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Introduction 

The idea of being able to talk to a computer, and have it 

understand one, has been a recurring theme in science fiction for 

decades. While we are not yet at the stage where computers can 

comprehend our every word, and act on them, these machines 

are becoming ever more complex and ubiquitous.  But before a 

computer (or, for that matter, a human being) can attempt to 

understand speech, it must first convert the audio stream it 

receives into what that stream actually represents: initially, the 

basic sounds that make up a language, and ultimately, words. To 

do that with greater reliability and fidelity, and to be able to 

cope with different speakers and noisy environments, are the 

goals of current research in speech recognition. While others 

concentrate on developing the algorithms and models, there still 

remains the question of how to implement them. Commercial 

software packages already exist which can run on a PC — but 

they are limited by having to operate on a general-purpose 

processor. In the end, to achieve the maximum processing 

power, application-specific hardware is the answer. 

Accordingly, a hardware implementation of a speech 

recognition system is presented for ubiquitous computing to 

become both useful and real, the computing embedded in all 

aspects of our environment must be accessible via natural 

human interfaces. Future embedded environments need to at 

least support interfaces such as speech (this paper's focus), 

visual feature recognition, and gesture recognition. A viable 

speech recognizer needs to be speaker independent, accurate, 

cover a large vocabulary, handle continuous speech, and have 

implementations amenable to mobile as well as tethered 

computing platforms. Current systems fall short of these goals 

primarily in the accuracy, real time, and power requirements. 

Review of related literature 

Speech recognition is a computationally demanding task, 

especially the decoding part, which converts pre-processed 

speech data into words or sub-word units, and which 

incorporates Viterbi decoding and Gaussian distribution 

calculations. Most speech recognition research has targeted 

recognition accuracy. Performance issues have been secondary 

and power efficiency has largely been ignored. Ravishankar 

improved Sphinx performance by reducing accuracy and 

subsequently recovering it in a less computationally active phase 

and developed a multi-processor version of an older version of 

Sphinx. However, details of these works are currently 

unavailable. Agaram provided a detailed analysis of Sphinx 2 

and compared this analysis with SPEC benchmarks. Pihl 

designed a 0:8_ custom coprocessor to accelerate Gaussian 

probability generation for an HMM based recognizer. However, 

Pihl's work proposed a specialized arithmetic format rather than 

the IEEE 754 compatible version described here. Furthermore, 

the number of Gaussian components need to be processed per 

second has escalated from 40,000 in the case of Pihl's 

coprocessor to 4.9 million for our accelerator during the last 7 

years and this trend is likely to continue as the search for 

increased accuracy proceeds. 

Pihl's work did not address scalability which is a central 

theme for this research. Tong showed an example of reduced 

precision digit serial multiplication for Sphinx. Anatharaman 

showed a custom multiprocessor architecture for improving the 

Viterbi beam search component of a predecessor of Sphinx. 

Application acceleration using custom coprocessors has been in 

use for decades, However, current researchers are exploiting this 

theme for reducing power consumption. Piperench is one 
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approach which exploits virtualized hardware, and run-time 

reconfiguration. Pleiades is a reconfigurable DSP architecture 

that uses half the power of an Intel Strong ARM for FFT 

calculation. 

Aims and objectives 

The aim of this research is to design and implement a 

speech recognition system, with the decoding stage 

implemented in hardware, in order to: 

• assess the suitability of so doing for the various parts of the 

recognition algorithm; 

• compare the processing speed of hardware and software 

implementations, in order to ascertain the possible speedup; 

• determine the requirements inherent in applying hardware 

(field-programmable gate array (FPGA).to speech recognition.  

Justification of research 

This work is based on CMU's Sphinx 3 system. Sphinx 3 

uses a continuous model that is more accurate than the previous 

semi-continuous Sphinx 2 system but requires significantly 

more compute power. Sphinx 3 runs at 1.8x slower than real 

time on a 1.7 GHz AMD Athlon. Performance is hardly the 

problem since improvement rates predicted by Moore's Law 

assures that real time performance will be available soon. A 

much more important problem is that the real time main 

memory bandwidth requirement of Sphinx 3 is 800 MB/sec. Our 

400 MHz Strong ARM development system has a peak 

bandwidth capability of only 64 MB/sec and this bandwidth 

costs 0.47watts of power. A reasonable approximation is that 

power varies with main memory bandwidth for Sphinx 3 

indicating that this program is at least an order of magnitude too 

slow and consumes an order of magnitude too much power for 

embedded applications. This provides significant motivation to 

investigate an alternate approach. 

Contributions of the Coprocessor Architecture  

The main contributions of our coprocessor architecture are 

energy savings, server scalability and bandwidth savings. 

