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ABSTRACT

In the present paper the system considered consists of two subsystems A and B. Subsystem
A consists of identical operating and warm standby units. While subsystem B has two
dissimilar units: main unit and a unit in cold standby. Main unit of subsystem B is assumed
to be more efficient than the standby unit so when the main unit fails the system goes to the
state of low efficiency. Main unit is connected to cold standby unit with a switching over
device. Further, whenever there is a failure in one of the units of A and in the main unit of
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Keywqrds subsystem B, the system goes to critical state where system has to stop functioning to avoid
Reliability, the further failures. Also we have considered that the company providing repair facility has
Availability, appointed a repairman. The repairman repairs the system in case of minor failures but when
M.T.T.F., warm standby, the system fails completely he has to take it to the nearest service station of the company for
Cold standby, repair. By applying Supplementary variable technique, Laplace transformations and copula
Hot standby, methodology transition state probabilities, asymptotic behaviour, reliability, availability,

Gumbel-Hougaard copula. M.T.T.F., cost effectiveness and sensitivity of the system have been determined. Particular

cases corresponding to the situations when the standby unit of subsystem A is in cold
standby and in hot standby have also been considered. At last some numerical examples
have been taken to illustrate the model.

© 2014 Elixir All rights reserved.
Introduction

It is well known that the reliability of a system can be improved by using standby units in the system. We can find a number of
applications of these types of systems in various industrial setups. In general there are three types of standbys: (i) Cold standby in
which the standby unit is only called upon when the primary or operating unit fails. Here the unit in the state of standby does not fail;
(if) Warm standby in which the standby unit runs in the background of operating unit. In this case the unit can fail in the state of
standby but its failure rate is less than that of operating unit. As the standby unit comes in operating state its failure rate is equal to
operating unit; (iii) Hot standby in which the standby unit run with the operating unit and the unit in the state of standby can fail with
the same failure rate as operating unit. In real world there are various systems having standby units such as electric generator in a
power plant, inverter in houses, batteries in various electronic setups, wheel assembly in a truck etc. In these systems when operating
unit fails the load is transferred to the standby with the help of switching over device in case of cold standby or automatically in case
of hot and warm standbys. In many situations the assumption that the standby unit is capable to bear the total load as efficiently as the
primary unit is not seems to be realistic. Many researchers [1, 3, 8, 9] have considered the system with standby units but they did not
take into account the case of low efficiency of the standby units. Also, when the standby units are not as efficient as the primary unit
the chances of failure of the system may be greater than the normal situation. Further, we can find many cases in which prolong
running of the system in the standby brings the system to a risky state where it is advisable to stop the functioning of the system to
prevent the system from major damages. For instance in case of a two-engine aeroplane if one engine fails the pilot has a provision of

emergency landing so as to minimize the risk of life.
Keeping all these facts in view in the present paper we have considered a system which consists of two subsystems A and B in
series configuration. Subsystem A has two homogeneous units: Operating and warm standby. The failure rates of operating and
standby units are A; and A, respectively. When standby becomes functional by virtue of failure of operating unit of A its failure rate is

assumed to be ;. Subsystem B is a heterogeneous system having two units: Main and a unit in cold standby. Here it is assumed that
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the main unit is more efficient than the standby unit. Whenever the main unit fails, load transfers to the standby unit with the help of a
switching over device and the system goes to the state of low efficiency. Further, whenever one unit of Subsystem A and the main unit
of B fail, system goes to critical state and is stopped deliberately to avoid the further risks of failure. The company providing the
repair facility has appointed a person (repairman) to look after the system. The repairman repairs the system whenever there is a minor
failure in the system. But if the system fails completely due to major failures, policy of the company is to take it to the nearest service
station of the company for repair. Therefore, in this situation repairing of the system cannot be started immediately, hence it has to
wait for the repair. At the service station better facilities and expert repairmen are available where the system can be repaired
effectively in a short period of time. Failure rates of the system are assumed to be constant whereas repairs follow general
distributions. It is also assumed that from state Sy to S; and from S; to S there are two different types of failures. This is a realistic
assumption since the warm standby unit can also fail in state of standby with a failure rate less than that of operating unit. The joint
probability distribution of failure rates has been analysed by using copula methodology [5, 7]. Transition state probabilities,
asymptotic behaviour, various reliability measures such as reliability, availability, M.T.T.F., cost analysis and sensitivity analysis of
the system have been obtained by using Supplementary variable technique, Laplace transformation and copula. Transition state
probabilities when the second unit of subsystem A is a cold standby or a hot standby with the operating unit have also been examined
and a comparison on the basis of the reliability obtained in these three cases has also been made. Numerical examples have been
provided to illustrate the model at last.

Assumptions

(1) Initially the system is in perfectly operating state.

(2) In subsystem A one unit is in warm standby with the operating unit. Both the units are similar.

