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Introduction 

 The orthogonal matrices are used in many applied problems, such as, the construction of discrete equipments realizing 

orthogonal constructions, one needs consideration of orthogonal matrices with the elements   .A special type of square orthogonal 

matrices with the elements    are called the Hadamard matrices.[17] 

Investigation of Hadamard matrices were initially connected with linear algebra problems. Later, it turned out to the number of 

questions in information theory. Recently, a considerable increase of investigation devoted to Hadamard matrices has occurred. Some 

problems are still unanswered, so till now, it is not known if there exist a  Hadamard matrix of order  for all   divisible by 4[17]. 

Historically, first work devoted to Hadamard matrices was constructed due to Sylvester in 1867 [12] who proposed a recurrent 

method for construction of Hadamard matrices of order   .In 1933,Paley started that the order of any Hadamard matrix is divisible by 

4.[17]A principal difficulty of this problem is the lack of unified methods for construction of Hadamard matrix of order    for all 

 .The known methods of construction are applicable only to relatively sequences on  .For many   it is usually necessary to develop a 

direct method of construction using machine access.   

The known methods of constructing Hadamard matrices can be found as Williamson[3][11],Baumert-Hall-Goethals-

Seidel[8],Paley-Wallis-Whiteman methods [10] & Golay-Turyn, Plotkin [12] approaches. All these methods are based on a set of 

orthogonal sequences. 

Here in this work, the ultimate purpose is to construct the Hadamard matrix of order 404, which is known to be exist as it is a 

multiple of 4. It is understood that this matrix cannot be constructed using the preliminary method, which is known as Sylvester 

construction since there does not exist any Hadamard matrix of order 101.Thus, the major goal is to construct the Hadamard matrix of 

order 404 using any other method mentioned above. 

For this construction, the Goethals Seidel method is chosen which also uses a set of orthogonal sequences with all entries being 

  .Here it provides a search method to construct such a set of orthogonal sequences known as Turyn type sequences. Such sequences 

of length 34 can be used to construct four circulant type matrices of order 101 and those matrices applied to the Goethal’s Seidel 

method will follow the required result. The search method of construting Turyn Type sequences of length 34 is given in [2*]. 
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Definition : (Hadamard matrix) 

A square matrix whose entries are either +1 or −1 and whose rows are mutually orthogonal is called the  Hadamard matrix. 

Hadamard matrix   of order   satisfies 

        

where    is the     identity matrix and      is the transpose of  .[7]  

 Further, it was proved that a Hadamard matrix has maximal determinant among matrices. Hence, if   is a Hadamard matrix, 

then        
 

 
.[14] 

The Hadamard matrices were initially constructed by James Joseph Sylvester in 1867.[12] Let H be a Hadamard matrix of 

order  . Then the partitioned matrix [
  
   

] is a Hadamard matrix of order   . 

This observation can be applied repeatedly and leads to the following sequence of Hadamard matrices .[12] 

[
          

           
]          

 

where   denotes the Kronecker product. 

The following lemma states some of the properties of Hadamard matrices. 

Lemma 1[17]:  

Let    be an Hadamard matrix of order  . Then: 

1. Hadamard matrices may be changed into other Hadamard matrices by permuting rows and columns and by multiplying rows and 

columns by −1. Matrices which can be obtained from one another by these methods are referred to as H-equivalent. 

2. Every Hadamard matrix is H-equivalent to an Hadamard matrix which has every element of its first row and column equal to 

  ;matrices of this latter form are called normalized. 

3. If     is a normalized Hadamard matrix of order   , then every row (column),except the first, has    minus ones and    plus ones 

in each row (column). 

4. The order of an Hadamard matrix is 1, 2, or   , where   is a positive integer. 

The definition given below explains about the non- periodic autocorrelation value for a particular sequence, which guarantees the 

orthogonality property of that sequences.  

A. Definition: (Non-periodic autocorrelation function) 

Given   *            + be a sequences of length  , the non-periodic autocorrelation function    is defined by, 

   ( )  {
∑       

   
                   

              
 
[8] 

Moreover, this idea can be used to verify the orthogonal property of the following sets of sequences.  

B. Definition : (Turyn-type sequences)  

A set of four *    + sequences         with lengths           is defineds to be of Turyn type if  

(             )( )           [12]            (1)         

The following theorems and definitions illustrate the facts about the orthogonal sequences that are used in the construction of 

Hadamard matrix of order 404. 

