) ) = S (A(1), A(y) ) = A(y) = A( 

(xy
-1

)
-1

x)  S (A( xy
-1

), A(x) ) = S( A(1), A(x) ) = A(x). 

Therefore,  A(x) = A(y), for all x and y ≠ 0 in F. 

Theorem: Let A be a Fuzzy subset of a field (F, +, ∙). If                        

A(e) = A(e
׀
) = 0, A(xy)  S ( A(x), A(y) ), for all x and y in F 

and A(xy
-1

)  S ( A(x), A(y) ), for all x and y ≠ e in F, then A is 

an anti S-fuzzy subfield of F, where e and e
׀
 are identity 

elements of F. 

Proof: Let e and e
1
 be identity elements of F and x and y in F. 

Now A(x) = A( ex)  S( A(e), A(x) ) = S( 0, A(x) ) = A(x). 

Therefore, A(x)  A(x), for all x in F. And A(x
-1

) = A(e
׀
x

-1
)  

S( A(e
׀
), A(x) ) = S( 0, A(x) ) = A(x). Therefore, A(x

-1
)  A(x), 

for all x ≠ e in F. And A(x+y) = A( x (y)
 
)  S(A(x), A(y) )  

S ( A(x), A(y) ). Therefore, A(x+y)  S ( A(x), A(y) ), for all x 

and y in F. And A(xy) = A( x(y
-1

)
-1

)  S ( A(x), A(y
-1

) )  S 
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(A(x), A(y) ). Therefore, A(xy)  S(A(x), A(y) ), for all x and y 

≠ e in F. Hence A is an anti S-fuzzy subfield of F. 

Theorem: If A is an anti S-fuzzy subfield of a field ( F, +, ∙ ), 

then H = { x / xF: A(x) = 0 } is either empty or is a subfield of 

F 

Proof: If no element satisfies this condition, then H is empty. If 

x and y in H, then A( xy)  S (A(x), A(y) ) = S ( A(x), A(y) ) 

= S ( 0, 0 ) = 0. Therefore, A(xy) = 0, for all x and y in F. We 

get xy in H. And, A(xy
-1

)  S (A(x), A(y
-1

) ) = S( A(x), A(y) ) 

= S ( 0, 0 ) = 0. Therefore, A(xy
-1

) = 0, for all x and y ≠ 0 in F. 

We get xy 
-1 

in H. Therefore, H is a subfield of F. Hence H is 

either empty or is a subfield of F. 

Theorem: If A is an anti S-fuzzy subfield of a field (F, +, ∙), 

then H ={ xF: A(x)= A(e) = A(e
׀
) } is either empty or is a 

subfield of F, where e and e
׀ 
are identity elements of F. 

Proof: If no element satisfies this condition, then H is empty. If 

x and y satisfies this condition, then A(x) = A(x) = A(e), for all 

x in F and A(x
-1

) = A(x) = A(e
׀
), for all x ≠ e in F, by Theorem 

2.1. Therefore, A(x)=A(e), for all x in F and A(x
-1

)=A(e
׀
), for 

all x ≠ e in F. Hence x , x
-1 

in H. Now, A(xy)  S ( A(x), A(y
 

) )  S( A(x), A(y) ) = S (A(e), A(e) ) = A(e). Therefore,   

A(xy)  A(e)----------------(1). And, A(e) = A( ( xy)(xy) )  

S (A( xy ), A((xy)))  S(A(xy
 

), A(xy)) = A(xy). 

Therefore, A(e)  A(xy) ---------------------(2). From (1) and 

(2), we get A(e) = A(xy
 
), for all x and y in F.

  
Now, A(xy

-1
)  

S ( A(x), A(y
-1

) )  S ( A(x), A(y) ) = S ( A(e
׀
), A(e

׀
) ) = A(e

׀
).                

Therefore, A(xy
-1

)  A(e
׀
) ----------------(3). And, A(e

׀
) = A( (xy

-

1
)(xy

-1
)

-1
)                 S ( A(xy

-1
), A((xy

-1
)

-1
) )  S( A(xy

-1
), A(xy

-

1
) ) = A(xy

-1
). Therefore, A(e

׀
)  A( xy

-1 
)------------(4). From (3) 

and (4), we get A(e
׀
) = A(xy

-1
), for all x and y ≠ e in F.