(3) In subsystem B one unit is in cold standby with the main unit. The standby unit is not as efficient as the main unit so when the
main unit of subsystem B fails the system goes to the state of low efficiency.

(4) The system Ss in which one unit of subsystem A and the main unit of subsystem B have failed is a critical state. In this state the
functioning of system stopped deliberately with the emergency failure rate Ag.

(5) The switchover device is perfect and switchover is instantaneous.

(6) The main unit of subsystem B has given priority over other units for repair.

(7) Subsystem A can repair only when both of its units have failed.

(8) When the system is in complete failure state the repairman provided by company carries it to the nearest service station of
company due to which the system has to wait for some time.

(9) After repair the system is as good as new.

(10) The joint probability distribution of failure rates is given by Gumbel-Hougaard family of copula.

State Specification

States | Subsystem A: Number of good units | Subsystem B: Number of good units | System state
So 2 2 G
S: 2 1 L
S 2 0 Fw
S, 1 2 G
S, 0 2 Fu
Se 1 1 C
Se 1 1 Fu,
S; 2 0 Fr
Sg 0 2 Fr
S, 1 1 Fr

Table 1: State specification
G: Good state, L: Low efficiency state, C: Critical state, F,,: Failed under waiting, Fg: Failed under repair
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Notations
Vo Failure rate of operating unit of A.
Ay Failure rate of standby unit of A.
My Failure rate of main unit of B.
Uy Failure rate of standby unit of B.
Ag: Rate of emergency failure in the system.
& (r): Repair rate of main unit and standby unit of subsystem B. If i = 1/2 then r = y/z.
da(X): Repair rate of subsystem A.
X, Y, Z: Elapsed repair time for both the units of subsystem A, the main unit of subsystem
B and the standby unit of B.
Pi (t): Probability that the system is in S; state at instantt fori=1toi=9.

Pi (s): Laplace transform of P; (t).

P4(x,1):  Probability density function that at time t the system is in failed state
S, and the system is under repair, elapsed repair time is X.

E,(®: Expected profit during the interval (0, t].

Ky, Ka Revenue per unit time and service cost per unit time respectively.
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X
5,00 n(yem(-=[ 700
0

o0 X
§,, (x) : Laplace transform of S, (x)= jn(x) exp(—sx — IU(X)dX
0 0

Ifu;, =dp (y), U, =wp(y) then the expression for the joint probability according to Gumbel-Hougaard family of copula is given as

Cy(uy,uy) = exp[{(~loggp (¥))? + (—logwp (v)) 371
5. Formulation of Mathematical Model

By elementary probability and continuity arguments, one can obtain the following set of integro-differential equations.

[%w +exp[{(~log A1)’ +(—|09/12)H}l/0]}|30(t) = o tay
0

+ [ 80Py (v, Dy + [ 6 0OPa(x, Dty + [ A (P (3. Dy ()
0 0 0

_%%w +1(y) +exp[{(~log 2,)” + (—Iogﬂz)g}““’l}ﬂ(yat) =0 Q)
G
_5+5+W}P2(y,w,t):o ..(3)
%+ n m}ga) = exp[{(-log 1)’ +(~10g 2,)"}'* TRy (1 @)
[0 0
E+&+W}P4(X:th)—o ...(5)
I
_a+5+ﬂE}P5(y,t)=O ...(6)
G
_E+E+W}Pﬁ(y,w,t)—0 )]
IR
_5+5+¢1(y)}%(y,t)=0 (8)
[0 0
_a+&+¢A(x)}P8(x,t)—0 ..(9)
G
_E+5+¢1(y)}%(y,t)=0 -.-(10)
Boundary conditions:
PL(O,t) = 14 Py (t) D
PZ(OIW!t):/uZPl(yIt) (12)
o0 -0 ..(13)
P, (0, w,t) = 4, P5(t) ..(14)
Py (0,t) = 24, P5 (1) + exp[{(~log 4,)? + (~log 4,) ’} 1P, (y, 1) 19

Ps (0, w,t) = AR5 (v, 1) ...(16)
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P;(0,t) =wR, (y,w,t) ..(17)
Pg(0,1) = WP, (x, w, 1) ...(18)
Py (0, 1) = wRs (y, w, t) ...(19)

Initial condition:

P,(t) =1 att =0 and all other probabilities are zero initially. ...(20)

Solution of the model
Taking Laplace transformation of equations (1-19) and using (20), we get

