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Introduction 

   It is well known that the reliability of a system can be improved by using standby units in the system. We can find a number of 

applications of these types of systems in various industrial setups. In general there are three types of standbys: (i) Cold standby in 

which the standby unit is only called upon when the primary or operating unit fails. Here the unit in the state of standby does not fail; 

(ii) Warm standby in which the standby unit runs in the background of operating unit. In this case the unit can fail in the state of 

standby but its failure rate is less than that of operating unit. As the standby unit comes in operating state its failure rate is equal to 

operating unit; (iii) Hot standby in which the standby unit run with the operating unit and the unit in the state of standby can fail with 

the same failure rate as operating unit. In real world there are various systems having standby units such as electric generator in a 

power plant, inverter in houses, batteries in various electronic setups, wheel assembly in a truck etc. In these systems when operating 

unit fails the load is transferred to the standby with the help of switching over device in case of cold standby or automatically in case 

of hot and warm standbys. In many situations the assumption that the standby unit is capable to bear the total load as efficiently as the 

primary unit is not seems to be realistic. Many researchers [1, 3, 8, 9] have considered the system with standby units but they did not 

take into account the case of low efficiency of the standby units. Also, when the standby units are not as efficient as the primary unit 

the chances of failure of the system may be greater than the normal situation. Further, we can find many cases in which prolong 

running of the system in the standby brings the system to a risky state where it is advisable to stop the functioning of the system to 

prevent the system from major damages. For instance in case of a two-engine aeroplane if one engine fails the pilot has a provision of 

emergency landing so as to minimize the risk of life.  

 Keeping all these facts in view in the present paper we have considered a system which consists of two subsystems A and B in 

series configuration. Subsystem A has two homogeneous units: Operating and warm standby. The failure rates of operating and 

standby units are λ1 and λ2 respectively. When standby becomes functional by virtue of failure of operating unit of A its failure rate is 

assumed to be λ1. Subsystem B is a heterogeneous system having two units: Main and a unit in cold standby. Here it is assumed that 
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the main unit is more efficient than the standby unit. Whenever the main unit fails, load transfers to the standby unit with the help of a 

switching over device and the system goes to the state of low efficiency. Further, whenever one unit of Subsystem A and the main unit 

of B fail, system goes to critical state and is stopped deliberately to avoid the further risks of failure. The company providing the 

repair facility has appointed a person (repairman) to look after the system. The repairman repairs the system whenever there is a minor 

failure in the system. But if the system fails completely due to major failures, policy of the company is to take it to the nearest service 

station of the company for repair. Therefore, in this situation repairing of the system cannot be started immediately, hence it has to 

wait for the repair. At the service station better facilities and expert repairmen are available where the system can be repaired 

effectively in a short period of time. Failure rates of the system are assumed to be constant whereas repairs follow general 

distributions. It is also assumed that from state S0 to S3 and from S1 to S5 there are two different types of failures. This is a realistic 

assumption since the warm standby unit can also fail in state of standby with a failure rate less than that of operating unit. The joint 

probability distribution of failure rates has been analysed by using copula methodology [5, 7]. Transition state probabilities, 

asymptotic behaviour, various reliability measures such as reliability, availability, M.T.T.F., cost analysis and sensitivity analysis of 

the system have been obtained by using Supplementary variable technique, Laplace transformation and copula. Transition state 

probabilities when the second unit of subsystem A is a cold standby or a hot standby with the operating unit have also been examined 

and a comparison on the basis of the reliability obtained in these three cases has also been made. Numerical examples have been 

provided to illustrate the model at last.    

Assumptions 

(1) Initially the system is in perfectly operating state. 

(2) In subsystem A one unit is in warm standby with the operating unit. Both the units are similar. 

(3) In subsystem B one unit is in cold standby with the main unit. The standby unit is not as efficient as the main unit so when the 

main unit of subsystem B fails the system goes to the state of low efficiency. 

(4) The system S5 in which one unit of subsystem A and the main unit of subsystem B have failed is a critical state. In this state the 

functioning of system stopped deliberately with the emergency failure rate λE.  

(5) The switchover device is perfect and switchover is instantaneous. 

(6) The main unit of subsystem B has given priority over other units for repair. 

(7) Subsystem A can repair only when both of its units have failed. 

