
Kamoru Oluwatoyin Kadiri/ Elixir Elec. Engg. 69 (2014) 23323-23326

23323

Introduction

The idea of being able to talk to a computer, and have it

understand one, has been a recurring theme in science fiction for

decades. While we are not yet at the stage where computers can

comprehend our every word, and act on them, these machines

are becoming ever more complex and ubiquitous. But before a

computer (or, for that matter, a human being) can attempt to

understand speech, it must first convert the audio stream it

receives into what that stream actually represents: initially, the

basic sounds that make up a language, and ultimately, words. To

do that with greater reliability and fidelity, and to be able to

cope with different speakers and noisy environments, are the

goals of current research in speech recognition. While others

concentrate on developing the algorithms and models, there still

remains the question of how to implement them. Commercial

software packages already exist which can run on a PC — but

they are limited by having to operate on a general-purpose

processor. In the end, to achieve the maximum processing

power, application-specific hardware is the answer.

Accordingly, a hardware implementation of a speech

recognition system is presented for ubiquitous computing to

become both useful and real, the computing embedded in all

aspects of our environment must be accessible via natural

human interfaces. Future embedded environments need to at

least support interfaces such as speech (this paper's focus),

visual feature recognition, and gesture recognition. A viable

speech recognizer needs to be speaker independent, accurate,

cover a large vocabulary, handle continuous speech, and have

implementations amenable to mobile as well as tethered

computing platforms. Current systems fall short of these goals

primarily in the accuracy, real time, and power requirements.

Review of related literature

Speech recognition is a computationally demanding task,

especially the decoding part, which converts pre-processed

speech data into words or sub-word units, and which

incorporates Viterbi decoding and Gaussian distribution

calculations. Most speech recognition research has targeted

recognition accuracy. Performance issues have been secondary

and power efficiency has largely been ignored. Ravishankar

improved Sphinx performance by reducing accuracy and

subsequently recovering it in a less computationally active phase

and developed a multi-processor version of an older version of

Sphinx. However, details of these works are currently

unavailable. Agaram provided a detailed analysis of Sphinx 2

and compared this analysis with SPEC benchmarks. Pihl

designed a 0:8_ custom coprocessor to accelerate Gaussian

probability generation for an HMM based recognizer. However,

Pihl's work proposed a specialized arithmetic format rather than

the IEEE 754 compatible version described here. Furthermore,

the number of Gaussian components need to be processed per

second has escalated from 40,000 in the case of Pihl's

coprocessor to 4.9 million for our accelerator during the last 7

years and this trend is likely to continue as the search for

increased accuracy proceeds.

Pihl's work did not address scalability which is a central

theme for this research. Tong showed an example of reduced

precision digit serial multiplication for Sphinx. Anatharaman

showed a custom multiprocessor architecture for improving the

Viterbi beam search component of a predecessor of Sphinx.

Application acceleration using custom coprocessors has been in

use for decades, However, current researchers are exploiting this

theme for reducing power consumption. Piperench is one

Acceleration of speech processing algorithms using reconfigurable hardware
Kamoru Oluwatoyin Kadiri

Department of Electrical/Electronics Engineering Department Federal Polytechnic Offa, Kwara State.

ABSTRACT

Relevant background material about speech recognition is presented, along with a critical

review of previous hardware implementations. Accurate real-time speech recognition is not

currently possible in the mobile embedded space where the need for natural voice interfaces

is clearly important. The continuous nature of speech recognition coupled with an inherently

large working set creates significant cache interference with other processes. Hence, real-

time recognition is problematic even on high-performance general-purpose platforms. This

paper provides a detailed analysis of CMU's latest speech recognizer (Sphinx 3.2.). Several

optimizations are then described which expose parallelism and drastically reduce the

bandwidth and power requirements for real-time recognition. A special-purpose accelerator

for the dominant Gaussian probability phase is developed for a 0:25_ CMOS process which

is then analyzed and compared with Sphinx's measured energy and performance on a 0:13_

2.4 GHz Pentium 4 system. The results show an improvement in power consumption by a

factor of 29 at equivalent processing throughput. However after normalizing the process, the

special-purpose approach has twice the throughput, and consumes 104 times less energy

than the general-purpose processor. The energy-delay product is a better comparison metric

due to the inherent design trade-offs between energy consumption and performance. The

energy-delay product of the special-purpose approach is 196 times better than the Pentium 4.