 
Hence 

A(e) = A(xy), A(e
׀
) = A(xy

-1
). We get xy, xy

-1 
in H. Hence H 

is either empty or is a subfield of F. 

Theorem: Let A be an anti S-fuzzy subfield of a field (F, +, ∙ ). 

Then (i) if A(xy) = 0, then A(x) = A(y), for x and y in F (ii) if 

A(xy
-1

) = 0, then A(x) = A(y), for all x and y ≠ e in F, where e 

and e
׀ 
are identity elements of F. 

Proof: Let x and y in F. Now, A(x) = A( xy+y )  S(A(xy
 
), 

A(y) ) = S(0, A(y) ) = A(y) = A(y) = A(x+xy
 
)  S (A(x), 

A(xy) ) = S ( A(x), 0 ) = A(x)=A(x). Therefore, A(x) =A(y), 

for all x and y in F. And, A(x) = A(xy
-1

y)      S ( A(xy
-1

), A(y) ) 

= S ( 0, A(y) ) = A(y) = A(y
-1

) = A (x
-1

xy
-1 

)  S (A(x
-1

), A(xy
-1

) 

) = S (A(x
-1

), 0 ) = A( x
-1

) = A(x). Therefore, A(x) = A(y), for all 

x ≠ e and y≠ e in F. 

Theorem: If A is an anti S-fuzzy subfield of a field ( F, +, ∙ ), 

then (i) if A(xy) =1, then either A(x) = 1or A(y) = 1, for x and 

y in F,  

(ii) if A(xy
-1

) =1, then either A(x) = 1or A(y) = 1, for all x and 

y≠ e in F. 

Proof: Let x and y in F. By the definition A(xy)  S ( A(x), 

A(y) ), which  implies that 1 S(A(x), A(y)). Therefore, either 

A(x) =1or A(y) = 1, for all x and y in F. And by the definition 

A(xy
-1

)  S( A(x), A(y) ), which  implies that 1 S(A(x), A(y) ). 

Therefore, either A(x) =1or A(y) =1, for all x and y≠ e in F. 

Theorem: Let ( F, +, ∙ ) be a field. If A is an anti S-fuzzy 

subfield of F, then A(x+y) = S ( A(x), A(y) ), for all x and y in F 

and A(xy) = S(A(x), A(y) ), for all x ≠ 0 and y in F with A(x)  

A(y). 

Proof: Let x and y belongs to F. Assume that A(x)  A(y). Now, 

A(y) = A(x+x+y)  S( A(x), A(x+y) )  S(A(x), A(x+y)) = 

A(x+y)  S(A(x), A(y)) = A(y). Therefore, A(x+y) = A(y) = S ( 

A(x), A(y) ), for all x and y in F. And, A(y) = A(x
-1

xy)  S(A(x
-

1
), A(xy) )  S(A(x), A(xy)) = A(xy)  S(A(x), A(y) )                      

= A(y). Therefore, A( xy) = A(y) = S ( A(x), A(y) ), for all x ≠ 0 

and y in F. 

Theorem: If A and B are any two anti S-fuzzy subfields of a 

field (F, +, ∙ ), then AB is an anti S-fuzzy subfield of F. 

Proof: Let x and y belongs to F and A = {x, A(x) /xF } and 

B = { x, B(x) / xF }. Let C = AB and C = { x, C(x)  / xF 

}, C(x) = max {A(x), B(x) }. (i) C(xy) = max { A(xy), B(xy) 

}  max { S(A(x), A(y) ), S(B(x), B(y)) }= S ( max {A(x), B(x) 

}, max {A(y), B(y)} ) = S( C(x),C(y) ). Therefore,  C(xy)  S ( 

C(x), C(y) ), for all x and y in F. (ii) C(xy
-1

) = max {A(xy
-1

), 

B(xy
-1

) }  max { S( A(x), A(y) ), S ( B(x), B(y) ) } = S ( max { 

A(x), B(x)  }, max { A(y), B(y) } ) = S ( C(x), C(y) ). Therefore, 

C(xy
-1

)  S ( C(x), C(y) ), for all x and y ≠ 0 in F. Hence AB is 

an anti S-fuzzy subfield of a field F. 

Theorem: The union of a family of anti S-fuzzy subfields of a 

field (F, +, ∙ ) is an anti S-fuzzy subfield of F. 