(8) When the system is in complete failure state the repairman provided by company carries it to the nearest service station of 

company due to which the system has to wait for some time. 

(9) After repair the system is as good as new. 

(10) The joint probability distribution of failure rates is given by Gumbel-Hougaard family of copula. 

State Specification  

States Subsystem A: Number of good units Subsystem B: Number of good units System state 

S0 2 2 G 

S1 2 1 L 

S2 2 0 Fw 

S3 1 2 G 

S4 0 2 Fw 

S5 1 1 C 

S6 1 1 Fw 

S7 2 0 FR 

S8 0 2 FR 

S9 1 1 FR 

Table 1: State specification 

G: Good state, L: Low efficiency state, C: Critical state, Fw: Failed under waiting, FR: Failed under repair 
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Notations 

1 :               Failure rate of operating unit of A. 

2 :              Failure rate of standby unit of A.  

1 :              Failure rate of main unit of B. 

2 :             Failure rate of standby unit of B. 

E :             Rate of emergency failure in the system. 

)(ri :         Repair rate of main unit and standby unit of subsystem B. If i = 1/2 then r = y/z. 

)(xA :        Repair rate of subsystem A. 

x, y, z:        Elapsed repair time for both the units of subsystem A, the main unit of subsystem  

                   B and the standby unit of B. 

Pi (t):          Probability that the system is in Si state at instant t for i = 1 to i = 9. 

)(sP i :        Laplace transform of Pi (t). 

P4(x, t):       Probability density function that at time t the system is in failed state  

                    S4 and the system is under repair, elapsed repair time is x. 

E p (t):           Expected profit during the interval (0, t]. 

K1, K2:          Revenue per unit time and service cost per unit time respectively. 
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If )(1 yu P , )(2 yu P then the expression for the joint probability according to Gumbel-Hougaard family of copula is given as 
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5. Formulation of Mathematical Model 

By elementary probability and continuity arguments, one can obtain the following set of integro-differential equations. 
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Boundary conditions: 
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Initial condition: 

1)(0 tP  at t = 0 and all other probabilities are zero initially. …(20) 

Solution of the model 

Taking Laplace transformation of equations (1-19) and using (20), we get 
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Solving equations (21-30) and using equations (31-39), we get the following transition state probabilities 
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Also it is noticeable that 
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Asymptotic behaviour 

Using Able’s lemma 
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in equations (52) and (53), we get 
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(ii) When waiting time is zero. 

In this case up and down state probabilities of the system can be obtain by putting w = 0 in equations, we get 
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(iii) When the standby unit in subsystem A is in cold standby.  

This can be derived by putting λ2 = 0 or λ = λ1 = λA in equations (40-49). The Laplace transformations of various transition state 

probabilities are as follows: 
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Also up and down state probabilities of the system are given by 
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 (iv) When standby unit in subsystem A is in hot standby with the operating unit. 

In this case by putting λ2 = λ1 = λA and λ = 2λA in equations (40-49), one can obtain following transition state probabilities. 
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Also the up and down state probabilities of the system are given by 
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Numerical computation 

(1) Availability analysis 

 Let us take λ1 = 0.6, λ2 = 0.2, μ1 = 0.3, μ2 = 0.2, λE = 0.5, w = 0.3, Ф1 = Ф2 = ФA = 1, θ = 1 and x = y = z = 1. Also let the repair 

follows exponential distribution i. e. equation (57) holds, then putting all these values in equation (52), taking inverse Laplace 

transformation, we get 

Pup(t)= -0.1301054620 e
(-0.5000000000 t) 

- 0.003113014003 e
(-0.9100000000 t) 

-0.05846608969  

        e
(-1.577110005 t) 

-0.1942010441 e
(-0.8601482323 t) 

cos(0.007394121216 t) -0.2512567850 

        e
(-0.8601482323 t)

 sin(0.007394121216 t) + 0.4613082557 e
(-0.7862665523 t) 

+ 0.1663598755  

        e
(-0.7285677930 t)

+0.002024434936 e
(-0.6042513821 t)

+1.17130413 e
(-0.1268411365 t) 

                        …(92)                         

Now setting t = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, in above equation (92), one can obtain Table 2 and correspondingly Fig. 2 which 

represents the variation of availability with respect to time. 