Energy Savings 

Without considering the power consumed by main memory, 

the GAU accelerator consumed 1.8 watts while the Pentium 4 

consumed 52.3 watts during Mahanalobis distance calculation, 

representing an improvement of 29 fold.  

Scalability  

In addition to having energy advantages, our design is also 

scalable. The main limitation is our in-order processor with its 

simple blocking cache mode. The Final Sigma stage enables the 

design to scale even with blocking caches due to the removal of 

destructive interference between the cache and the DMA engine 

Bandwidth Savings  

Because of our blocking optimization (GAU OPT), we need 

to process the data only 10 times per second with a peak 

bandwidth of 180 MB/s which can be further reduced by 

applying the sub-vector quantization (non-feedback) heuristics 

in Sphinx. Not only does our design bring the bandwidth 

requirements to limits possible on embedded systems, it also 

drastically improves the power consumption 

Methodology 

A typical speech recognition system consists of three 

stages:   

First Stage 

The pre-processing stage which takes a speech waveform as 

its input, and extracts from it feature vectors or observations 

which represent the information required to perform recognition. 

Automatic speech recognition systems make use of the 

modulation applied by the vocal tract (throat, tongue, teeth, lips 

and nasal cavity); the excitation produced by the larynx is not 

used, even though humans infer much information from it. 

Converting a speech waveform into a form suitable for 

processing by the decoder requires several stages. A typical such 

process is as follows: 

1. The waveform is sent through a low pass filter, typically 4 to 

8 kHz. As is evidenced by the bandwidth of the telephone 

system being around 4 kHz, this is sufficient for comprehension. 

2. The resulting waveform is sampled. Sampling theory requires 

a sampling rate of double the maximum frequency (so 8 to 16 

kHz as appropriate). 

3. The data undergoes frequency analysis using a discrete 

Fourier transform. This produces information about the 

frequency within each analysis window, which is typically 20ms 

wide, with each one overlapping its neighbour by 10ms. 

4. Human hearing is not particularly sensitive to phase, so this 

information is removed by taking the modulus of the complex 

frequency data. 

5. Loudness is perceived by humans on a log scale, rather than a 

linear one, so the log of the power is computed for the frequency 

data. 

6. Frequency is also perceived on a non-linear scale. In 

particular we discriminate better between low frequency sounds 

than high frequency ones, and so the mel-scale is used to 

compensate for this. A filter bank analysis is performed, 

whereby the frequency magnitudes are grouped into a number of 

bins, with the bins spaced out according to the mel scale so as to 

take account of our non-linear perception. Twelve of such bins 

are typical. 

7. In order to make recognition calculations less complex 

(specifically, to ensure that the covariance matrix is diagonal), it 

is required that the mel-scale filterbank components be 

uncorrelated, which is not normally the case. In order to achieve 

this, a discrete cosine transform is effected, as a more 

computationally efficient approximation to principal component 

analysis, in order to a produce a set of mel-frequency cepstral 

coefficients (MFCC). 

8. An additional parameter can be added in the form of an 

energy term, computed as the log of the signal energy. 

9. Finally, further information about the “shape” of the speech 

data can be obtained by taking the first and second derivatives of 

the cepstral coefficients. Hence, starting with twelve bins, 

adding an energy value, and then taking the derivatives, we end 

up with a 39-dimensional vector. 

An alternative to mel filterbank analysis is linear prediction, 

where the vocal tract is modelled by a transfer function, and the 

filter coefficients are calculated from the data in order to 

minimise the prediction error. 

Second Stage 

The recognition or decoding, which is performed using a set 

of statistical models, known as hidden Markov models (HMMs). 

At their simplest, the HMMs represent monophones, i.e. the 

basic distinct sounds of a particular language, of which English 

has around 50. However, when people speak, these sounds are 

affected by those uttered immediately before and after them. In 

order to model this effect, a larger number of models, now 

representing pairs and triplets of monophones (biphones and 

triphones), can be used, leading to improved recognition ability. 

In addition, a language model can be used, which contains 

further information as to the probability of one recognition unit 

(monophone or biphone/triphone, as appropriate) following 

another. 

For small- to medium-sized vocabularies, the word and 

language models are compiled into a single, integrated model. 

Recognition is performed using the Viterbi algorithm to find the 
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route through this model which best explains the data. For large 

vocabulary systems, this approach is not viable due to the large 

size of the search space, and so methods of restricting its size are 

required. Besides the standard practice of pruning the least 

likely paths, this can be achieved by incorporating other 

information, such as data based on language usage or the 

formation of speech, by using multiple passes, or by heuristic 

methods such as stack decoding. 

Third Stage 

 In the third stage, word-level acoustic models are formed 

by concatenating the recognition units according to a 

pronunciation dictionary. The word models are then combined 

with a language model, which constrains the recognizer to 

recognize only valid word sequences. 