Proof: Let { Ai  }iI  be a family of anti S-fuzzy subfields of a 

field F and  A = 
Ii

Ai . Then for x and y belongs to F, we have 

(i) A(xy) = sup
Ii

Ai )( yx   sup
Ii

S ( Ai )(x , Ai )(y )  S ( 

sup
Ii

( )(xAi
), sup

Ii

( )(yAi
)  ) = S (A(x), A(y) ). 

Therefore, A(xy)  S( A(x), A(y)), for all x and y in F. (ii) 

A(xy
-1

) = sup
Ii

)( 1xyAi
 sup

Ii

 S( )(xAi
, )(yAi

)  

S(sup
Ii

( )(xAi
), sup

Ii

( )(yAi
) ) = S ( A(x), A(y) ). 

Therefore, A(xy
-1

)  S ( A(x), A(y) ), for all x and y ≠ 0 in F. 

Hence the union of a family of anti S-fuzzy subfields of a  field 

F is an anti S-fuzzy subfield of F. 

Theorem: Let A be an anti S-fuzzy subfield of a field (F, +, ∙ ). 

If  A(x) > A(y), for some x and y in F, then A(x+y) = A(x) = 

A(y+x), for all x and y in F and A(xy) = A(x) = A(yx), for all x 

and y≠ 0 in F. 

Proof: Let A be an anti S-fuzzy subfield of a field F. Also we 

have A(x) > A(y), for some x and y in F, Now, A(x+y)  S ( 

A(x), A(y) ) = A(x); and A(x) = A( x+yy
 
)  S( A(x+y), A(y) 

)  S(A(x+y), A(y) ) = A(x+y). Therefore,  A(x+y) = A(x) , for 

all x and y in F. Hence A(x+y) = A(x) = A(y+x), for all x and y 

in F. Now, A(xy)  S (A(x), A(y) ) = A(x); and A(x) = A(xyy
-1 

) 

 S(A(xy), A(y
-1

) )  S (A(xy), A(y) ) = A(xy). Therefore, A(xy) 

= A(x), for all x and y≠ 0 in F. Hence A(xy) = A(x) = A(yx), for 

all x and y≠ 0 in F. 

Theorem: Let A be an anti S-fuzzy subfield of a field (F, +, ∙). 

If A(x) < A(y), for some x and y in F, then A(x+y) = A(y) = 

A(y+x), for all x and y in F and A(xy) = A(y) = A(yx), for all x 

and y≠ 0 in F. 

Proof: It is trivial. 

Theorem: Let A be an anti S-fuzzy subfield of a field ( F, +, ∙ ) 

such that Im A= { }, where  in L. If A = BC, where B and C 

are anti S-fuzzy subfields of F, then either B  C or C  B. 

Proof: It is trivial. 

Theorem: If A and B are anti S-fuzzy subfields of the fields G 

and H, respectively, then the anti-product A×B is an anti S-

fuzzy subfield of G×H. Proof: Let A and B be anti S-fuzzy 

subfields of the fields G and H respectively. Let x1 and x2 be in 

G, y1 and y2 be in H. Then (x1, y1) and (x2, y2) are in G×H. Now, 

A×B [ ( x1, y1 )  ( x2, y2 ) ] = A×B ( x1 x2, y1 y2 ) =                      

max ( A(x1 x2), B(y1 y2) )  max ( S ( A(x1), A(x2) ), S ( 
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B(y1), B(y2) ) ) = S ( max (A(x1), B(y1)) , max ( A(x2), B(y2) ) ) 

= S(A×B(x1, y1), A×B (x2, y2) ). 

Therefore, A×B[(x1, y1)  (x2, y2)]  S(A×B(x1, y1), A×B(x2, y2) 

), for all x1 and x2 in G and y1 and y2 in H. And, A×B[ (x1, 

y1)(x2, y2)
-1

] = A×B(x1x2
-1

, y1y2
-1

 ) = max (A(x1x2
-1

), B(y1y2
-1

))  

max (S(A(x1), A(x2) ), S(B(y1), B(y2) ) ) = S ( max ( A(x1), B(y1) 

), max (A(x2), B(y2))) = S(A×B(x1, y1), A×B(x2, y2) ). 

Therefore, A×B[ (x1, y1)(x2, y2)
 -1

 ]  S ( A×B(x1, y1), A×B(x2, 

y2) ), for all x1 and x2≠ 0 in G and y1 and y2 ≠ 0
׀
 in H. Hence 

anti-product A×B is an anti S-fuzzy subfield of G×H. 