Theorem 01:  

If         are *    + sequences of lengths           respectively and satisfy the condition (1), i.e if the sequences 

            are 6-Base sequences (    (               )) then the following *    + sequences   (   )   

(    )         are of length               respectively are Base sequences (  (    )).[10] 

This theorem introduces set of orthogonal sequences satisfying (1)  known as Base sequences  whose entries are   . Moreover, 

this set consists of four sequences, for which the first two sequences are of the length      and the other two are of length  , where 

  is the length of the Six base sequences (Turyn type sequences).[6] 

http://en.wikipedia.org/wiki/Square_matrix
http://en.wikipedia.org/wiki/Orthogonal
http://en.wikipedia.org/wiki/Transpose
http://en.wikipedia.org/wiki/Determinant
http://en.wikipedia.org/wiki/James_Joseph_Sylvester
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These sequences can be used to construct T- sequences,  that can be used to construct orthogonal matrices. 

C. Definition 2: (T- sequences) 

The four sequences         of length   with entries *      +are said to be T-sequences ,[17]                      

 if , 

   |  |  |  |  |  |  |  |               

  (           )( )  {
                            
                                       

  

The following theorem states the method of constructing T-Sequences using Base sequences.  

Theorem 02: 

If         are Base sequences of lengths             then the set of  T sequences of length      is given by 

  (
 

 
(   )   ) 

 

  (
 

 
(   )   ) 

 

    
  (     

 

 
(   )) 

 

  (     
 

 
(   ))

,  

where   denotes the sequence of zeros of length  .[13] 

These sequences can be used to construct matrices in several ways. Among them, the most important type of constructing 

matrices is the circulant type. The following definition illustrates the method of obtaining the circulant type matrices  using sequences. 

This method is more useful in constructing T-matrices which is defined in the next step.   

D. Definition : (Circulant Matrix) 

An     circulant matrix   of the array   (                    ) takes the form 

  

[
 
 
 
 

      

    
 

    

    

   
        

        
 

      

    ]
 
 
 
 
                             [4] 

For an example, the circulant matrix of the array   (       ) is given by 

  [

  
  

  
  

  
  

  
  

]

 

The  above method can be applied to the set of T-sequences illustrated in theorem   to obtain a set of orthogonal matrices which 

is known as T-matrices. These matrices have special characteristics which we illustrate in the next definition. 

E. Definition : (T- matrices) 

A set of four T-matrices              of order   are four circulant matrices that have the entries      and that satisfy; 

i.        for    where   denotes the Hadamard product. 

ii. ∑   
 
   is a (    ) matrix. 

iii. ∑     
  

       . 

iv.     
    

    
    

 where   ’s are the row (column)sum of each   .[17] 

The following result, in a slightly different form was also discovered by R.J.Turyn. It is the simplest most useful method of 

constructing orthogonal designs. 

Theorem 03: 

Suppose there exists circulant T-matrices              of order  .Let         be commuting variables. Then, 

                  



A.A.C.A.Jayathilake et al./ Elixir Appl. Math. 69 (2014) 23266-23272 
 

23269 

                   

                   

                   

can be used in Goethals Seidel array to obtain a Hadamard matrix of order   .[17] 

The next section explicates the Goethal Seidel method to construct Hadamard matrices. 

Goethals-Seidel Method for Constructing Hadamard Matrices. 

Theorem 04: 

The Goethals Seidel array is of the form, 

  [

   
    

    
       

       
      

    
     

]

, 

       are circulant matrices of order   with  

                     

and   is the back diagonal identity matrix of order  ,  

i.e. 
  (   )  {

           
                    

               
. 

Then   is a Hadamard matrix of order   .[17] 

The search for the initial rows of the circulant matrices       and   is related to sequences with zero autocorrelations. To 

initiate the relations, we may use the sequences defined above. 

Methodology 

Search method of Turyn Type sequences 

A quadruple set of Turyn type sequences of length 34 consists of 3 sequences of length 34 and a sequence of length 33.So,first, 

sequences of length 34 whose elements are    s and   s were generated. These sequences are similar to the binary sequences whose 

elements are 0 and 1.This property was used in writing the computer program using C/C++ programming languages in generating the 

sequences of length 34.Since, there are 34 bits in one sequence, there is a total of 234 (=17179869184) number of sequences and in 

constructing sequences of length 33, there are 233 (=8589934592) number of sequences.  

Then, the values          were selected for         respectively such that                  , where         are the 

sums of entries of the sequences         above.Then,all the possible solutions for each sequence         with above selected 

values         are filtered and save each result in four separate files. 

From these sequences, all sequences   with sum of entries equal to   and for which   ( )    ( )   ∑   ( )
   
       (  )  

    for all   {
  

   
           } are found and the same process is done for the set of sequences   with the sum of the 

entries.Now, every possible combination from the recently filtered two sequences     are found so that,   ( )    ( )     . 