-+ 10+ el {109 )" + (~10g 1) F*“1[Po(s) = 1+ [ 4 (P (y. s)dy
0

+ ! A(Y)P7(y, s)dy+ ! #a(0Pe (x, S)dy + ! A (y)Pa(y.)dy @D
[3+%+ﬂ2 + 1 (y) +exp[{(~log 4,) + (—Iogiz)“’}“g]}ﬁl(y,s) =0 22)
{s+i+w}52(y,w,5)=0
oy ..(23)
[s+ 1 + 4 ]P3(s) = exp[{(~log 41)” + (~log 2,) “¥*TPo(s) -(24)
_s+£+w}54(x,w,s)=0
o ...(25)
_s+£+/1 I3( s)=0
Ty F V8= ...(26)
_s+i+w}55(y,w,s)=0
G ..27)
_s+£+¢( )_E (y,s)=0
oy 1y_ Ts= ..(28)
_s+£+¢ (x)_l3 (x,8)=0
T AV TR .(29)
_S+g+¢( )_E (y.) =0 ...(30)
STy 1Y_ 9y, s) =
Boundary conditions:
P1(0,5) = 24 Po(s) (31
52(0, w,s) = y251(y, S) .-(32)
P3(s)=0 -.(33)
P4(0,w,s) =4, P3(s) ..(34)
P5(0,5) = 4, P3(s) + exp[{(~log 4,)? + (~log 2,) ¥/ TP1(y. s) -(35)
P6(0,W,s) = A Ps(Y,5) ...(36)

P7(0,s) = wP2(y,w,s) ..(37)
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Ps(0,5) = WP4(X,W,S) ...(38)
59(0, S) = WEe(y,W, S) ...(39)
Solving equations (21-30) and using equations (31-39), we get the following transition state probabilities
Po(s) =1/D(s) ...(40)
= = 1—§¢l(s+/1+/¢2)
P1(s) = 14 Po(s
1(8) = o(){ s+ A+ ..(41)
= = 1—§¢1(25+/1+w+yz)
P2a(s) = Po(s
2(8) = iy 0(){ 251 AT Wy ..(42)
Ps3 (s) = APo (s) _
S+ A4 +m ...(43)
= = 1
Pa(s)=/1 Ps(s)[—}
S+w ...(44)
— — — | 1-S4 25+ A+ g + 1)
Ps(s) = 1, Ps(s + 1 APo(s
5(8) =4 3()L+/IJ = 0(){ 25+ A+ Ag + 1y ...(45)
—= = = 1—§¢1(33+/1+W+/1E+y2)
Pe(s) = iy Ag P3(S)| ———— |+ iy AL Po(s
6(s) = tude Pa( ){25+1E+W} g Po( ){ 35+ AW Ae + iy ...(46)
— — 1—§2¢1(3S+/1+W+,uz)
P7(s) = tuWur Po(s
7(8) = kaWaiz Po( ){ 2(3s+A+W+ ) --(47)
= = 1—§¢ (25 +w)
Ps(s) = w4, P3(s)) ——————
8(s) =wq 3(){ st } ...(48)
= — 1-S4(3s+W+ A4 =
Po(S) = iy AgWP3(s) 4 ( e) + Wy Adg Po(S) x
3s+W+ Ag
y l—§z¢1(4s+/1+w+/lE+,u2)
2048+ A+ W+ Ag + 1) ...(49)
where
D(S)=S+ 4 + A— 14,54 (S+ +/1)—ﬂ So4 (3S+W+A+ )—W—Mlx
=Sty Ho4 Ha 2#1#2 24 Ha S+ + Ay
xS (28+W)—M§ (Bs+w+4 )—ﬂ,u S (As+A+py +W+Ag)
Pa St # B/ EHLO24 Ha E (50)
4 = exp[{(~1og 41)” + (~log 4,)*}'*] (5D
Also up and down state probabilities of the system are given by
Pup(s) = Po(s) + P1(s) + P3(s) + Ps(s)
S+A+ 1, S+ A4+ (S+HA) S+ +4)
1-S4 25+ A+ +115) | |=
+ iy A Po(s
”1{ 251 A+ e + iy (®) ..(52)

Paown(s) = P2(5) + P4(s) + Ps(s) + P7(s) + Ps(s) + Ps(s)
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25+ A +WH+ u, (S+W)(s+ 14 +4)

1-S4(2s+A+wW+ p)
{WZ{ a ﬂz)}_'_ 2

A 1-S4(Bs+A+W+ A + 11p)
+ + i Ahe
(25 + Ag +W)(S+ A + 117) 35+ A+W+ A + 1

+ #1W,U2{

1-S24 (35 + A+ W+ ) WAL 1-Sy, (25 +W)
2(3s+A+W+ ) & 2s+w)(s+ A4 +14)

1—§¢1(33+w+/1E)
Bs+w+Ag)(S+ oy +4)

+ A W/l{ } + Wiy A g x

2045+ A +W+Ag + 1)

X{l—gzqﬁl (4s+A+wW+Ag +ﬂ2)H|30(S)
...(53)

Also it is noticeable that
Eup(5)+5down(3):l/5 -.(54)
Asymptotic behaviour

Using Able’s lemma

lim {sE(s)}= lim F(t) = F(say)
s—>0 t >

in equations (52) and (53), one can obtain the following time independent probabilities