(2) Reliability Analysis 

Let the failure rates be λ1 = 0.6, λ2 = 0.2, μ1 = 0.3, μ2 = 0.2, emergency failure rate be λE = 0.5, waiting rate w = 0.3, repair rates be Ф1 

= Ф2 = ФA = 0, θ = 1 and x = y = z = 1. Also let the repair follows exponential distribution. Now by putting all these values in 

equations (52), (77) and (90) taking inverse Laplace transform, using (57) and varying time from t = 0 to t = 10, one can obtain Table 

3 and Fig. 3 which demonstrate the manner in which reliability varies as time passes when the unit of subsystem A is in warm 

standby, cold standby or in hot standby. 

(3) M.T.T.F. Analysis 

We know that M.T.T.F. = )(
0

lim up sP
s

 

Also suppose that repair follows exponential distribution then using equation (57) and  

(a) Setting Ф1 = Ф2 = ФA = 0, λ2 = 0.2, μ1 = 0.3, μ2 = 0.2, λE = 0.5, w = 0.3, x = y = z =1, θ = 1 and varying λ1 as 0.10, 0.20, 0.30, 0.40, 

0.50, 0.60, 0.70, 0.80, 0.90, one can obtain Table 4 which demonstrates variation of M.T.T.F. with respect to λ1. 

(b) Let us take Ф1 = Ф2 = ФA = 0, λ1 = 0.6, μ1 = 0.3, μ2 = 0.2, λE = 0.5, w = 0.3, x = y = z =1, θ = 1 then by varying λ2 as 0.10, 0.20, 

0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90 Table 5 can be obtained which shows how M.T.T.F. varies as the value of λ2 increases. 

(c) Fixing Ф1 = Ф2 = ФA = 0, λ1=0.6, λ2 = 0.2, μ2 = 0.2, λE = 0.5, w = 0.3, x = y = z =1, θ = 1 and varying μ1 as 0.10, 0.20, 0.30, 0.40, 

0.50, 0.60, 0.70, 0.80, 0.90, one can obtain Table 6 which shows variation of M.T.T.F. with respect to μ1. 

(d) Putting Ф1 = Ф2 = ФA = 0, λ1=0.6, λ2 = 0.2, μ1 = 0.3, λE = 0.5, w = 0.3, x = y = z =1, θ = 1 and varying μ2 from 0.10 to 0.90 one can 

obtain Table 7 which represents the manner in which M.T.T.F. varies with respect to μ2. 

Variations of M.T.T.F with respect to λ1, λ2, μ1 and μ2 in the cases (a), (b), (c) and (d) have been shown by the Figs. 4, 5, 6 and 7 

respectively.   
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(4) Cost Analysis 
 

Letting λ1 = 0.6, λ2 = 0.2, μ1 = 0.3, μ2 = 0.2, λE = 0.5, w = 0.3, Ф1 = Ф2 = ФA = 1, θ = 1 and x = y = z = 1. Furthermore, if the repair 

follows exponential distribution then using equations (57), we can obtain equation (92).
 
If the service facility is always available, then 

expected profit during the interval (0, t] is given by
 

 
t

tKdttupPKtEP

0
)()( 21  

where K1 and K2 are the revenue and service cost per unit time respectively, then 

E P (t) = K1[0.2602109240 e
(-0.5000000000 t) 

+ 0.003420894509 e
(-0.9100000000 t) 

+0.3707166241 

            e
(-1.577110005 t) 

+0.2282704474 e
(-0.8601482323 t) 

cos(0.007394121216 t) +0.2901464146  

            e
(-0.8601482323 t)

 sin(0.007394121216 t) -0.05867072106 e
(-0.7862665523 t) 

–0.2283382234  

            e
(-0.7285677930 t)

-0.003350319082 e
(-0.6042513821 t)

-9.234941008 e
(-0.1268411365 t) 

                                                                                               

            +8.996326343]-K2t                                                                                                           …..(93)  

Keeping K1 = 1 and varying K2 at 0.1, 0.2, 0.3, 0.4, 0.5 in equation (93), one can obtain Table 8 which is depicted by Fig. 8. 

(5) Sensitivity Analysis 

We have performed sensitivity analysis of system reliability along with the change in specific values of system parameters. For this it 

is assumed that Ф1 = Ф2 = ФA = 0, θ = 1 and x = y = z = 1. Putting all these values in equation (52), we get 
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 …(94) 

Sensitivity of any reliability characteristic with respect to some specific parameter concludes how that particular reliability 

characteristic of the system changes with the change in the value of that specific parameter. In the present work we have done 

sensitivity analysis of reliability of the system with the change in the values of µ1 and λE in two different cases as given below. 

