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Introduction 

Inpainting, dis-occlusion and filling-in are various names for the same task. Given an image with a missing region, i.e. a hole, 

restore the values in the hole in an undetectable way [5]. The inpainting problem is clearly ill-posed. Any method must therefore use 

some prior assumptions about the unknown missing values and their relations with the known hole neighbourhood. Applications 

include restoration of photographs, films and paintings, text and objects removal in images, special effects in movies, disocclusion in 

computer vision. 

Inpainting was initially introduced into image processing by Bertalmio et al [6]. The authors used partial differential equations 

(PDE) method [1,2,4] to restore images. Their algorithm fills in the areas to be inpainted by smoothly propagating information from 

the surrounding areas along the isophote direction. It does a good job in small damaged regions, but for larger areas, the results 

usually look blurry. Lately, Chan and Shen proposed two inpainting models: the Total Variation (TV) [7] and the Curvature-Driven 

Diffusion (CDD) models [8]. They converted the problem into finding out the extrema of energy functions. However, their models 

still only aim at handling local non-texture inpainting [7,8]. The difficulty of real inpainting problems is due to the rapid variations of 

isophote and the roughness of image functions. Besides, exemplar-based and region-filling methods [11,12] search the optimal 

matching patches within the valid image regions, and fill them to the damaged areas according to the order of repair priority. 

Experiments show that these methods can effectively fill the larger damaged image areas, but the search process is very slow and 

prone to false match. So in this paper we developed the new task for the image restoration, generally the inpainting algorithms is to 

filling-in regions with available information from their surroundings. In most cases, the available data of the original image is noisy 

which makes it necessary to eliminate the noise and filling-in the blank spaces (those without information). The basic idea of our 

algorithm is to complete these spaces which hold no information and eliminate noise (if exists) while preserving the edges, and the 

goal of this work is to recover the entire clean image )(xu from a given incomplete noisy image )(xI  observed only outside of an 

inpainting domain D , performing the inpainting and denoising action simultaneously. 

To well recognize the proper Image inpainting [5] and denoising techniques applicable to image restoration, it is necessary to 

have a good understanding of inpainting as well as denoising problems. Here, we first give a generalized impact of global image 

mathematics [2,3] and fundamental of image inpainting problems.  
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ABSTRACT 

Image Inpainting and denoising refers to the ill-posed problem of filling in the missing data 

in digital images by interpolating from the vicinity. In this paper, we present a new approach 

for image restoration. The denoising is performed by the smoothing equation working inside 

and outside of the inpainting domain but in completely different ways. Inside the inpainting 

domain, the smoothing is carried out by the Mean Curvature Flow, while outside the 

inpainting domain is carried out in a way as to encourage smoothing within a region and 

discourage smoothing across boundaries. The approach here presented permits the 

transportation of available information from the outside towards the inside of the inpainting 

domain.  To illustrate the effective performance of our model, we present some experimental 

results on a Matlab and solved the diffusion equations. 
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Global Image Mathematics in Image Inpainting: 

Inpainting problem defined mathematically, in [5] as a sequence say S  , given only a subsequence of it, X  estimate the whole 

S  as 'S  such that    XISI ' , where I denotes the information. Here is a simple example to explain it more clearly. Suppose 

there is a sequence  6,,4,3,2,1 X  where, X is the unknown element. If X  is derived as 5 , the whole sequence looks very “natural”, 

for    06,,4,3,2,1|5  XXI  i.e., it takes the exact value as we expected. However, if X  is derived as10 , then the whole 

sequence does tell us something unexpected, and    .06,,4,3,2,1|5  XXI  In case of inpainting, the generated plausible 

regions are commonly looks natural which indicates that no additional information can be reproduced out of nothing related. So, now 

we define general principle and fundamental of Image inpainting for the image restoration task. 

Fundamental of Image Inpainting 

 

Fig.1: Image I , the region   to be inpainted and its boundry  . 

Digital inpainting refers, as already mentioned, to inpainting through some sort of image restoration. The digital inpainting 

process can be looked upon as a linear or non-linear transformation, where, I  is the original image and u  is the transformed image. 

e.g. I Image Processor f  u . In mathematically, the image processor can be looked upon as a function uIf :  i.e. 

).(Ifu          

General Principle: Let I  stands for the region to be inpainted as shown in fig.1, and  for its boundary. The objective is 

to fill the hole   with appropriate gray values by interpolating the data located at the neighbourhood in the surrounding region  . 

The rest of the paper is organized as follows. In Section II, we briefly describe the inpainting scheme given in [6] and the Mean 

Curvature Flow model. In section-III, we describe the proposed model for inpainting and denoising. The Euler discretization of the 

proposed model and the numerical implementation in Matlab, are discussed in Section IV. And concluding remarks are presented in 

Section V. 