P |14 p 1-SpA+m)|, 4 ma
= 1
B A+, M+ Ae(u +4)

1-Sy A+ +mp) || 1
+yll{ At A+ i H D () ...(55)

. 1-Sy (A+W+ 1) N MW 4 taAgd
down 12 AW+ i1, W +4)  (Ag +W)(4 +14)

) 1—§¢l(ﬂ,+w+/15+,u2) Wi 1—§2¢1(/1+w+y2)
e A+W+Ag + 1 1 2(A+W+ i)

1-S4, (W) 1-Sy (W+Ag) §
: Wm{ww " ﬂl)} . ““EM{ (W 20t + m} Fite

. 1-Sop(A+W+Ag + 1) || 1
200+ W+ Ag + 1) D(0) ...(56)
where

D(0) = limD(s)

2 = exp[{(-log 4)” +(~log 2,)’}'“]
Particular cases

(i) When repair follows exponential distribution.
In this case the results can be derived by putting

S L 20 5 o 9 ..(57)
SMS)_s+¢l(y)’S¢A(S)_—s+¢A(x)
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in equations (52) and (53), we get
Eup(S)=|:1+ ] —r tuk
StA+up +i(Y) s+h+m (S+Ae)s+m+4)

N Auy 1
25+ A+ Ag + 4y + & (Y) | Di(S) ...(58)

Edown (S) = ars + /llﬂ
25+ A+W+ s, + G (YY) (S+W)(S+y+ )

. A A . MAAE
(2s+Ag +W)(S+ A +44) 3BS+A+W+Ag + 45 + B (Y)
4 HWH + wi, A
2(3s+A+W+ 1, +28(Y))  (2S+W+@a(X))(S+ 4 +14)

N A WA N Wi e 1
(Bs+wW+Ag +d(YN(S+p+4) 284S+ A+W+ Ag + 1, +2¢,(Y)) | Dy(S) ...(59)

where
D(S) =5t py 44— B  Wamh(y) Wi
S+uy +A+@(Y) 3BS+W+A+ 4, +24(Y) S+ + 4

o P WAgmA é(y) B WAAE £ ¢ (Y)
254+ WH+@a(X) S+ +A4 3s+WH+Ag +@(Y) 4s+A+u, + W+ Ag +2¢,(Y)

..(60)
A=exp[{(-log 4)? +(-log 4,)?}"’] ...(61)

(if) When waiting time is zero.
In this case up and down state probabilities of the system can be obtain by putting w = 0 in equations, we get

_ 1-§
Pup(S): 1+/11 S¢1(S+ﬂ+/.12) + A + :ulﬂ’
S+A+ S+ 4+ (S+Ag)S+m+4)
1-Su(s+A+2 +u) | | 1
4
25+ A+ g + p1p D,(s) -.(62)
— 1-S4(2s+ A+ y)
Pdown(S)= Lty @( ;u2) + ﬂi
25+ A+ 1y S(S+ 4 +4)
. g A + i 1-S4(Bs+A+Ag +u5) || 1
(2s+ Ag)(S+ Ay + 14y) 35+ A+ + 1 D, (s) -.-(63)
where
...(65)

2 =exp[{(-log 1)’ + (=109 2,) ’F'*]

(iii) When the standby unit in subsystem A is in cold standby.
This can be derived by putting A, = 0 or L = A; = A in equations (40-49). The Laplace transformations of various transition state

probabilities are as follows:
...(66)

Po(s) =1/ Dy(s)