(a) Let us find ∂R(s)/∂µ1 i.e. differentiate equation (94) with respect to µ1, take its inverse Laplace Transform, put λ1 = 0.2, λ2 = 0.2, μ2 

= 0.2, λE = 0.2 and then varying the time as t = 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 for μ1 = 0.1, 0.3 and 0.5, we get Table 9 and 

Fig. 9. 

(b) Calculating ∂R(s)/∂λE by using equation (94), taking its inverse Laplace Transform and putting λ1 = 0.2, λ2 = 0.2, μ2 = 0.2, µ1 = 0.2. 

Now varying the time as t = 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 for λE = 0.1, 0.3 and 0.5, one can get Table 10 and Fig. 10. 

 

Table 2: Time vs. Availability 

Time Pup 

0 1.0000000000 

1 0.9590418057 

2 0.8715461826 

3 0.7791496106 

4 0.6921953409 

5 0.6131108306 

6 0.5421330976 

7 0.4788411880 

8 0.4226140077 

9 0.3727850563 

10 0.3287014135 
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Fig. 2: Time vs. Availability 

Table 3: Time vs. Reliability for warm, cold and hot standby 

 

 

                                                

 

 

 

 

 

 

 

 

Fig. 3: Time vs. Reliability for warm, cold and hot standby 

Table 4: λ1 vs. M.T.T.F 

 

 

 

 

 

 

 

 

Time Pup 

When second unit of subsystem A is in  

Warm standby Cold standby Hot standby 

0 1.0000000000 1.00000000000 1.00000000000 

1 0.9487251480 0.8623605488 0.7838561437 

2 0.8226149560 0.5911884120 0.4595508769 

3 0.6785373788 0.3704252246 0.2569312398 

4 0.5424140387 0.2224483544 0.1446395654 

5 0.4244550259 0.1308681494 0.0829366105 

6 0.3271103372 0.07631141945 0.0483763152 

7 0.2492350393 0.04439843895 0.0285830145 

8 0.1882474642 0.02586978019 0.0170392734 

9 0.1412130185 0.01512608618 0.0102182145 

10 0.1053535797 0.00888284790 0.0061517085 

λ1 MTTF 

.10 7.662405306 

.20 7.041812399 

.30   6.493139899 

.40   6.013302485 

.50 5.593750000 

.60 5.225561363 

.70 4.900802139 

.80 4.612770782 

.90 4.355911085 
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Fig. 4: λ1 vs. M.T.T.F.            

Table 5: λ2 vs. M.T.T.F 

 

 

 

 

 

 

 

 

Fig. 5: λ2 vs. MTTF 

Table 6: μ1 vs. M.T.T.F.                                          

 

 

 

 

 

 

 

 

 

 

 

λ2 MTTF 

.10 6.344991754 

.20 5.225561363 

.30 4.522577751 

.40 4.046445543 

.50 3.705555556 

.60 3.450910725 

.70 3.254218937 

.80 3.098132952 

.90 2.971488770 

μ1 MTTF 

.10 6.967492872 

.20 5.825838415 

.30 5.225561363 

.40 4.854878049 

.50 4.602987984 

.60 4.420562330 

.70 4.282289616 

.80 4.173837297 

.90 4.086477760 
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Fig. 6: μ1 vs. M.T.T.F 

Table 7: μ2 vs. M.T.T.F 

 

 

 

 

 

 

 

 

 

 

Fig. 7: μ2 vs. M.T.T.F 

Table 8: Time vs. expected profit 

 

 

 

 

 

 

 

 

 

 

μ2 MTTF 

.10 6.254689756 

.20 5.225561363 

.30 4.682736863 

.40 4.346548876 

.50 4.117493234 

.60 3.951209992 

.70 3.824904095 

.80 3.725648577 

.90 3.645559977 

Time EP(t) 