These results provide strong evidence that real-time large vocabulary speech recognition can

be done within a power budget commensurate with embedded processing using today's

technology.

 © 2014 Elixir All rights reserved.

Elixir Elec. Engg. 69 (2014) 23323-23326

Electrical Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

ARTICLE INFO

Article history:

Received: 26 January 2014;

Received in revised form:

30 March 2014;

Accepted: 18 April 2014;

Keywords

Algorithms,

Embedded systems,

DTW- Dynamic Time Warping,

Speech recognizer.

Tele:

E-mail addresses: Kadiritoyin2007@yahoo.com

 © 2014 Elixir All rights reserved

Kamoru Oluwatoyin Kadiri/ Elixir Elec. Engg. 69 (2014) 23323-23326

23324

approach which exploits virtualized hardware, and run-time

reconfiguration. Pleiades is a reconfigurable DSP architecture

that uses half the power of an Intel Strong ARM for FFT

calculation.

Aims and objectives

The aim of this research is to design and implement a

speech recognition system, with the decoding stage

implemented in hardware, in order to:

• assess the suitability of so doing for the various parts of the

recognition algorithm;

• compare the processing speed of hardware and software

implementations, in order to ascertain the possible speedup;

• determine the requirements inherent in applying hardware

(field-programmable gate array (FPGA).to speech recognition.

Justification of research

This work is based on CMU's Sphinx 3 system. Sphinx 3

uses a continuous model that is more accurate than the previous

semi-continuous Sphinx 2 system but requires significantly

more compute power. Sphinx 3 runs at 1.8x slower than real

time on a 1.7 GHz AMD Athlon. Performance is hardly the

problem since improvement rates predicted by Moore's Law

assures that real time performance will be available soon. A

much more important problem is that the real time main

memory bandwidth requirement of Sphinx 3 is 800 MB/sec. Our

400 MHz Strong ARM development system has a peak

bandwidth capability of only 64 MB/sec and this bandwidth

costs 0.47watts of power. A reasonable approximation is that

power varies with main memory bandwidth for Sphinx 3

indicating that this program is at least an order of magnitude too

slow and consumes an order of magnitude too much power for

embedded applications. This provides significant motivation to

investigate an alternate approach.

Contributions of the Coprocessor Architecture

The main contributions of our coprocessor architecture are

energy savings, server scalability and bandwidth savings.

Energy Savings

Without considering the power consumed by main memory,

the GAU accelerator consumed 1.8 watts while the Pentium 4

consumed 52.3 watts during Mahanalobis distance calculation,

representing an improvement of 29 fold.

Scalability

In addition to having energy advantages, our design is also

scalable. The main limitation is our in-order processor with its

simple blocking cache mode. The Final Sigma stage enables the

design to scale even with blocking caches due to the removal of

destructive interference between the cache and the DMA engine

Bandwidth Savings

Because of our blocking optimization (GAU OPT), we need

to process the data only 10 times per second with a peak

bandwidth of 180 MB/s which can be further reduced by

applying the sub-vector quantization (non-feedback) heuristics

in Sphinx. Not only does our design bring the bandwidth

requirements to limits possible on embedded systems, it also

drastically improves the power consumption

Methodology

A typical speech recognition system consists of three

stages:

First Stage

The pre-processing stage which takes a speech waveform as

its input, and extracts from it feature vectors or observations

which represent the information required to perform recognition.

Automatic speech recognition systems make use of the

modulation applied by the vocal tract (throat, tongue, teeth, lips

and nasal cavity); the excitation produced by the larynx is not

used, even though humans infer much information from it.

Converting a speech waveform into a form suitable for

processing by the decoder requires several stages. A typical such

process is as follows:

1. The waveform is sent through a low pass filter, typically 4 to

8 kHz. As is evidenced by the bandwidth of the telephone

system being around 4 kHz, this is sufficient for comprehension.

2. The resulting waveform is sampled. Sampling theory requires

a sampling rate of double the maximum frequency (so 8 to 16

kHz as appropriate).

3. The data undergoes frequency analysis using a discrete

Fourier transform. This produces information about the

frequency within each analysis window, which is typically 20ms

wide, with each one overlapping its neighbour by 10ms.

4. Human hearing is not particularly sensitive to phase, so this

information is removed by taking the modulus of the complex

frequency data.

5. Loudness is perceived by humans on a log scale, rather than a

linear one, so the log of the power is computed for the frequency

data.

