
Shahnaz Baghbani/ Elixir Comp. Sci. & Engg. 69 (2014) 23057-23061

23057

Introduction

End-user programming enables end users to create their

own programs. To this aim, Researchers and developers have

been working on empowering end users to do this for a number

of years, and they have succeeded. As a result, todays, end users

create numerous programs.

The “programming environments” used by end users

include spreadsheet systems, web authoring tools, and graphical

languages for creating educational simulations. Using these

systems, end users create programs in some forms such as

spreadsheets, dynamic web applications, and educational

simulations. Some ways in which end users create these

programs include writing and editing formulas, dragging and

dropping objects onto a logical workspace, connecting objects in

a diagram, or demonstrating intended logic to the system[1].

According to statistics from the U.S. Bureau of Labor and

Statistics, by2012 in the United States there will be fewer than 3

million professional programmers, but more than 55 million

people using spreadsheets and databases at work, many

writing formulas and queries to support their job [2]. There are

also millions of designing websites with Javascript, writing

simulations in MATLAB [3], prototyping user interfaces in

Flash [4], and using countless other platforms to support their

work and hobbies. Computer programming, almost as much as

computer use, is becoming a widespread, pervasive practice.

What makes these “end-user programmers” different from

their professional counterparts is their goals: professionals are

paid to ship and maintain software over time; end users, in

contrast, write programs to support some goal in their own

domains of expertise. End-user programmers might be

secretaries, accountants, children [5], teachers [6], interaction

designers [Myers et al.2008], scientists [7] or anyone else who

finds themselves writing programs to support their work or

hobbies. Programming experience is an independent concern.

For example, despite their considerable programming skills,

many system administrators view programming as only a means

to keeping a network and other services online [8]. The same is

true of many research scientists [9].

Despite their differences in priorities from professional

developers, end-user programmers face many of the same

software engineering challenges. For example they must choose

which APIs, libraries, and functions to use [18]. Because their

programs contain errors [11], they test, verify and debug their

programs. They also face critical consequences to failure. For

example, a Texas oil firm lost millions of dollars in an

acquisition deal through an error in a spreadsheet formula [12].

The consequences are not just financial. Web applications

created by small-business owners to promote their businesses do

just the opposite if they contain bad links or pages that are

displayed incorrectly, resulting in loss of revenue and

credibility [13]. Software resources configured by end users to

monitor non-critical medical conditions can cause unnecessary

pain or discomfort for users who rely on them [14].

Because of these quality issues, researchers have begun to

study end-user programming practices and invent new kinds of

technologies that collaborate with end users to improve

software quality. This research area is called end-user software

engineering (EUSE). The topic is distinct from related topics in

end-user development in its focus on software quality. It

introduces tools that aid end users to improve their software

quality.

Definition

One contribution of this article is to identify existing terms

in EUSE research. This section, will be start with a basic

definition of programming and end up with a definition of end-

user software engineering.

Programming and Programs

Programming similarly to modern English dictionaries is

defined, as the process of planning or writing a program. This

leads to the need for a definition of the termprogram. KO et

al. define a program as “a collection of specifications that may

take variable inputs, and that can be executed (or interpreted) by

a device with computational capabilities.”[15] Note that the

variability of input values requires that the program has the

ability to execute on future values, which is one way it is

different from simply doing a computation once manually.

This definition captures general purpose languages in wide use,

such as Java and C, but also notations as simple as VCR

programs, written to record a particular show when the time of

day (input) satisfies the specified constraint, and combinations

of HTML and CSS, which are interpreted to produce a

specific visual rendering of shapes and text. It also captures the

End User Software Engineering Importance and Related Techniques
Shahnaz Baghbani

ICT Department, ACECR Institute of Higher Education, Isfahan, Iran.

ABSTRACT

Today there are more end user programmers than professional programmers. since there is

ample evidence that programs which end users create have led to huge expenses, software

quality is necessary. In this paper End User Software Engineering (EUSE) and related

terminology will be defined, then compared with professional software engineering. Finally

to aid end user programmers for improving their software quality, some tools will be

introduced.

 © 2014 Elixir All rights reserved

.

ARTICLE INFO

Article history:

Received: 15 February 2014;

Received in revised form:

29 March 2014;

Accepted: 7 April 2014;

Keywords

End user,

Software,

Debugging.