23193 Nidhi Tiwari and S. B. Singh/ Elixir Statistics 69 (2014) 23185-23203

P1(s) = ylﬁo(s)[—l_s"‘l(s ”A)}

S+An+ 1y ...(67)
— = 1—§¢1(23+AA+W+;¢2)
Pa(s) = Po(s
2(S) =ttty 0(){ 251 Ay~ Wt i ...(68)
Pa(s) = 2aPo(9) ————
A S+Ap+ 11 ...(69)
— = 1
Pa(s) =1a Ps(S)[ }
— — —  11-S4 25+ Ap + Ag + 11)
Ps(s) = i P3(s + A Po(s
5(5) = 14 P3( )LMJ TN 0(){ 25+ Apt A + 11y (7))
—= —= —= 1—§@(3S+1A+W+ZE+,L12)
Pe(S) = iyAg P3(s)) ———— |+ iyAade Po(s
6(8) = ru g P3( )|:25+2“E+W:| tApAe Po( ){ 35+ An W g + 12, (72)
= —= l—§z¢1(35+/1A+w+y2)
P7(s) = pywu, Po(s
7(8) = Wiz Po( )[ 2(35+ Ap + W+ 425) -(73)
= = 1-Sy, (25 +W)
Ps(s) = WA, P3(s) ——————
8(s) aP3( ){ 25+ W ..(74)
— — 1—§¢1(SS+W+/1E) = 1—§2¢1(4s+/1A+W+/1E+,uZ)
Po(s) = iy AgWP3(s + Wy ApAg Po(s) x
2(8) = e 3(){ 35+ W+ Ag HaZnte Po(s) 2045+ Ap +W+Ag +425) --(75)
where
— W f—
D3(3)=3+#1+/1A_,U1S¢1(5+#2+/1A)—E#1ﬂ232¢1(35+w+/1/;+ﬂ2)
2 _ —
WA 5, (2s+w)-WAEMAA S (35w )
S+ iy +Aa S+ 4y +Aa
= ...(76
_gﬂ«A/lEﬂlszﬁ(4s+ﬁA+/J2 +W+/IE) ( )
Also up and down state probabilities of the system are given by
Eup(s): l+,U1 1_SQ(S+AA+’UZ) + lA + ﬂlﬂA
S+ Ap+ ty S+Ap+y  (S+HA)S+ .y +An)
1-S4(25+ A5 + A + —
sy |8 A e T i) L 77
25+ A + g + ity -(77)

— 1-S4(25+ As + W An2
PdOWﬂ(S):|:ﬂ1ﬂ2{ ¢1( A #2)}+ A

2S+Ap + W+ L1 (S+W)(S+ 14 +14)

HiANE
(2s+ Ag +W)(S+Ax +24) 3S+Ap +W+Ag + 1

1—§2¢&(3s+/1A+w+y2)}+W/1 2{ 1-Sy, (25 +W) }
A

+ W,
f ﬂz{ 235+ Ap + W+ p15) 2s+wW)(S+Ap +14)
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1—§¢l (3s+w+Ag)
(Bs+W+Ag)S+uy +4)

+/11/1EW/1A{ }+Wﬂl/lA/1E X

X{l—quﬁl (4s+ A + W+ Ag +y2)H50(S)

2045+ Ap + W Ag + 125) -(78)

(iv) When standby unit in subsystem A is in hot standby with the operating unit.

In this case by putting A, = A; = A and L = 24 in equations (40-49), one can obtain following transition state probabilities.

Po(s) =1/D,(s) ...(79)
— — [ 1-S4(s+24, + 1)
P1(s) = 11 Po(s
1) =14 o(){ S+20, + 0, ...(80)
= — 1—§¢l(25+2/1A+w+,u2)
P2a(s) = Po(s
2(8) = 4yt Po ){ 25+ 245 + W+ 4y -(81)
Pa(s) = 24, Po(s) —
3(s) =24, O()LJMAHJ ...(82)
= = 1
Pa(s) =1, P3(S)[—}
S+ W ...(83)
— — — 1S4 (25422 + Ag + 11)
Ps(s) = 14 P3(s + 214 A, Po(s
5(5) = 14 P3( )[st A 0(){ 25+ 20, + e + 11y ...(84)
- = 1 = |1-S4(Bs+24p + W+ g + 15)
P6(S) = iyAg P3(S)] — |+ 14 24,4 Po (s
°(8) = e 3(){25+/1E+w} faciate 0(){ 3S+2A, + W+ Ag + ..-(85)
— — | 1-S04 (85 +22p + W+ 1)
P7(s) = tyWu, Po(s
7(8) = kaWipiz Po( )[ 2(35+ 245 + W+ 125) --(86)
— — 1—§¢ (2s+w)
Pg(s) =wA,P3(s)| ——=———
8(s) aP3( )l: 2S5+ W ...(87)
— — 1—§¢1(35+W+/1E) — 1—§2¢1(4s+2/1A+w+/1E+,u2)
Po(s) = iyAgWP3(s + Wiy 2ApAg Po(S) x
2(8) = s te WP ( ){ 35+ W+ Ag H12Apte Po(s) 2048 +245 +W+ Ag + 1) ..-(88)
where
f— W —
D4(5)=5+ﬂ1+21A—ﬂ15¢1(5+ﬂ2+2/7~A)_Eﬂ1#252¢1(35+w+2/1A+#2)
2 — f—
—Zw#xS¢A(Zs+w)—2W/lE—'ul/lAS¢l(33+w+/1E)
S+ + An S+ + Ap
Also the up and down state probabilities of the system are given by
- 1-S 2
Pup(s) = 1+ 14 Sp(S+24p + 1) + 22p . 217
S+ 25 + iy S+Ax+ay  (S+A)S+1y+4)
1-S4(25+224, + A + 1) | |=
+2,u1ﬂ"A & A E :u2 PO(S) 90
25+ 205 + Ag + iy --(90)