The first and third stages can be performed efficiently in 

software (though some of the pre-processing may be better 

suited to a DSP). The decoding and associated observation 

probability calculations, however, place a particularly high load 

on the processor, and so it is these parts of the system that have 

been the subject of a number of implementations in hardware, 

often using custom-built chips. However, with ever more 

powerful programmable logic devices (PLDs) being available, 

such chips appear to offer an attractive alternative. 

Data Analysis 

We performed a few tests to gain a sense of the error rates 

of our system. Two sets of tests were performed; one where 

each DTW trained stored a unique word, and one where sets of 

three DTWs were trained per word. This initial set of tests 

examined the performance of the algorithm itself, while the 

latter tests examined more closely the performance of the system 

as we planned to use it in gaming applications. 

To complement our initial Matlab tests between the words 

\taco" and \_sh" we examined our system's recognition of these 

two words. Each word was uttered 10 times, and the number of 

matches for each word was recorded. The vertical chart of the 

following graph describes the two words trained into the system, 

while the horizontal axis describes the word being used to test. 

The final algorithmic test we attempted, and arguably the 

most difficult, attempted to distinguish the words \alpha," 

\bravo," \charlie," and \delta" from each other. In this case, each 

word was uttered 5 times, yielding the results depicted below. 

Trained Word alpha bravo charlie delta 

This test demonstrated some significant problem areas in 

our algorithm. First, our algorithm had difficulty detecting the 

utterance of a fricative, due to the high-frequency low-

magnitude nature of fricatives. This accounts for the lack of 

successful matches with the word \charlie," since that test point 

starts with a fricative-like sound. This test also compared two 

words that sounded very similar: \alpha" and \delta." 

Unsurprisingly, our algorithm had difficulty distinguishing such 

similar words from each other, matching each word 

approximately equally when the uttered word was \delta." This 

may be due to the soft or quiet nature of the initial consonant, 

which may not have been detected by our system in many cases. 

To combat high error rates when used in practical applications, 

we decided to operate our system with 3 DTWs trained on 3 

instances of each word. We conducted similar error-rate tests 

with this modified configuration, using words of more pertinent 

interest to the system's intended use. In both of the tests 

described below, each word was uttered 10 times in testing, and 

a word match was counted if any of the DTWs associated with 

some words successfully matched the input. First, we examined 

the error rates when given the words. With this modification to 

the application of our algorithm, we were able to achieve 

substantially better error rates on words we expected our system 

to handle. This result demonstrated promise for our system to 

effectively recognize words in a gaming setting. 

Discussion 

A simplistic view of the high-level organization of Sphinx 3 

is shown in Figure 1. Rectangles represent algorithmic phases 

and rounded boxes represent databases. The numbers in 

parenthesis are the approximate on-disk size of the databases 

before they are loaded into memory and possibly expanded. 

Sphinx has 3 major logical phases: front-end signal processing 

which transforms raw signal data into feature vectors; acoustic 

modeling which converts feature vectors into a series of 

phonemes; and a language model based search that transforms 

phoneme sequences into sequences of words. The process 

inherently considers multiple probable candidate phoneme and 

word sequences simultaneously. The final choice is made based 

on both phoneme and word context. We focus on analyzing the 

dominant processing component of the acoustic and search 

phases in this paper. The front end will hereafter be referred to 

as FE. The dominant computation done during acoustic model 

evaluation is Gaussian probability estimation. Hence, the figure 

and the rest of this paper refer to this algorithm known as GAU. 

The key component of the search phase is Hidden Markov 

Model evaluation. So, we refer to it as HMM. A more accurate 

and detailed view is that Sphinx models language using hidden 

Markov models where the probability of observing a feature 

vector while in a particular state is assumed to follow a Gaussian 

distribution. GAU precomputes Gaussian probabilities for sub-

phonetic HMM states (senones). The output of the GAU phase 

is used during acoustic model evaluation and represents the 

probability of observing a feature vector in an HMM state. The 

Gaussian probability is computed as the weighted sum of the 

Mahanalobis distance of the feature from a set of references 

used while training the recognizer. The Mahanalobis distance is 

a statistically significant distance squared metric between two 

vectors. Given a feature vector Feat and the pair of vectors (M;V 

) (hereafter called a component) which represent the mean and 

variance from a reference, GAU spends most of its time 

computing the quantity: 

The Gaussian reference table contains 49,152 components 

for the HUB4 speech model we use. Each component consists of 

an instance of a mean vector and a variance vector. Sphinx uses 

feedback from the HMM phase to minimize the number of 

components GAU needs to evaluate. In the worst case, every 

single component needs to be evaluated for every single frame. 