 K2=0.1 K2=0.2 K2=0.3 K2=0.4 K2=0.5 

0 0 0 0 0 0 

1 0.88710374 0.78710374 0.68710374 0.58710374 0.48710374 

2 1.70371498 1.50371498 1.30371498 1.10371498 0.90371498 

3 2.42883645 2.12883645 1.82883645 1.52883645 1.22883645 

4 3.06389938 2.66389938 2.26389938 1.86389938 1.46389938 

5 3.61587061 3.11587061 2.61587061 2.11587061 1.61587061 

6 4.09282952 3.49282952 2.89282952 2.29282952 1.69282952 

7 4.50270065 3.80270065 3.10270065 2.40270065 1.70270065 

8 4.85286721 4.05286721 3.25286721 2.45286721 1.65286721 

9 5.15006122 4.25006122 3.35006122 2.45006122 1.55006122 

10 5.40035199 4.40035199 3.40035199 2.40035199 1.40035199 
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Fig. 8: Time vs. expected profit 

Table 9: Sensitivity analysis of the system reliability with respect to µ1 
Time Value of ∂R(s)/∂µ1 

µ1 = 0.1 µ1 = 0.3 µ1 = 0.5 

0 0 0 0 

10 -2.207363154 -0.594832647 -0.203725633 

20 -1.722542140 -0.128186963 -0.024671693 

30 -0.779167373 -0.016897352 -0.002562110 

40 -0.286178687 -0.001933326 -0.000271869 

50 -0.094478242 -0.000213954 -0.000029950 

60 -0.029274170 -0.000023925 -0.000003429 

70 -0.008702018 -0.000002751 -0.000000407 

80 -0.002512753 -0.000000326 -0.000000049 

90 -0.000710245 -0.000000040 -0.000000006 

 

 

Fig. 9: Sensitivity analysis of the system reliability with respect to µ1 

 

Table 10: Sensitivity analysis of the system reliability with respect to λE 

Time Value of ∂R(s)/∂λE 

λE = 0.1 λE = 0.3 λE = 0.5 

0 0 0 0 

10 -0.202538570 -0.069460274 -0.0289654462 

20 -0.275121845 -0.026720690 -0.0055961010 

30 -0.190092374 -0.004682627 -0.0006652043 

40 -0.104018154 -0.000608585 -0.0000573077 

50 -0.050951388 -0.000068250 -0.0000052534 

60 -0.023432531 -0.000007052 -0.0000004778 

70 -0.103497566 -0.000000694 -0.0000000433 

80 -0.004444750 -0.000000066 -0.0000000039 

90 -0.001869828 -0.000000006 -0.0000000003 
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Fig. 10: Sensitivity analysis of the system reliability with respect to λE 

 

Conclusions 

The following conclusions may be drawn on the basis of study conducted in the present paper.  

(1) When λ1 = 0.6, λ2 = 0.2, μ1 = 0.3, μ2 = 0.2, λE = 0.5, w = 0.3 the availability of the system decreases as the time increases. This 

variation of availability with respect to time is depicted in Fig. 2. 

(2) Table 3 is corresponding to the reliabilities obtained for the cases when the second unit of subsystem A is in warm standby, cold 

standby and in hot standby. One can easily conclude by observing Fig. 3 that reliability in each case decreases as the time increases 

but the system has highest reliability in case when second unit of subsystem A is in warm standby.  

(2) By critically examine Figs. 4, 5, 6 and 7 one can see that the M.T.T.F. of the system decreases with the increment in the values of 

λ1, λ2, μ1 and μ2. M.T.T.F. is found to be highest with respect to of λ1. Also in case of μ1 and μ2 the decrement is more rapid in 

comparison to the cases of λ1 and λ2. The value of M.T.T.F. varies from 7.662-4.355, 6.344-2.971, 6.967-4.086 and from 6.254-3.645 

with respect to λ1, λ2, μ1 and μ2 respectively for considered parameters. 

(3) Keeping revenue cost per unit time at 1 and varying service cost from 0.1 to 0.5, one can obtain Fig. 8. It is very clear from Fig. 8 

that increasing service cost implies decrement in profit. Here highest and lowest values of expected profit are obtained to be 5.40 and 

0.4871 respectively for considered values. 

(4) Tables 9 and 10 are corresponding to the sensitivity analysis of the system reliability with respect to change in μ1 and λE 

respectively. This behaviour of sensitivity has been shown in Figs. 9 and 10. One can observe that sensitivity of the system reliability 

decreases with the increase in the value of μ1 and λE. Also one can analyze that the system reliability is more sensitive in case of μ1 

than λE.  
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