Theorem: Let A and B be fuzzy subsets of the fields G and H, 

respectively. Suppose that 0, 1and 0
׀ 
,1

׀
 are the identity elements 

of G and H, respectively. If the anti-product A×B is an anti S-

fuzzy subfield of G×H, then at least one of the following two 

statements must hold. 

(i) B(0
׀
)  A(x), for all x in G and B(1

׀
)  A(x), for all x≠ 0 in G, 

(ii) A(0)  B(y), for all y in H and A(1)  B(y), for all y≠ 0
׀
 in 

H.  

Proof: Let the anti-product A×B be an anti S-fuzzy subfield of 

G×H. By contraposition, suppose that none of the statements (i) 

and (ii) holds. Then we can find a in G and b in H such that A(a) 

 B(0
׀
), A(a)  B(1

׀
) and B(b)  A(0), B(b)  A(1). We have, 

A×B( a, b ) = max ( A(a), B(b) )  max (A(0), B(0
׀ 
) ) = A×B(0, 

0
׀ 
). And, A×B(a, b) = max (A(a), B(b))  max (A(1), B(1

׀ 
)) = 

A×B(1, 1
׀ 

). Thus anti-product A×B is not an anti S-fuzzy 

subfield of G×H. Hence either B(0
׀
)  A(x), for all x in G and 

B(1
׀
)  A(x), for all x≠ 0 in G or A(0)  B(y), for all y in H and 

A(1)  B(y), for all y≠ 0
׀
 in H.  

Theorem: Let A and B be fuzzy subsets of the fields G and H, 

respectively and the anti-product A×B is an anti S-fuzzy 

subfield of G×H. Then the following are true: 

(i) if A( x )  B( 0
׀ 
), A( x )  B( 1

׀ 
), then A is an anti S-fuzzy 

subfield of G. 

(ii) if B(x)  A(0), B(x)  A(1), then B is an anti S-fuzzy 

subfield of H. 

(iii) either A is an anti S-fuzzy subfield of G or B is an anti S-

fuzzy subfield of H, where 0, 1and 0
׀ 
,1

׀
 are the identity elements 

of G and H, respectively.  

Proof: Let the anti-product A×B be an anti S-fuzzy subfield of 

G×H and x, y in G. Then (x, 0
׀ 
), (x, 1

׀ 
) and (y, 0

׀ 
), (y, 1

׀ 
) are in 

G×H. Now, using the property A(x)B(0
׀
), A(x)B(1

׀
), for all x 

in G, we get, A(xy) = max(A(xy), B(0
׀
+0

׀ 
) ) = A×B ( (xy), 

(0
׀
+0

 ׀
) ) = A×B[(x, 0

 ׀
)+(y, 0

 ׀
)]  S (A×B(x, 0

 ׀
), A×B(y, 0

 ׀
)) 

= S ( max (A(x), B(0
׀
) ), max (A(y), B(0

׀
))) = S(A(x), A(y) ) 

 S (A(x), A(y) ). Therefore, A(xy
 
) S(A(x), A(y)), for all x 

and y in G. And, A(xy
-1

)=max(A(xy
-1

), B(1
׀
1

׀
)) =A×B((xy

-1
), 

(1
׀
1

 ׀
))=A×B[ (x, 1

 ׀
)(y

-1
,1

׀
) ]  S ( A×B(x, 1

 ׀
), A×B(y

-1
, 1

 ׀
) ) = 

S(max( A(x), B(1
׀
 )), max (A(y

-1
), B(1

 ׀
))) = S ( A(x), A(y

-1
) )  

S(A(x), A(y) ). Therefore, A(xy
-1

)  S ( A(x), A(y) ), for all x 

and y≠ 0 in G. Hence A is an anti S-fuzzy subfield of G. Thus (i) 

is proved. Now, using the property B(x)  A(0), for all x in H 

and B(x) A(1), for all x≠ 0
׀
 in H, we get, B(xy

 
) = max ( 

B(xy), A(0+0
 
) ) = A×B( (0+0), (xy) ) = A×B[ (0, x

 
)+(0, y

 
)] 

 S(A×B(0, x
 
), A×B(0, y) ) = S( max (A(0), B(x) ), max ( 

A(0), B(y) ) ) = S( B(x), B(y) )  S (B(x), B(y) ). Therefore,   

B(xy)  S ( B(x), B(y) ), for all x and y in H. And, B(xy
-1

) = 

max (B(xy
-1

), A(1.1) ) = A×B ( (1.1),  (xy
-1

) ) = A×B [ (1, x
 
)(1, 

y
-1 

) ]  S ( A×B(1, x
 
), A×B(1, y

-1
) ) = S ( max ( A(1), B(x) ), 

max (A(1), B(y
-1

) ) ) = S ( B(x), B(y
-1

) )  S ( B(x), B(y) ). 