Elixir Comp. Sci. & Engg. 69 (2014) 23057-23061

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Tele:

E-mail addresses: Baghbani@jdeihe.ac.ir

 © 2014 Elixir All rights reserved

Shahnaz Baghbani/ Elixir Comp. Sci. & Engg. 69 (2014) 23057-23061

23058

use of report generators, which take some abstract specification

of the desired report and automatically create the finished

report.

End-User Programming

To fully define this term it is important firstly to understand

the definition of an end-user. To be concise, an end-user is

anyone who uses a computer [15]. When we refer to end-user

programming it is, in general, programming done by anyone

using a computer. This however, is not a very descriptive

definition. KO et al. define end user programming as

“programming to achieve the result of a program primarily for

personal, rather [than] public use” [15].

The important distinction here is that program itself is not

primarily intended for use by a large number of users with

varying needs. For example, a teacher may write a grades

spreadsheet to track students’ test scores, a photographer might

write a Photoshop script to apply the same filters to a hundred

photos, or a caretaker might write a script to help a person with

cognitive disabilities be more independent [16]. In these end-

user programming situations, the program is a means to an end

and only one of potentially many tools that could be used to

accomplish a goal. This definition also includes a skilled

software developer writing “helper” code to support some

primary task. For example, a developer is engaging in end-user

programming when writing code to visualize a data structure to

help diagnose a bug. Here, the tool and its output are intended

to support the developers’ particular task, but not a broader

group of users or use cases.

In contrast to end-user programming, professional

programming has the goal of producing code for others to use.

The intent might be to make money, or to write it for fun, or

perhaps as a public service (as is the case for many free and

open source projects). Therefore, the moment novice web

designers move from designing a web page for themselves to

designing a web page for someone else the nature of their

activity has changed. The same is true if the developer

mentioned above decides to share the data structure

visualization tool with the rest of his team. The moment this

shift in intent occurs, the developer must plan and design for a

broader range of possible uses, increasing the importance of

design and testing, and the prevalence of potential bugs.

It is also important to clarify two aspects of this “intent”-

based definition. First, our definition is not intended to be

dichotomous, but continuous. After all, there is no clear

distinction between a program intended for use by five people

and a programintended for fifty. Instead, the key distinction is

that as the number of intended uses of the program increases, a

programmer will have to increasingly consider software

engineering concerns in order to satisfy increasingly complex

and diverse constraints. Second, even if a programmer does

not intend for a program to be used by others, circumstances

may change: the program may have broader value, and the

code which was originally untested, hacked together, and full

of unexercised bugs may suddenly require more rigorous

software engineering attention.

End-User Software Engineering

With definitions of programming and end-user

programming, we now turn to the central topic of this article,

end-user software engineering. As we discussed in the previous

section, the intent behind programming is what distinguishes

end-user programming from other activities. This is because

programmers’ intents determine to what extent they consider

concerns such as reliability, reuse, and maintainability and the

extent to which they engage in activities that reinforce these

qualities, such as testing, verification, and debugging.

Therefore, if one defines software engineering as systematic

and disciplined activities that address software quality issues,

the key difference between professional software engineering

and end-user software engineering is the amount attention

given to software quality concerns.

In professional software engineering, the amount of

attention is much greater: if a program is intended for use by

millions of users, all with varying concerns and unique contexts

of use, a programmer must consider quality regularly and

rigorously in order to succeed. This is perhaps why definitions

of software engineering often imply rigor. For example, IEEE

Standard 610.12 defines software engineering as “the

application of systematic, disciplined, quantifiable approaches to

the development, operation, and maintenance of software.”

Systematicity, discipline, and quantification all require

significant time and attention, so much so that professional

software developers spend more time testing and maintaining

code than developing it [17] and they often structure their

teams, communication, and tools around performing these

activities [18].

In contrast, end-user software engineering still involves

systematic and disciplined activities that address software

quality issues, but these activities are secondary to the goal that

the program is helping to achieve. Because of this difference in

priorities and because of the opportunistic nature end-user

programming [19], people who are engaging in end-user

programming rarely have the time or interest in systematic and

disciplined software engineering activities.