6. Frequency is also perceived on a non-linear scale. In

particular we discriminate better between low frequency sounds

than high frequency ones, and so the mel-scale is used to

compensate for this. A filter bank analysis is performed,

whereby the frequency magnitudes are grouped into a number of

bins, with the bins spaced out according to the mel scale so as to

take account of our non-linear perception. Twelve of such bins

are typical.

7. In order to make recognition calculations less complex

(specifically, to ensure that the covariance matrix is diagonal), it

is required that the mel-scale filterbank components be

uncorrelated, which is not normally the case. In order to achieve

this, a discrete cosine transform is effected, as a more

computationally efficient approximation to principal component

analysis, in order to a produce a set of mel-frequency cepstral

coefficients (MFCC).

8. An additional parameter can be added in the form of an

energy term, computed as the log of the signal energy.

9. Finally, further information about the “shape” of the speech

data can be obtained by taking the first and second derivatives of

the cepstral coefficients. Hence, starting with twelve bins,

adding an energy value, and then taking the derivatives, we end

up with a 39-dimensional vector.

An alternative to mel filterbank analysis is linear prediction,

where the vocal tract is modelled by a transfer function, and the

filter coefficients are calculated from the data in order to

minimise the prediction error.

Second Stage

The recognition or decoding, which is performed using a set

of statistical models, known as hidden Markov models (HMMs).

At their simplest, the HMMs represent monophones, i.e. the

basic distinct sounds of a particular language, of which English

has around 50. However, when people speak, these sounds are

affected by those uttered immediately before and after them. In

order to model this effect, a larger number of models, now

representing pairs and triplets of monophones (biphones and

triphones), can be used, leading to improved recognition ability.

In addition, a language model can be used, which contains

further information as to the probability of one recognition unit

(monophone or biphone/triphone, as appropriate) following

another.

For small- to medium-sized vocabularies, the word and

language models are compiled into a single, integrated model.

Recognition is performed using the Viterbi algorithm to find the

Kamoru Oluwatoyin Kadiri/ Elixir Elec. Engg. 69 (2014) 23323-23326

23325

route through this model which best explains the data. For large

vocabulary systems, this approach is not viable due to the large

size of the search space, and so methods of restricting its size are

required. Besides the standard practice of pruning the least

likely paths, this can be achieved by incorporating other

information, such as data based on language usage or the

formation of speech, by using multiple passes, or by heuristic

methods such as stack decoding.

Third Stage

 In the third stage, word-level acoustic models are formed

by concatenating the recognition units according to a

pronunciation dictionary. The word models are then combined

with a language model, which constrains the recognizer to

recognize only valid word sequences.

The first and third stages can be performed efficiently in

software (though some of the pre-processing may be better

suited to a DSP). The decoding and associated observation

probability calculations, however, place a particularly high load

on the processor, and so it is these parts of the system that have

been the subject of a number of implementations in hardware,

often using custom-built chips. However, with ever more

powerful programmable logic devices (PLDs) being available,

such chips appear to offer an attractive alternative.

Data Analysis

We performed a few tests to gain a sense of the error rates

of our system. Two sets of tests were performed; one where

each DTW trained stored a unique word, and one where sets of

three DTWs were trained per word. This initial set of tests

examined the performance of the algorithm itself, while the

latter tests examined more closely the performance of the system

as we planned to use it in gaming applications.

To complement our initial Matlab tests between the words

\taco" and _sh" we examined our system's recognition of these

two words. Each word was uttered 10 times, and the number of

matches for each word was recorded. The vertical chart of the

following graph describes the two words trained into the system,

while the horizontal axis describes the word being used to test.

The final algorithmic test we attempted, and arguably the

most difficult, attempted to distinguish the words \alpha,"

\bravo," \charlie," and \delta" from each other. In this case, each

word was uttered 5 times, yielding the results depicted below.

Trained Word alpha bravo charlie delta

This test demonstrated some significant problem areas in

our algorithm. First, our algorithm had difficulty detecting the

utterance of a fricative, due to the high-frequency low-

magnitude nature of fricatives. This accounts for the lack of

successful matches with the word \charlie," since that test point

starts with a fricative-like sound. This test also compared two

words that sounded very similar: \alpha" and \delta."

Unsurprisingly, our algorithm had difficulty distinguishing such

similar words from each other, matching each word

approximately equally when the uttered word was \delta." This

may be due to the soft or quiet nature of the initial consonant,

which may not have been detected by our system in many cases.