Description of Image Inpainting and Denoising: 

Inpainting is a practice carried out by artists when modifying a picture, in such a way so that an observer is unable to detect any 

changes. The goal of the inpainting model introduced in [6] is to transport as smoothly as possible (along the isophotes) the 

information from the surrounding inpainting domain. The transport of information is performed by solving the following partial 

differential equation 

  )1......(........................................0,, 


  tDxuu
t

u  

where, t  is a scale space parameter as in [6,8]. Note that this evolution equation runs only inside the region to be inpainted D. In 

Eq. (1), u  is a vector which indicates the direction of )(xu  variation of least intensity. The absolute value of u  is 

numerically equal to the instant variation rate of )(xu along the isophotes. The vector  u  indicates the direction where the value 

of )(xu  varies abruptly (indicating a border or edge) and its absolute value is numerically equal to the laplacian instant variation rate 
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in this direction. The inner product of these two vectors gives us the value to be transported to the pixel in question. We observe that 

in the case where the two vectors are perpendicular the transport will not be carried out. 

The inpainting method proposed in [6,14] consists of intercalating the Eq. (1) with a diffusion equation whose objective is, to 

ensure a correct evolution of the direction field [6]. They used the following anisotropic diffusion equation  

)2......(.................................................., 
 DxuKg

t

u




  

where, D  is a dilation of D  with radius , K  is the Euclidean curvature of u , and 
g  is a smooth function in D such that 

0g   in 
D  and 1g  in D .  

Several PDE-based techniques have been proposed for the smoothing of an image, some obtained on the direct derivation of the 

evolution equations, and others from energy approaches such as the 2L  norm dependent model or from the total variation model of 

Rudin, Osher and Fatemi [16]. Here, we will smooth the data inside the inpainting domain using the Mean Curvature Flow (MCF) 

equation (see [6,14] for further details), which is given by 

)3.(............................................................























u

u
divu

t

u
 

This equation diffuses u  in the direction orthogonal to its gradient u and does not diffuse in the direction of u . The level 

sets of the solution of the MCF equation move in the normal direction with a speed proportional to their mean curvature. 

The proposed Method for Improvement of Inpainting and Denoising problem: 

The proposed method in this work will deal with inpainting task is to reconstruct a damaged image from an image. Also our 

method will inpaint the domain ,D which has circular noise [10] or scratches or missing patches as shown in fig. 2(c) and fig. 3(c), 

and will denoise the image in CD . The goal of this work is to develop the idea of removing noise without losing the boundaries or 

edges and inpaint the damaged regions. Our approach presents different procedures inside and outside of the inpainting domain. The 

inpainting process consists of filling-in the missing information in the empty domain D , based upon the available image information 

found outside of the domain D  as in [14,15], and will be performed only inside the inpaint domain D  while the smoothing 

procedure will be performed in all X  but will act differently depending on if point x  belongs, or not, to the inpainting domain 

D .  

 

Fig. 2:- (a) Original Image; (b) Mask; (c) Imposed Mask (Circular mask) to Original Image 

 

Fig. 3:- (a) Original Image; (b) Mask; (c) Imposed Mask (Circular mask) to Original Image 
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Inpainting: The algorithm will execute, for each x  belonging to the inpainting domain D , the transportation of neighbouring pixel 

information belonging to CD , where the image information is available, using the Eq. (1) as in [14]. 

Smoothing: A smoothing procedure will be applied for each x  belonging to the domain . If x , the smoothed )(xu  will be 

the solution of the Mean Curvature Flow equation, otherwise, i.e. if x  lies outside of the inpainting domain a selective diffusion 

equation will be used. The smoothed version )(xu will be the solution to the following parabolic equation 

  

   

 

 uggwhere

ditionBoundryConreflectingtxR
t

u

ditionInitialCongeDxxIxu

Dx
u

u
divu

t

u

tDxIug
u

u
divug

t

u C




























































,

)7...(..........,0,,0

)6...(..........................................),(0,

)5.......(............................................................,

)4.........(....................0,,1



 

Here ),( yxI is an image to be processed, ),,( tyxu  is its smoothed version on the   scale t . The function 0)( sg  is a non-

increasing function, satisfying 1)0( g  and 0)( sg  when s . The term 

   
22 , uuuuuuudivu 

diffuses u  in the orthogonal direction to its gradient u  and does not diffuse it 

in any other direction. The goal is to allow smoothing in the image u  in a way that it is performed on both sides of an edge with 

minimal smoothing on the edge itself. The term  ug   is used for edge detection and controls the diffusion speed. If u  has a 

small value at the point x , it will be considered an interior point, and the diffusion will be stronger. On the other hand, that is, if 

u has a large value at the point x , then this point x  will be considered an edge point, and the diffusion will be low since  sg  

always assumes values for large values of s . The balance between the forcing term and the diffusion term is made by  g1 , which 

works as a moderate selector of the diffusion process. Thus, the proposed model consists of selectively applying the Alvarez, Lions 

and Morel model’s [7] in areas of the image that demand a larger suavization. This model also consists of forcing, in an incisive way, 

the smoothed image u  to remain close to the initial image I  in the boundary areas which have 0~g . On the other hand, in 

homogeneous areas 1~g , and therefore, the forcing term will have an inexpressive effect, which allows for a better suavization of 

the image.  