Therefore, B(xy
-1

)  S(B(x), B(y) ), for all x and y≠ 0
׀
 in H. 

Hence B is an anti S-fuzzy subfield of H. Thus (ii) is 

proved. And (iii) is clear. 

Theorem: Let A be a Fuzzy subset of a field ( F, +, . ) and V be 

the anti-strongest S-fuzzy relation of F. Then A is an anti S-

fuzzy subfield of F if and only if V is an anti S-fuzzy subfield of 

F×F. 

Proof: Suppose that A is an anti S-fuzzy subfield of F. Then for 

any x =(x1, x2) and y = (y1, y2) are in F×F. We have, V(x–y)= V[ 

(x1, x2)– (y1, y2) ] = V( x1 – y1 , x2 – y2 ) = max ( A(x1–y1),  A(x2– 

y2) )  max (S(A(x1), A(y1) ), S( A(x2), A(y2) ) ) = S(max (A(x1), 

A(x2) ), max(A(y1), A(y2) ) ) = S(V(x1, x2), V(y1, y2) ) = S( V(x), 

V(y) ). Therefore, V(x– y)  S( V(x), V(y)), for all x and y in 

F×F. And V(xy
-1

) = V[ (x1, x2)(y1, y2)
-1

 ] = V( x1y1
-1

, x2y2
-1

 ) = 

max (A(x1y1
-1

), A(x2y2
-1

))  max (S(A(x1), A(y1)), S(A(x2), 

A(y2))) = S(max(A(x1), A(x2) ), max ( A(y1), A(y2) ) ) = S ( 

V(x1, x2), V(y1, y2) ) = S( V(x), V(y) ). Therefore, V(xy
-1

)  S ( 

V(x), V(y) ), for all x and y≠ (0, 0) in F×F. This proves that V is 

an anti S-fuzzy subfield of F×F. Conversely, assume that V is an 

anti S-fuzzy subfield of F×F, then for any x = (x1, x2) and y = 

(y1, y2) are in F×F, we have max {A( x1– y1), A(x2 – y2)} =  V( 

x1 – y1 , x2 – y2) = V[( x1, x2 ) – ( y1, y2 )] = V(x – y)  S( V(x), 

V(y) ) = S( V(x1, x2 ), V(y1, y2)) = S( max ( A(x1), A(x2) ), max ( 

A(y1), A(y2) ) ). If we put x2 = y2 = 0, we get, A(x1 – y1)  S ( 

A(x1), A(y1) ), for all x1 and y1 in F. And max {A(x1y1
-1

), A(x2y2
-

1
) } = V(x1y1

-1
, x2y2

-1
) = V[ (x1, x2)(y1, y2)

-1
] = V(xy

-1
) S(V(x), 

V(y) ) = S(V(x1, x2), V(y1, y2 ) ) = S(max ( A(x1), A(x2) ), max ( 

A(y1), A(y2) ) ). If we put x2 = y2 = 1, We get, A(x1y1
-1

 )   S ( 

A(x1), A(y1) ), for all x1 and y1≠ 0 in F. Hence A is an anti S-

fuzzy subfield of F. 

Theorem: Let (F, +, · ) and (F
׀
, +, · ) be any two fields. The  

homomorphic image of an anti S-fuzzy subfield of F is an anti 

S-fuzzy subfield of F
׀
. 

Proof: Let (F, +, · ) and (F
׀
, +, · ) be any two fields and f : F→F

׀
  

be a homomorphism. That is f(x+y) = f(x)+f(y), for all x and y 

in F and f(xy) = f(x)f(y), for all x and y in F. Let V=f(A), where 

A is an anti S-fuzzy subfield of F. We have to prove that V is an 

anti S-fuzzy subfield of F
׀
. Now, for f(x) and f(y) in F

׀
, we have 

V(f(x)f(y)) = V( f(xy))  A(xy)  S ( A(x), A(y) ), which 

implies that V( f(x)f(y) )  S ( V(f(x)), V(f(y)) ), for all f(x) 

and f(y) in F
׀
. And V( f(x)( f(y) )

-1
 ) = V( f(xy

-1
) )  A(xy

-1
)  

S(A(x), A(y)), which implies that V( f(x)( f(y) )
-1

 )   S ( 

V(f(x)), V( f(y) ) ), for all f(x) and f(y) ≠ 0
׀
 in F

׀
. Hence V is an 

anti S-fuzzy subfield of a field F
׀
. 

