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Introduction 

 First and second kind Chebyshev wavelets were used in good number of areas such as approximation, solution of differential and 

integral equations. A numerical method for one-dimensional Bratu's problem based on Chebyshev wavelets of the first kind was 

presented in [1], Fariborzi Araghi [2] proposed a method to approximate the solution of a linear Fredholmintegro-differential equation 

via Chebyshev wavelets of the first kind . Ali [3] applied Chebyshev wavelets method for delay differential equations. See [4-9] for 

other works. 

 The idea that there are four kinds of Chebyshev wavelets leads to an extended range of application. There properties had been 

used in improving the performance of many numerical methods. For instance [10-12] applied the Chebyshev wavelets of the third 

kind. 

         In this paper however, our aim is to derive the operational matrices of both derivative and integration of fourth Chebyshev 

wavelets. Which will be used to solve calculus of variational problems in the next work. 

Definition of Fourth Chebyshev Polynomials 

 In this section, the basic definition of fourth Chebyshev polynomials and some important properties, this is needed in the next 

sections. 

The Fourth Kind Chebyshev Polynomial  ( ) 

 The Chebyshev polynomial    ( ) has trigonometric definitions involving the half angle    ,        . Gautsichireferred to 

this "Air-flow polynomials"as fourth kind Chebyshev polynomials [13]. It is the defined by: 

  ( )     (  
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)⁄             (1) 

where       . And they many be generated by using the recurrence relation   ( )        ( )      ( )                    (2) 

  ( )      ( )       

The Fourth Kind Shifted Chebyshev Polynomial     
 ( ) 

 The fourth kind Chebyshev polynomials   
 ( ) appropriate to finite range       of x by making the interval correspond to 

the interval        of anew variable t under the linear transformation  

                                                                        (3) 

 The fourth kind Chebyshev polynomial to       are thus given by   ( ), where  t  is given in equation (2). Using equations 

(2) and (3) yields: 
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 ( )    

  
 ( )                   (4) 

with the recursive formula given as: 

  
 ( )   (    )    

 ( )      
 ( )                                               (5) 

with the initial values given in eq.(4).coefficients of   in   
 ( ) are listed in table (1) 

Table (1) coefficients of    in   
 ( ). 

  ⁄  0 1 2 3 4 5 6 

0 1 -1 1 -1 1 -1 1 

1  4 -12 24 -40 60 -84 

2   16 -80 240 -560 1120 

3    64 -448 1792 -5376 

4     256 -2304 11520 

5      1024 -11264 

6       4096 

New Operational Matrix of  Derivative of     
 ( ) 

The following new theorems are  needed hereafter. 

Theorem(1): The derivative of fourth kind shifted Chebyshev polynomials is a linear combination of lower order  fourth kind shifted 

Chebyshev polynomials and the relation is given throughout the following formulas 

 ̇ 
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Theorem(2):the first derivative of fourth kind shifted Chebyshev polynomials in terms of Chebyshev polynomials is given by 

   
 ( )

  
     

 ( )                        (7) 

where   ( )  [  
    

   
     

 ]  and     is the     operational matrix of  derivative when n=6 the operational matrix      

defines as follow 
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          In general, the elements of       operational matrix is defined as follow  

(   )  
 {

      
       

  (   )           
 (   )         

 

        Not that    
   

 ( )

  
  .            (9) 

      It is seen that     is sparse matrix. 

Corollary : using eq.(7), the operational matrix for nth derivative can be derived as  

    ( )

  
    

   ( ) 

where       
  is the nth power of matrix    .  

Fourth Kind ChebyshevWavelets 

 Wavelets constitute a family of functions constructed from dilation and translation of single function called the mother wavelets 

when the dilation parameter a and the we have the following family of continuous wavelets  

    ( )  | |
   ⁄  (
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Chebyshev wavelets of the fourth kind     
  ( )   (       )have four arguments n argument, k can assume any positive integer, 

m is the order for Chebyshev polynomials   ( ) and t is the normalized time, they are defined on are interval [   ] by  

    
  ( )  {

 (   )  ⁄   ( 
       )

   

    
   

 

    

          
                                         (10) 

 

where                  ( )
 

√ 
  ( )             and m=0,1,….,M     n=1,2,…,     

If we take  k=1 and  M=2. and using eq.(10),one can obtain 
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we should note that in dealing with Chebyshev wavelets the weight function  ( ) have to be dilated and translated as 

  ( )   ( 
       ) 

Function Approximation 

Suppose that H=L
2
[0,1]  and {   

 ( )    
  ( )       

  ( )    
 ( )        

  ( )     
  ( )         

  ( )} 

 H be the set of fourth kind Chebyshev wavelets and 

Y=span{   
  ( )    

  ( )       
  ( )    

  ( )        
  ( )     

  ( )         
  ( )} 

and  f  be an arbitrary element in H. since Y is a finite dimensional vector space, 

f  has the unique best approximation out of  Y such that  f0 Y,that is  

‖    ‖  ‖   ‖                       

Since      , there exists the unique coefficients                   such that  ( )         ( )  ∑ ∑       
  ( )   

   
  

    

     ( )             (11) 

where F and   ( ) are       matrices given by  

  [                                        ]
 
         (12) 

and 

    ( )  [   
   ( )    

   ( )       
   ( )    

   ( )        
   ( )     

   ( )         
   ( )]

 
      

 (13) 

Operational matrix of Derivative of    
   

       A New operational matrix of derivative of fourth kind Chebyshev wavelets is introduced in this section. 

In the interval *
   

     
 

 

     
+, we have 
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Using eq.(10), one can obtain the derivative of eq.(14) to be 
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The function   
   ( ) is zero outside the interval *

   

     
 

 

     
 ), so 

 ̇ 
 ( )       ( )i=1,2,…,                         (16) 

where the   (   )operational matrix of derivative is defined as follows 
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For even n 

and  M=     

(
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for odd n. 

Another definition of the operational matrix of derivative o fourth Chebyshev wavelets is given throughout the following lemma   

Lemma(1): 

Let  ( )  be the fourth Chebyshev wavelets vector defined in (13). 

The derivative of this vector can be obtained as  

     ( )

  
  

   
    ( )            (17) 

where  D is the    (   ) operational matrix of derivative defined as follows  
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In which F is (   )  (   ) matrix and its elements are defined as follow (   )   
     {

      
      

 (   )           
(   )         

 

   Note that    
   

  ( )

  
  . 

Operational Matrix of Integration of    
  

The integration  of the vector   ( ) , defined in (6) , can be achieved as 

∫  ( )      

 

 

 

where P is                matrix, named operational matrix of integration of     
 ( ). This matrix is determined as follows 
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where the  F, O and L are M    matrices and given by 
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Conclusion 

 In this paper, a new general formula for shifted fourth kind Chebyshev polynomials operational matrix of derivatives was first 

presented. Then, this formula is employed for deriving a general procedure for forming  shifted fourth kind Chebyshevwavelets 

operational matrix of derivatives. Also, a general formulation for shifted fourth kind Chebyshev polynomials operational matrix of 

integration has been derived in this work. The application of the obtained operational matrices will be discussed in the next work. 
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