To combat high error rates when used in practical applications,

we decided to operate our system with 3 DTWs trained on 3

instances of each word. We conducted similar error-rate tests

with this modified configuration, using words of more pertinent

interest to the system's intended use. In both of the tests

described below, each word was uttered 10 times in testing, and

a word match was counted if any of the DTWs associated with

some words successfully matched the input. First, we examined

the error rates when given the words. With this modification to

the application of our algorithm, we were able to achieve

substantially better error rates on words we expected our system

to handle. This result demonstrated promise for our system to

effectively recognize words in a gaming setting.

Discussion

A simplistic view of the high-level organization of Sphinx 3

is shown in Figure 1. Rectangles represent algorithmic phases

and rounded boxes represent databases. The numbers in

parenthesis are the approximate on-disk size of the databases

before they are loaded into memory and possibly expanded.

Sphinx has 3 major logical phases: front-end signal processing

which transforms raw signal data into feature vectors; acoustic

modeling which converts feature vectors into a series of

phonemes; and a language model based search that transforms

phoneme sequences into sequences of words. The process

inherently considers multiple probable candidate phoneme and

word sequences simultaneously. The final choice is made based

on both phoneme and word context. We focus on analyzing the

dominant processing component of the acoustic and search

phases in this paper. The front end will hereafter be referred to

as FE. The dominant computation done during acoustic model

evaluation is Gaussian probability estimation. Hence, the figure

and the rest of this paper refer to this algorithm known as GAU.

The key component of the search phase is Hidden Markov

Model evaluation. So, we refer to it as HMM. A more accurate

and detailed view is that Sphinx models language using hidden

Markov models where the probability of observing a feature

vector while in a particular state is assumed to follow a Gaussian

distribution. GAU precomputes Gaussian probabilities for sub-

phonetic HMM states (senones). The output of the GAU phase

is used during acoustic model evaluation and represents the

probability of observing a feature vector in an HMM state. The

Gaussian probability is computed as the weighted sum of the

Mahanalobis distance of the feature from a set of references

used while training the recognizer. The Mahanalobis distance is

a statistically significant distance squared metric between two

vectors. Given a feature vector Feat and the pair of vectors (M;V

) (hereafter called a component) which represent the mean and

variance from a reference, GAU spends most of its time

computing the quantity:

The Gaussian reference table contains 49,152 components

for the HUB4 speech model we use. Each component consists of

an instance of a mean vector and a variance vector. Sphinx uses

feedback from the HMM phase to minimize the number of

components GAU needs to evaluate. In the worst case, every

single component needs to be evaluated for every single frame.

A real time recognizer should have the ability to perform 4.9

million component evaluations per second. In practice, the

feedback heuristic manages to reduce this number to well under

50%. The Viterbi search algorithm for HMMs is multiplication

intensive, but Sphinx as well as many other speech recognizers

convert it to an integer addition problem by using _xed point

arithmetic in a logarithmic domain. FE and GAU are the only

oating-point intensive components of Sphinx.

The Sphinx 3 code spends less than 1% of its time on front

end processing, 57.5% of the time on the Gaussian phase and

41.5% on the HMM phase. While our work has addressed the

entire application, the work reported here addresses the

optimization and implementation of the dominant Gaussian

phase. The contributions include an analysis of the Sphinx 3

system, an algorithmic modification which exposes additional

parallelism at the cost of increased work, an optimization which

drastically reduces bandwidth requirements, and a special-

purpose coprocessor architecture which improves the

performance of Sphinx 3 while simultaneously reducing the

Kamoru Oluwatoyin Kadiri/ Elixir Elec. Engg. 69 (2014) 23323-23326

23326

energy requirements to the point where real-time, speaker-

independent speech recognition is viable on embedded systems

in today's technology.

Findings

Sphinx has a lengthy startup phase and extremely large data

structures which could cause high TLB miss rates on embedded

platforms with limited TLB reach. To avoid performance

characteristics being aliased by startup cost and the TLB miss

rate, Sphinx 3.2 was modified to support check pointing and fast

restart. For embedded platforms, the check-pointed data

structures may be moved to ROM in a physically mapped

segment similar to kseg0 in MIPS processors. Results in this

paper are based on this low startup cost version of Sphinx

referred to as original. Previous studies have not characterized

the 3 phases separately. To capture the phase characteristics and

separate optimizations for embedded architectures, we

developed a phased" version of Sphinx 3. In phased version,

each of the FE, GAU and HMM phases can be run

independently with input and output data redirected to

intermediate files. In the rest of this paper FE, GAU, HMM

refers to the corresponding phase run in isolation while phased

refers to all three chained sequentially with no feedback. In

Phased, FE and HMM are identical to original, while GAU work

is increased by the lack of dynamic feedback from HMM.