The non-linear space scale scheme (4), (6) and (7) for data smoothing was introduced in [11] following the ideas given in 

[7,8,13], with the objective of eliminating unnecessary parameters, where in many cases they are correlated. This equation allows one 

to perform selective smoothing in accordance with the value of the image gradient at each point x . We would also like to mention 

some other interesting works on inpainting. In [7,14], the authors present a technique for removing occlusion solving the following 

variational formulation 

)8......(..............................0,0,1,)( 

















   p

u

u
divuuE

D

p  

to perform disocclusion and the practical algorithm for disocclusion, connecting the T-junctions associated with the same gray level 

using elastica minimizing curves. As reported by the authors, the regions to be inpainted are limited to having simple topologies, e.g. 

holes are not possible taking into account the specific numerical technique proposed. In [13,14], the authors work on the minimization 

of the elastica energy functional (8) obtaining the Euler–Lagrange equation for this functional. The choice of values for constants   
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and   is an issue of numerical implementation. There has been no investigation about the range of these two constants, which 

permits convergence and/or stability of the numerical algorithm. 

Numerical approximation and Implementation results in Matlab: 

Here, images are represented by 256256  matrices of intensity values, where each matrix element 
jiu ,
 is a real value 

correspondent to the gray scale level of the image  yxu ,  at the point xixx i   and yiyy i  . We denote  nii tyxu ,,  

by n

jiu ,
, where tntn  . The derivative of u  in relation to the time t  i.e. 

t

u



  calculated in  
nji tyx ,,  is approximated by Euler’s 

method, i.e.  
t

uu

t

u
n

ji

n

ji











,

1

,
.  

Also, Numerical implementation using central difference techniques [9] works quite well in the approximation of the diffusion 

term

22
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, and the transport term      
xyyxxxyyyyxxyx uuuuuuuu   . 

Using Neumann’s boundary conditions [4,9] we calculate Nnu n

ij ,.....2,1,1  , by the discretization of the (1), (4) and (5), we have   

   

 
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with       uuuLyxIu iiiij

 ,,0  and 

      
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here,    ,11 2kssgg   where k is a constant and vs  . 

The computational code was written in Matlab. The results were obtained by using Intel(R) Core(TM) 2 Duo (T6500 @ 2.10 

GHz, 4 GB RAM). The running time for an image of 256256  pixels size is about 8 to 10 second with less than 100 iterations. 

 

Fig. 2.1:- (a) Circular mask Noisy Image; (b) Recovered Inpainted Image 
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Fig. 2.2:- (a) Histogram of Input Image; (b) Histogram of Inpainted (output) Image 

 

Fig. 2.3:- Comparison: - (a) Original Existing Image; (b) Recovered Inpainted Image 

 

Fig. 2.4:- Contour plot of Inpainted (Recovered) Image 
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Fig. 3.1:- (a) Circular mask Noisy Image; (b) Recovered Inpainted Image 

 

Fig. 3.2:- (a) Histogram of Input Image; (b) Histogram of Inpainted (output) Image 

 

Fig. 3.3:- Comparison: - (a) Original Existing Image; (b) Recovered Inpainted Image 
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The preceding results illustrate the performance obtained by the proposed model. We performed inpainting task on typical two 

images and as the principal contribution of the proposed model is the case where the initial image  xI  was damaged by circular 

noise, also depending on user choice we may include a region with lost or no information data. So, here we describe the parallel 

representation of two input images with the experimental result done in Matlab.  

Here we consider fig. 2(a) and fig. 3(a) are original images and fig. 2(c) and fig. 3(c) are circular noisy (mask) images. When we 

applied our proposed method to the given problem then circular noise is removed within lessthan 100 iterations and we have 

recovered image looks like an exactly original image, i.e. we called the inpainted image as shown in fig. 2.1 and fig. 3.1. Also with the 

help of histogram we can verify our existing result is correct or not. 

 

Fig. 3.4:- Contour plot of Inpainted (Recovered) Image 

So that we have the fig. 2.2 and fig. 3.3 that shows the histogram of original image and inpainted image respectively. The 

histogram of an image represents the relative frequency of occurrence of the various gray levels in the image. More, generally we say 

histogram shows the distribution of data values. So our result tells us that there is no any major difference of gray level occurs 

between input and output of the images. At last we also find the contour plot of the recovered image i.e. Inpainted image, which is 

shown in fig. 2.4 and fig. 3.4 respectively. 

Concluding Remarks: 

In this paper, we present a mathematical model for image restoration, which consists of the recovery of missing parts in an image 

and also eliminating the corruption caused by noise. The results presented in our examples demonstrate the high performance of the 

proposed model which has demonstrated great efficiency in dealing with the inpainting of damaged images and denoising when the 

initial image is noisy. The size of the inpainting domain can interfere with the results. The drawback of the proposed model can be 

seen when we analyse the image, which is characterized by texture, a great part of which is eliminated, because the inpainting domain 

is quite large. From the numerical point of view, the number of intercalated steps of inpainting and diffusion should be investigated 

mainly when the image to be restored has several different inpainting domains.  
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