23195 Nidhi Tiwari and S. B. Singh/ Elixir Statistics 69 (2014) 23185-23203

1-S4 (25+20p +W+ 115) 22,
2S5+ 25 + W+ Ly (S+W)(S+ 14 +14)

Edown(S) = |:/‘1/—12{

+ 214 g Ap
(2s+Ag +W)(S+Ap + 14)

1—§¢1(35+21A + W+ Ag +y2)}

+ 2 ApA
£zt E{ 35+ 24, + W+ A + 11y

l—§2¢1(3s+2ﬂ,A+W+‘u2)}+2W1 2{ l—§¢A(ZS+W) }
A

+ W
= 'MZ{ 235+ 224 + W+ 1) (2s+wW)(S+ A +14)

l—§¢1(35+w+/1E)
(BS+WH+ A )+ 14 +Ap)

+ ZIulﬂEWlA{ }+ 2Wen ApAg %

.91

5 1-S24 (4S+2A5 + W+ Ag + 1) Bo(s)
2045+ 245 + W+ Ag + 115)

Numerical computation
(1) Availability analysis
Let us take ;= 0.6, ,,=0.2, u; = 0.3, 1pb = 0.2, Ae=0.5, w=0.3, D; =D, =Do=1,0=1 and x =y = z = 1. Also let the repair
follows exponential distribution i. e. equation (57) holds, then putting all these values in equation (52), taking inverse Laplace
transformation, we get
Pup(t)= -0.1301054620 ¢t*500%%%%%0Y . ,003113014003 e 910000 9 05846608969

g(LSTTII0005 (5 1942010441 088014823230 050 007394121216 t) -0.2512567850

(086014823231 ojn(0.007394121216 t) + 0.4613082557 078626655230 + () 1663598755

e(-0.7285677930 t)+0002024434936 e(—0.6042513821 t)+117130413 e(—0.1268411365 1) (92)
Now setting t = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, in above equation (92), one can obtain Table 2 and correspondingly Fig. 2 which
represents the variation of availability with respect to time.
(2) Reliability Analysis
Let the failure rates be A;= 0.6, X, = 0.2, p; = 0.3, u, = 0.2, emergency failure rate be Ag= 0.5, waiting rate w = 0.3, repair rates be @,
=0, =Dp,=0,0=1and x =y =z = 1. Also let the repair follows exponential distribution. Now by putting all these values in
equations (52), (77) and (90) taking inverse Laplace transform, using (57) and varying time fromt = 0 to t = 10, one can obtain Table
3 and Fig. 3 which demonstrate the manner in which reliability varies as time passes when the unit of subsystem A is in warm
standby, cold standby or in hot standby.
(3) M.T.T.F. Analysis

We know that M.T.T.F. = lim Py (S)
s—0

Also suppose that repair follows exponential distribution then using equation (57) and

(@) Setting ®1=Dy=Dp=0,1,=0.2,u;=0.3, 1, =02, X=0.5,w=0.3,x =y =2z=1, 0 = 1 and varying A, as 0.10, 0.20, 0.30, 0.40,
0.50, 0.60, 0.70, 0.80, 0.90, one can obtain Table 4 which demonstrates variation of M.T.T.F. with respect to A;.

(b) Let us take @1 = D,= DPp=0, A;= 0.6, u1 = 0.3, u, = 0.2, Ae= 0.5, w= 0.3, x =y = z =1, 0 = 1 then by varying A, as 0.10, 0.20,
0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90 Table 5 can be obtained which shows how M.T.T.F. varies as the value of A, increases.

(c) Fixing @; = @, = ®p=0, 1,=0.6, 1,=0.2, 1, = 0.2, Ae= 0.5, w= 0.3, x =y =z =1, 6 = 1 and varying p, as 0.10, 0.20, 0.30, 0.40,
0.50, 0.60, 0.70, 0.80, 0.90, one can obtain Table 6 which shows variation of M.T.T.F. with respect to ;.

(d) Putting ®;= ®,= ®p= 0, ,=0.6, X,=0.2, u; = 0.3, A= 0.5, w= 0.3, x =y =z =1, 0 = 1 and varying p, from 0.10 to 0.90 one can
obtain Table 7 which represents the manner in which M.T.T.F. varies with respect to pi,,