Given these differences, the challenge of end-user software

engineering research is to find ways to incorporate software

engineering activities into users’ existing workflow, without

requiring people to substantially change the nature of their

work or their priorities. For example, rather than expecting

spreadsheet users to incorporate a testing phase into their

programming efforts, tools can simplify the tracking of

successful and failing inputs incrementally, providing feedback

about software quality as the user edits the spreadsheet program.

Comparison to Professional Software Engineering

As discussed in the previous section the difference between

End-User Software Engineering and Professional SE is the

intent behind the programming being done. In EUSE the intent

of the programming is to achieve a personal goal (e.g. writing

macros to automate repetitive tasks). In Professional SE the

intent of the programming is to achieve a public goal (non-

personal). This difference in intent is the cause of the key

difference between professional and end-user software

engineering, “the amount of attention given to software quality

concerns” [15].

The differences in intent and attention to quality are not the

only differences between these two activities. Therefore, to fully

understand EUSE it is important to discuss these differences.

Examining the reasoning that drives the actions taken during

different phases of the software development lifecycle is the best

way to highlight the major differences and similarities. The

areas that will be examined are: requirements gathering, design

and specification, testing and verification, debugging, and

maintenance.

Requirements Gathering
If you ask any Professional Software Engineer they will

quickly tell you exactly why gathering requirements is crucial to

the success of the program. If the requirements are not thorough

it is almost impossible to build not only the right program, but to

build the program right. Therefore, tons of time is spent in the

Shahnaz Baghbani/ Elixir Comp. Sci. & Engg. 69 (2014) 23057-23061

23059

requirements gathering phase before even beginning any

programming, usually. However, for end-user software

engineering, having formal requirements, or requirements in

general, is often seen as unnecessary. This difference between

professional and end-user software engineering is due to the

difference in the source of the requirements [15].

For professional software engineers the requirements come

from the customers and users of the program, generally not the

engineers themselves. This is not true for end-user

programmers. End-user programmers generally program for

themselves, a friend, or a colleague [15]. It is this difference that

leads to the difference in importance placed on requirements

gathering. The end-user is the customer/user and therefore is

programming to achieve a personal goal, not programming to

fulfill someone else’s. Therefore, “[f]or end users, the

requirements are both more easily understood (because they are

their own) and more likely to change” [15].

Design and Specification

The next area of development we will examine is design

and design specification. In software engineering, the purpose of

design specifications is to specify the systems internal behavior

[15]. The design specifications are used to lay out the

implementation strategy for ensuring that the system meets all of

the requirements. This is done by assigning appropriate

priorities to each requirement so that the highest priority

requirements are taken care of before the low priority ones.

In end-user programming, it is often a struggle for the end-

user to translate their requirements into a working program [15].

This is due to the fact that end-user programmers generally

don’t have training or experience in design and therefore see

little to no benefit to it [15]. However, instead of design

specifications, end-user programmers’ often come to realize

what constraints exist on their programs’ implementations

through the process of writing their program [20].

Testing and Verification

In professional software engineering testing is an essential

part of the software development lifecycle. Testing is the way in

which software engineers ensure the proper execution of the

program. This is done through the use of many different testing

techniques such as JUnit testing, regression testing, embedded

test cases, etc. It is by running these tests that software engineers

are able to identify bugs and properly debug the code, which

will be discussed in the next section.

The primary difference between EUSE and professional SE

is that the priorities’ of the end-user programmer frequently lead

to overconfidence in their programs correctness [15]. It is

known that professional programmers are overconfident

[24][26][23], but as they gain experience this overconfidence

subsides [22]. In comparison, many studies about spreadsheets

report that in spite of high error rates in spreadsheets, the

developers of the spreadsheets are carelessly confident about its

correctness [25][21].

Debugging

In professional software engineering, debugging is an

essential activity to ensure that the programs requirements are

being met. Debugging is different from testing and verification

in that instead of being used for the detection of errors,

debugging is the means by which errors are found and removed

from the program [15]. This activity is one of the most time

consuming activities undergone to ensure that the program

meets all of the requirements. This is because debugging

requires that the programmer has an excellent understanding of

the program, and is able to identify areas that could have caused

the problem.