It appeared likely that a multi-GHz processor might be

required to operate Sphinx in real time. Parameters like L1

cache hit time, memory access time, oating-point latencies etc

were measured on a 1.7GHz AMD Athlon processor using the

lm bench hardware performance analysis benchmark.

In the phased version, we found that approximately 0.74%,

55.5% and 41.3% of time was spent in FE, GAU and HMM

respectively. Since FE is such a small component of the

execution time, we ignore it in the rest of this study and

concentrate on the analysis of the GAU and HMM phases.

Conclusion

We implemented an isolated word speech recognition

system in hardware. This system processes raw audio data using

Mel scale values and matches words using the dynamic time

warping algorithm. We have successfully demonstrated this

systems capability to distinguish many words from each other,

through the use of our algorithm and through the use of multiple

DTW modules trained on the same word.

Our system works well at distinguishing dissimilar words

from each other. However, there are a number of points in which

recognition does not work as well. Words that begin or end with

fricatives often have difficulties on account of the high-

frequency nature of fricative sounds failing to generate sufficient

energy for the system to detect. In a future implementation we

may attempt to combat this effect with a pre-emphasis filter that

amplified higher frequencies, although initial testing with such a

filter tended to increase these higher frequency values too much,

hurting the system's ability to match words.

Very short words tend to match much more frequently,

since the dynamic time warping algorithm will tend to find a

good matching with such short inputs. We attempted to combat

this effect by adding a small punishment value for matching

words of dramatically different lengths, but properly calibrating

this punishment value proved tricky on initial implementation.

In general, we found that our algorithm was effective at

matching words and identifying the correct word from the best

distance value. However, reasonable threshold values were

difficult to determine, and different length words often needed

different threshold values. Dynamic threshold values based on

word lengths may be useful to implement to improve our

system's effectiveness in the future.

Recommendation

Though the Gaussian estimator was designed for Sphinx 3

and the MIPS-like embedded processor, the results are widely

applicable to other architectures and recognizers. There are

several levels at which this system may be integrated into a

speech recognition task pipeline similar to Phased. For example,

an intelligent microphone may be created by using a simple low-

power DSP to handle the A/D conversion and FE phase and then

a GAU coprocessor attached to the DSP may be used for

probability estimation. The probability estimates can then be

sent to a high-end processor or custom accelerator that does

language model computation thereby hiding more than 50% of

the compute effort required for speech recognition. On desktop

systems, the Gaussian accelerator may be part of a sound card or

the Gaussian accelerator may be directly attached to the main

processor. On commercial voice servers, the Gaussian estimator

may be directly built into the line cards that interface to the

telephone network thereby freeing up server resources for

language model and application processing.

References

Keogh, Eamonn and Michael Pazzani. Derivative Dynamic

Time Warping. November 2008.

K. Agaram, S. W. Keckler, and D. Burger. A characterization of

speech recognition on modern computer systems. In

Proceedings of the 4th IEEE Workshop on Workload

Characterization, Dec. 2001.

J. G. F. David Pallett and M. A. Przybocki. 1996 preliminary

broadcast news benchmark tests. In Proceedings of the 1997

DARPA Speech Recognition Workshop, Feb. 1997.

X. Huang, F. Alleva, H.-W. Hon, M.-Y. Hwang, K.-F. Lee, and

R. Rosenfeld. The SPHINX-II speech recognition system: an

overview. Computer Speech and Language, 7(2):137{148, 1993.

C. Lai, S.-L. Lu, and Q. Zhao. Performance analysis of speech

recognition software. In Proceedings of the Fifth Workshop on

Computer Architecture Evaluation using Commercial

Workloads, Feb. 2002.

R. Mosur. Efficient Algorithms for Speech Recognition. PhD

thesis, Carnegie Mellon University, May 1996. CMU-CS-96-

143.

M. Seltzer. Sphinx iii signal processing front end specification.

http://perso.enst.fr/~sirocco/ May 2002.