Variations of M.T.T.F with respect to Ay ,, p; and py in the cases (), (b), (¢) and (d) have been shown by the Figs. 4, 5, 6 and 7

respectively.
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(4) Cost Analysis
Letting 1= 0.6, ,,= 0.2, 1;, = 0.3, 1, =02, Ag= 0.5, w= 0.3, &; = O, = Dp=1, 0 = 1 and x = y = z = 1. Furthermore, if the repair
follows exponential distribution then using equations (57), we can obtain equation (92). If the service facility is always available, then

expected profit during the interval (0, t] is given by
t

where K; and K; are the revenue and service cost per unit time respectively, then
E () = K1[0.2602109240 et050000000000) 4 0 003420894509 e 091000000000 1.0 3707166241
(LTINS Y 1 2982704474 e 08E0M82323Y 05(0.007394121216 t) +0.2901464146
p0.86014823231) ojn(0.007394121216 t) -0.05867072106 e 07862665523 _( 2983382234
e(-0.7285677930 0-0003350319082 e(-0.6042513821 0-9234941008 e(-0.1268411365 t)
+8.996326343]-K,t ...(93)
Keeping K; =1 and varying K, at 0.1, 0.2, 0.3, 0.4, 0.5 in equation (93), one can obtain Table 8 which is depicted by Fig. 8.
(5) Sensitivity Analysis
We have performed sensitivity analysis of system reliability along with the change in specific values of system parameters. For this it
is assumed that @, = 0,= D,=0,0 =1 and x =y = z = 1. Putting all these values in equation (52), we get

H A A mA 1
+ + +
S+A+p, S+4+p (S+HA)SHm+A) 25+A+Ag +p, S+ + A ...(94)

R(s) :{1+

Sensitivity of any reliability characteristic with respect to some specific parameter concludes how that particular reliability
characteristic of the system changes with the change in the value of that specific parameter. In the present work we have done
sensitivity analysis of reliability of the system with the change in the values of p; and Ag in two different cases as given below.

(a) Let us find OR(s)/0y, i.e. differentiate equation (94) with respect to p,, take its inverse Laplace Transform, put A;= 0.2, A,= 0.2, u,
= 0.2, Az = 0.2 and then varying the time as t = 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 for p; = 0.1, 0.3 and 0.5, we get Table 9 and
Fig. 9.

(b) Calculating OR(s)/OAg by using equation (94), taking its inverse Laplace Transform and putting A; = 0.2, A,= 0.2, p, = 0.2, g, = 0.2.
Now varying the time as t = 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 for Az = 0.1, 0.3 and 0.5, one can get Table 10 and Fig. 10.

Table 2: Time vs. Availability

Time Pup

0 1.0000000000
0.9590418057
0.8715461826
0.7791496106
0.6921953409
0.6131108306
0.5421330976
0.4788411880
0.4226140077
0.3727850563
0.3287014135

O O[NP~ |WN|F-

=
o
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Fig. 2: Time vs. Availability

Time

10

Table 3: Time vs. Reliability for warm, cold and hot standby

Time Pup
When second unit of subsystem A is in
Warm standby Cold standby Hot standby

0 1.0000000000 1.00000000000 1.00000000000
1 0.9487251480 0.8623605488 0.7838561437
2 0.8226149560 0.5911884120 0.4595508769
3 0.6785373788 0.3704252246 0.2569312398
4 0.5424140387 0.2224483544 0.1446395654
5 0.4244550259 0.1308681494 0.0829366105
6 0.3271103372 0.07631141945 0.0483763152
7 0.2492350393 0.04439843895 0.0285830145
8 0.1882474642 0.02586978019 0.0170392734
9 0.1412130185 0.01512608618 0.0102182145
10 0.1053535797 0.00888284790 0.0061517085

1.2

1

08

s 06

04

0.2

a

o 2 4 =] g
Time

Fig. 3: Time vs. Reliability for warm, cold and hot standby
Table 4: A; vs. M.T.T.F

M MTTF
10 | 7.662405306

.20 | 7.041812399
.30 | 6.493139899
40 | 6.013302485
.50 | 5.593750000

.60 | 5.225561363
.70 | 4.900802139
.80 | 4.612770782
.90 | 4.355911085
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Fig. 4: A, vs. M. T.T.F.
Table 5: h, vs. M.T.T.F
I MTTF
.10 | 6.344991754
.20 | 5.225561363
.30 | 4.522577751
40 | 4.046445543
.50 | 3.705555556
.60 | 3.450910725
.70 | 3.254218937
.80 | 3.098132952
.90 | 2.971488770
7
&
w5
-
=
= 4
3
2
0 0.2 0.4 0.6 0.8 1
Ay

Fig. 5: A, vs. MTTF
Table 6: p; vs. M.T.T.F.