A real time recognizer should have the ability to perform 4.9 

million component evaluations per second. In practice, the 

feedback heuristic manages to reduce this number to well under 

50%. The Viterbi search algorithm for HMMs is multiplication 

intensive, but Sphinx as well as many other speech recognizers 

convert it to an integer addition problem by using _xed point 

arithmetic in a logarithmic domain. FE and GAU are the only 

oating-point intensive components of Sphinx. 

The Sphinx 3 code spends less than 1% of its time on front 

end processing, 57.5% of the time on the Gaussian phase and 

41.5% on the HMM phase. While our work has addressed the 

entire application, the work reported here addresses the 

optimization and implementation of the dominant Gaussian 

phase. The contributions include an analysis of the Sphinx 3 

system, an algorithmic modification which exposes additional 

parallelism at the cost of increased work, an optimization which 

drastically reduces bandwidth requirements, and a special-

purpose coprocessor architecture which improves the 

performance of Sphinx 3 while simultaneously reducing the 
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energy requirements to the point where real-time, speaker-

independent speech recognition is viable on embedded systems 

in today's technology. 

Findings 

Sphinx has a lengthy startup phase and extremely large data 

structures which could cause high TLB miss rates on embedded 

platforms with limited TLB reach. To avoid performance 

characteristics being aliased by startup cost and the TLB miss 

rate, Sphinx 3.2 was modified to support check pointing and fast 

restart. For embedded platforms, the check-pointed data 

structures may be moved to ROM in a physically mapped 

segment similar to kseg0 in MIPS processors. Results in this 

paper are based on this low startup cost version of Sphinx 

referred to as original. Previous studies have not characterized 

the 3 phases separately. To capture the phase characteristics and 

separate optimizations for embedded architectures, we 

developed a phased" version of Sphinx 3. In phased version, 

each of the FE, GAU and HMM phases can be run 

independently with input and output data redirected to 

intermediate files. In the rest of this paper FE, GAU, HMM 

refers to the corresponding phase run in isolation while phased 

refers to all three chained sequentially with no feedback. In 

Phased, FE and HMM are identical to original, while GAU work 

is increased by the lack of dynamic feedback from HMM. 

It appeared likely that a multi-GHz processor might be 

required to operate Sphinx in real time. Parameters like L1 

cache hit time, memory access time, oating-point latencies etc 

were measured on a 1.7GHz AMD Athlon processor using the 

lm bench hardware performance analysis benchmark. 

In the phased version, we found that approximately 0.74%, 

55.5% and 41.3% of time was spent in FE, GAU and HMM 

respectively. Since FE is such a small component of the 

execution time, we ignore it in the rest of this study and 

concentrate on the analysis of the GAU and HMM phases. 

Conclusion 

We implemented an isolated word speech recognition 

system in hardware. This system processes raw audio data using 

Mel scale values and matches words using the dynamic time 

warping algorithm. We have successfully demonstrated this 

systems capability to distinguish many words from each other, 

through the use of our algorithm and through the use of multiple 

DTW modules trained on the same word. 

Our system works well at distinguishing dissimilar words 

from each other. However, there are a number of points in which 

recognition does not work as well. Words that begin or end with 

fricatives often have difficulties on account of the high-

frequency nature of fricative sounds failing to generate sufficient 

energy for the system to detect. In a future implementation we 

may attempt to combat this effect with a pre-emphasis filter that 

amplified higher frequencies, although initial testing with such a 

filter tended to increase these higher frequency values too much, 

hurting the system's ability to match words. 

Very short words tend to match much more frequently, 

since the dynamic time warping algorithm will tend to find a 

good matching with such short inputs. We attempted to combat 

this effect by adding a small punishment value for matching 

words of dramatically different lengths, but properly calibrating 

this punishment value proved tricky on initial implementation. 

In general, we found that our algorithm was effective at 

matching words and identifying the correct word from the best 

distance value. However, reasonable threshold values were 

difficult to determine, and different length words often needed 

different threshold values. Dynamic threshold values based on 

word lengths may be useful to implement to improve our 

system's effectiveness in the future. 

Recommendation 

Though the Gaussian estimator was designed for Sphinx 3 

and the MIPS-like embedded processor, the results are widely 

applicable to other architectures and recognizers. There are 

several levels at which this system may be integrated into a 

speech recognition task pipeline similar to Phased. For example, 

an intelligent microphone may be created by using a simple low-

power DSP to handle the A/D conversion and FE phase and then 

a GAU coprocessor attached to the DSP may be used for 

probability estimation. The probability estimates can then be 

sent to a high-end processor or custom accelerator that does 

language model computation thereby hiding more than 50% of 

the compute effort required for speech recognition. On desktop 

systems, the Gaussian accelerator may be part of a sound card or 

the Gaussian accelerator may be directly attached to the main 

processor. On commercial voice servers, the Gaussian estimator 

may be directly built into the line cards that interface to the 

telephone network thereby freeing up server resources for 

language model and application processing.  
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