The primary difference between end-user programmers and

professional software engineers is that, unlike professional SE,

end-user programmers often lack accurate knowledge and

understanding about their programs execution [15]. Because of

this, it is very hard for many end-user programmers to even

conceive what the root-cause could be, and even harder for them

to actually be able to remedy the bug. Furthermore, because end

users frequently prioritize their external goals over software

reliability, they often rely on debugging strategies such as

making code changes until it appears to work as expected [15].

This approach often leads to the introduction of additional errors

in the code and the original functionality can be lost.

Popular Tools that aid in End-User Software Engineering

There are many tools available whose main purpose is

integrating software quality principles used by professional

software engineers into end-user software engineering. Because

the vast majority of end-user programming is done through the

creation of spreadsheets, the majority of the tools below are

aimed at debugging in spreadsheets. The tools that have

presented in EUSES Consortium (http://eusesconsortium.org)

will bediscussed as follow.

 Topes

It is a model and supporting system to support validation

and reuse of short, human-readable data in end-user

programmers' programs. Users create a "tope" to describe rules

for recognizing and reformatting a certain kind of data, such as

phone numbers, and then associate a tope with spreadsheet cells,

web form textfields, web macro variables, or other fields.

Values are automatically checked and transformed at runtime.

Studies show that end-user programmers can validate data more

quickly and accurately than with existing tools.

 WYSIWYT: TheWhatYou SeeIs WhatYou Test

It helps users test their spreadsheets while they're creating

them. As a user develops a spreadsheet, he or she can also test

that spreadsheet incrementally yet systematically. At any point

in the process of developing the spreadsheet, the user can

validate any value that he or she notices is correct.

 Whyline

Whyline is a debugging tool that allows programmers to ask

"Why did" and "Why didn't" questions about their program's

output. Programmers choose from a set of questions generated

automatically via static and dynamic analyses, and the tool

provides answers in terms of the runtime events that caused or

prevented the desired output. In user studies of the Whyline

Alice programming, programmers using the Whyline to debug

spent a factor of 8 less time debugging the same bugs than

programmers without the Whyline.

 Gencel

Observing that all errors in spreadsheets result from updates

or changes applied to the spreadsheet - be it during the creation

of a new spreadsheet or while adapting an existing one - an

obvious alternative to debugging is to prevent errors by making

these update operations safe. An extension to Excel, called

Gencel, that is based on the concept of a spreadsheet template,

which captures the essential structure of a spreadsheet and all of

its future evolutions. Such a template ensures that the

spreadsheet can be changed only in the anticipated ways, so that

spreadsheets evolving from templates will provably never

contain any reference, range, or type errors. Gencel can help to

reduce maintenance costs while at the same time it dramatically

increases the level of correctness and reliability of spreadsheets.

 Citrus

Graphical structured editors for code and data have many

benefits over editing raw XML, but they can be difficult and

Shahnaz Baghbani/ Elixir Comp. Sci. & Engg. 69 (2014) 23057-23061

23060

time-consuming to build using modern programming languages.

Citrus is a new object-oriented, interpreted language that is

designed to simplify the creation of such editors, by providing

first-class language support for one-way constraints, custom

events and event handlers, and value restrictions and validation.

 Barista

Barista is a new implementation framework, implemented

in Citrus, which enables the creation of a new class of highly

visual, highly interactive code editors. Editors built with Barista

can offer standard features such as conventional text-editing

interaction techniques, immediate feedback about errors and

code-completion menus. However, Barista editors can also

support drag and drop interaction techniques, new types of

embedded tools, and alternative views of code.

 Crystal

It is an application framework (written in Java and using

the Swing toolkit) that extends the work of the Whyline,

enabling the creation of software applications that allow users to

ask questions about their data and the application's state.

 Robofox

Robofox is a web browser extension that enables the

automation of repetitive browsing tasks such as extracting

information from a web site, integrating data from different web

sites, and customizing the appearance of the collected

information.

 Slate

Many spreadsheet systems allow users to specify units with

their data in order to help users detect errors. Slate allows users

to specify the object of measurement , in addition. By

intelligently propagating labels representing these objects, Slate

helps users identify errors in their spreadsheets that other

spreadsheet systems can't.