ul MTTF

10 | 6.967492872
20 | 5.825838415
30 | 5.225561363
40 | 4.854878049
50 | 4.602987984
.60 | 4.420562330
70 | 4.282289616
.80 | 4.173837297
.90 | 4.086477760
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Fig. 6: py vs. M.T.T.F
Table 7: ppvs. M T.T.F
153 MTTF
.10 | 6.254689756
.20 | 5.225561363
.30 | 4.682736863
40 | 4.346548876
.50 | 4.117493234
.60 | 3.951209992
.70 | 3.824904095
.80 | 3.725648577
.90 | 3.645559977
B85
=}
5.5
.5
= 45
—
E' b
35
3
25
2
a a.z a4 a6 a8 1
Lz
Fig. 7: ppvs. ML T.T.F
Table 8: Time vs. expected profit
Time Ep(t)
K,=0.1 K,=0.2 K,=0.3 K,=0.4 K,=0.5
0 0 0 0 0 0
1 0.88710374 | 0.78710374 | 0.68710374 | 0.58710374 | 0.48710374
2 1.70371498 | 1.50371498 | 1.30371498 | 1.10371498 | 0.90371498
3 2.42883645 | 2.12883645 | 1.82883645 | 1.52883645 | 1.22883645
4 3.06389938 | 2.66389938 | 2.26389938 | 1.86389938 | 1.46389938
5 3.61587061 | 3.11587061 | 2.61587061 | 2.11587061 | 1.61587061
6 4,09282952 | 3.49282952 | 2.89282952 | 2.29282952 | 1.69282952
7 4.50270065 | 3.80270065 | 3.10270065 | 2.40270065 | 1.70270065
8 4.85286721 | 4.05286721 | 3.25286721 | 2.45286721 | 1.65286721
9 5.15006122 | 4.25006122 | 3.35006122 | 2.45006122 | 1.55006122
10 5.40035199 | 4.40035199 | 3.40035199 | 2.40035199 | 1.40035199
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Table 9: Sensitivity analysis of the system reliability with respect to

Fig. 8: Time vs. expected profit

Time Value of OR(s)/0p,
U, =0.1 My =0.3 My =0.5
0 0 0 0

10 | -2.207363154 | -0.594832647 | -0.203725633

20 | -1.722542140 | -0.128186963 | -0.024671693

30 | -0.779167373 | -0.016897352 | -0.002562110

40 | -0.286178687 | -0.001933326 | -0.000271869

50 | -0.094478242 | -0.000213954 | -0.000029950

60 | -0.029274170 | -0.000023925 | -0.000003429

70 | -0.008702018 | -0.000002751 | -0.000000407

80 | -0.002512753 | -0.000000326 | -0.000000049

90 | -0.000710245 | -0.000000040 | -0.000000006

0 —
100
0.5
= -1
=
T3
2
-2.3 -

Fig. 9: Sensitivity analysis of the system reliability with respect to

Table 10: Sensitivity analysis of the system reliability with respect to Ag

Time Value of OR(s)/0\g
A =01 =03 =05

0 0 0 0

10 | -0.202538570 | -0.069460274 | -0.0289654462
20 | -0.275121845 | -0.026720690 | -0.0055961010
30 | -0.190092374 | -0.004682627 | -0.0006652043
40 | -0.104018154 | -0.000608585 | -0.0000573077
50 | -0.050951388 | -0.000068250 | -0.0000052534
60 | -0.023432531 | -0.000007052 | -0.0000004778
70 | -0.103497566 | -0.000000694 | -0.0000000433
80 | -0.004444750 | -0.000000066 | -0.0000000039
90 | -0.001869828 | -0.000000006 | -0.0000000003
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Fig. 10: Sensitivity analysis of the system reliability with respect to Ag
0.05

0.03

Conclusions

The following conclusions may be drawn on the basis of study conducted in the present paper.

(1) When A= 0.6, A, = 0.2, u; = 0.3, up, = 0.2, Ag = 0.5, w = 0.3 the availability of the system decreases as the time increases. This
variation of availability with respect to time is depicted in Fig. 2.

(2) Table 3 is corresponding to the reliabilities obtained for the cases when the second unit of subsystem A is in warm standby, cold
standby and in hot standby. One can easily conclude by observing Fig. 3 that reliability in each case decreases as the time increases
but the system has highest reliability in case when second unit of subsystem A is in warm standby.

(2) By critically examine Figs. 4, 5, 6 and 7 one can see that the M.T.T.F. of the system decreases with the increment in the values of
A1, A, Wy and pp. MLT.T.F. is found to be highest with respect to of A;. Also in case of y; and p, the decrement is more rapid in
comparison to the cases of A; and A,. The value of M.T.T.F. varies from 7.662-4.355, 6.344-2.971, 6.967-4.086 and from 6.254-3.645
with respect to Ay, Ay, 1 and p, respectively for considered parameters.

(3) Keeping revenue cost per unit time at 1 and varying service cost from 0.1 to 0.5, one can obtain Fig. 8. It is very clear from Fig. 8
that increasing service cost implies decrement in profit. Here highest and lowest values of expected profit are obtained to be 5.40 and
0.4871 respectively for considered values.

(4) Tables 9 and 10 are corresponding to the sensitivity analysis of the system reliability with respect to change in p; and Ag
respectively. This behaviour of sensitivity has been shown in Figs. 9 and 10. One can observe that sensitivity of the system reliability
decreases with the increase in the value of p; and Ag. Also one can analyze that the system reliability is more sensitive in case of p;
than Ag.
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