Theorem: Let (F, +, · ) and (F
׀
, +, · ) be any two fields. The 

homomorphic pre-image of an anti S-fuzzy subfield of F
׀
 is an 

anti S-fuzzy subfield of F. 

Proof: Let (F, +, · ) and (F
׀
, +, · ) be any two fields and f : F→F

׀
 

be a homomorphism. That is f(x+y) = f(x)+f(y), for all x and y 

in F and f(xy) = f(x)f(y), for all x and y in F. Let V=f(A), where 

V is an anti S-fuzzy subfield of F
׀
. We have to prove that A is an 

anti S-fuzzy subfield of F. Let x and y in F. Then, A(xy) = V( 

f(xy)) = V( f(x)f(y) )  S(V(f(x)), V(f(y)) )= S( A(x), A(y) ), 

which implies that A(xy)  S ( A(x), A(y) ), for all x and y in 

F. And, A(xy
-1

) = V( f(xy
-1

) ) = V( f(x)f(y
-1

) ) = V( f(x) ( f(y) )
-1

) 

 S(V(f(x)), V(f(y))) = S ( A(x), A(y) ), which implies that 

A(xy
-1

)  S ( A(x), A(y) ), for all x and y≠ 0 in F. Hence A is an 

anti S-fuzzy subfield of a field F. 

In the following Theorem ◦ is the composition operation of  

functions : 

Theorem: Let A be an anti S-fuzzy subfield of a field H and f is 

an isomorphism from a field F onto H. Then A◦f is an anti S-

fuzzy subfield of F. 
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Proof: Let x and y in F and A be an anti S-fuzzy subfield of a 

field H. Then we have, (A◦f )( xy) = A(f( xy
 
)) = A( f(x)+ 

f(y) ) = A( f(x)  f(y)
 
) ≤ S( A(f(x)), A(f(y)) ) ≤ S ( (A◦f )(x), 

(A◦f )(y) ), which implies that (A◦f)(xy) ≤ S ( (A◦f)(x), (A◦f 

)(y) ), for all x and y in F. And, (A◦f )(xy
-1

) = A( f(xy
-1

)) = A( 

f(x)f(y
-1

) ) = A( f(x)(f(y))
-1 

) ≤ S(A(f(x)), A(f(y))) ≤ S((A◦f )(x), 

(A◦f )(y) ), which implies that (A◦f )(xy
-1

)≤ S ( (A◦f )(x), (A◦f 

)(y) ), for all x and y≠ 0 in F. Therefore ( A◦f  ) is an anti S-

fuzzy subfield of a field F. 

Theorem: If A is an anti S-fuzzy subfield of a field (F, +, . ), 

then the pseudo anti S-fuzzy coset (aA)
p
 is an anti S-fuzzy 

subfield of a field F, for every aF. 

Proof : Let A be an anti S-fuzzy subfield of a field ( F, +, . ). 

For every x and y in F, we have, ( (aA)
p 

)( xy
 
) = p(a)A( xy) ≤  

p(a) S( A(x), A(y) ) = S(p(a)A(x),  p(a)A(y) ) = S(((aA)
p 

)(x), ( 

(aA)
p 

)(y) ). Therefore, ( (aA)
p 

)( xy) ≤ S ( ( (aA)
p 

)(x), ((aA)
p 

)(y) ), for all x and y in F. And for every x and y≠ 0 in F, ((aA)
p 

)( xy
-1

) = p(a)A( xy
-1

) ≤  p(a) S(A(x), A(y)) = S( p(a)A(x),  

p(a)A(y))= S(((aA)
p
)(x), ((aA)

p
)(y)). Therefore, ((aA)

p
)(xy

-1
)≤ 

S(((aA)
p
)(x), ((aA)

p
)(y) ), for all x and y≠ 0 in F. Hence (aA)

p
 is 

an anti S-fuzzy subfield of a field F. 
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