Next, two sequences must be selected from the set of  sequences of sum of entries         and the correlation value of each pair 

of sequence was determined. Then, each of these couples of sequences were combined with each of the results obtained in previous 

step and the non periodic auto correlation condition was checked. 

For further details of the construction of these sequences we refer the reader to [2]. 

Search method of the Circulant matrices 

Using the details given in theorem 1 and the results obtained in constructing Turyn type sequences of length 34, another set of 

sequences known as Base sequences of length 67 whose entries are    was constructed. Then, using the theorem 02, the set of T-

sequences of length 101 with entries        was constructed. 
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Also, each sequence gives a circulant matrix so that each matrix is of order 101. Let those circulant matrices to be 

             .Note that any Hadamard matrix consists of only the entries  . In order to remove  s from the above four circulant 

matrices, any linear combination of these four matrices can be used as they satisfy  the property that  ∑   
 
    is a (    ) matrix. 

Then, applying the definition given under E and F of the section I  to the above constructed T-sequences, a quadruple set of T-

matrices were obtained. Then, letting all the commuting variables to be one in theorem 3, all the possible linear combinations of the T-

matrices were considered to construct the circulant matrices which can be applied  in Goethal-Seidel array. 

The following table shows all the possible ways of the linear combinations of the T-matrices that are used to construct the 

circulant matrices. In the following table,   denotes the addition and   denotes the subtraction. For an example, the matrices    and 

   are of the form             and             respectively. 

Table 01-The possible linear combinations of             . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All these possible permutations were tested and  among  them only 32 matrices were suitable to apply in Goethals Seidel array. 

Thus, by this method, 32 in-equivalent Hadamard matrices of order 404 were obtained. The following figures show the design 

patterns of some Hadamard matrices obtained in this method.. 

Results  

From the first part of the process, the following set of Turyn type of sequences were obtained. In each of the following sets of 

sequences   refers to    and – refers to   . For further details about this result refer [12]. 

                                      

 

                                      

 

                                      

Matrix             

   1 1 1 1 

   1 1 1 0 

   1 1 0 1 

   1 1 0 0 

   1 0 1 1 

   1 0 1 0 

   1 0 0 1 

   1 0 0 0 

   0 1 1 1 

    0 1 1 0 

    0 1 0 1 

    0 1 0 0 

    0 0 1 1 

    0 0 1 0 

    0 0 0 1 

     0 0 0 0 
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Next, by using the details given in theorem 3 and the above Turyn type sequences, a set of Base sequences of length 67 was 

obtained. 

To obtain the set of T-sequences of length 101, the above set of  Base sequences was used. 

Then, four T-matrices were constructed using these four sequences                .When considering all the possible linear 

combinations of these four T-matrices, there were  (  
 
)        permutations.All these possible permutations were tested and among 

them only 32 matrices were suitable to apply in Goethals Seidel array. Thus, by this method, 32 in-equivalent Hadamard matrices of 

order 404 were obtained. The following figures show the design patterns of some Hadamard matrices obtained in this method.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion 

The primary goal of this project is to find a set of  Turyn type sequences of length 34.Since this process needs more time, several 

partitions of the algorithm was used. So when the first result was obtained, the process was terminated due to the lack of space in the 

computer. By a complete machine search, an infinite number of Turyn type sequences of length 34 would have been obtained. 

Further, the use of grid computers, cluster computers, mainframe computers or super computers can reduce the usage time in this 

process. Also, usage of  a group of core I7 computers would have been given more than one result during this 6 months time.  

This program can be rearranged to obtain skew Turyn type sequences so that one may result with the skew Hadamard matrices 

which can be used in several applications such as constructing graphs[1], Bush type Hadamard matrices[15] etc.  

Let   *           + and   *           + be two sequences. The concatenation of these two sequences is the single sequence 

given by   *                      +or  *                    + . In this construction process, a set of T sequences of length 101 had 

been constructed using the set of  Turyn type sequences obtained in this method. To construct them, the concatenation method given 

in the sequence   was used. One can use the other method of concatenation and obtain another set  of T-sequences and proceed 

further. 

Also, by using the Sylvester construction, there will be  an infinite class of Hadamard matrices that begins with the order 404. 

Further, one may obtain many equivalent Hadamard matrices for each matrix given above by multiplying row/column by    or 

interchanging row/column. Any  Hadamard matrix is said to be in-equivalent if it is not equivalent. Thus, the following diagrams 

illustrate that they are not equivalent to any Hadamard matrix obtained in this method. 
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