 WebAppSleuth

Web applications are increasingly prominent in society,

serving a wide variety of user needs. Engineers seeking to

enhance, test, and maintain these applications must be able to

understand and characterize their interfaces. Third-party

programmers (professional or end user) wishing to incorporate

the data provided by such services into their own applications

would also benefit from such characterization when the target

site does not provide adequate programmatic interfaces.

Conclusion

As the number of end user programmers today is rapidly

increasing and many programs are written by them, the quality

of this software is important. End User Software Engineering

focuses on developing the software without error, in this way

there are some tools which end users can use to solve their

software quality problems. Because the vast majority of end user

programming is done through the creation of spreadsheets, the

majority of tools are aimed at debugging in spreadsheets.

References:

1.BURNETT, M. 2009 What Is End User Software Engineering

And Why Does It Matter?IS-EUD '09 Proceedings of the 2nd

International Symposium on End-User DevelopmentPages 15 -

28

2.SCAFFIDI, C., MYERS, B. A., AND SHAW, M. 2008. Topes:

Reusable abstractions for validating data. In Proceedings of the

International Conference on Software Engineering.

3.GULLEY, N. 2006. Improving the quality of contributed

software on the MATLAB file exchange. In Proceedings of the

2nd Workshop on End-User Software Engineering, in

conjunction with the ACM Conference on Human Factors in

Computing.

4.MYERS, B., PARK, S., NAKANO, Y., MUELLER, G., AND

KO. A. J. 2008. How designers design and program interactive

behaviors. In Proceedings of the IEEE Symposium on Visual

Languages and Human-Centric Computing.177–184.

5.PETRE, M. AND BLACKWELL, A. F. 2007. Children as

unwitting end-user programmers. In Proceedings of the IEEE

Symposium on Visual Languages and Human-Centric

Computing. 239–242.

6.WIEDENBECK, S. AND ENGEBRETSON, A. 2004.

Comprehension strategies of end-user programmers in an

event- driven application. In Proceedings of the IEEE

Symposium on Visual Languages and Human Centric

Computing. 207–214.

7.SEGAL, J. 2005. When software engineers met research

scientists: A case study. Empir. Softw. Eng. 10, 517–536.

8. BARRETT, R., KANDOGAN, E., MAGLIO, P. P., HABER,

E. M., TAKAYAMA, L. A., AND PRABAKER, M. 2004. Field

studies of computer system administrators: analysis of system

management tools and practices. In Proceedings of the ACM

Conference on Computer Supported Cooperative Work. 388–

395.

9.CARVER, J., KENDALL, R., SQUIRES, S., AND POST, D.

2007. Software engineering environments for scientific and

engineering software: a series of case studies. In Proceedings of

the International Conference on Software Engineering. 550–

559.

10.KO, A. J. AND MYERS, B. A. 2004. Designing the Whyline:

A debugging interface for asking questions about program

failures. In Proceedings of the ACM Conference on Human

Factors in Computing Systems.151–158.

11.PANKO, R. 1998. What we know about spreadsheet errors.

J. End User Comput. 2, 15–21.

12.PANKO, R. 1995. Finding spreadsheet errors: Most

spreadsheet models have design flaws that may lead to long-

term miscalculation. Information Week, May, 100.

Environments. 123–130.

13.ROSSON, M. B., BALLIN, J., AND RODE, J. 2005. Who,

what, and how: A survey of informal and professional web

developers. In Proceedings of the IEEE Symposium on Visual

Languages and Human-Centric Computing.199–206.

14.ORRICK, E. 2006. Electronic medical records–Building

encounter forms. In Proceedings of the 2nd Workshop on End-

User Software Engineering, in conjunction with the ACM

Conference on Human Factors in Computing.

15.Ko, A. J., Abraham, R., Beckwith, L., Blackwell, A., Burnett,

M., Erwig, M., Scaffidi, C., et al. (2011). The state of the art in

end-user software engineering. ACM Computing Surveys

(CSUR), 43(3), 21.

16.CARMIEN, S. P. AND FISCHER, G. 2008. Design,

adoption, and assessment of a socio-technical environment

supporting independence for persons with cognitive disabilities.

In Proceedings of the ACM Conference on Human Factors in

Computing Systems. 597–606.

17.KO, A. J. DELINE, R., AND VENOLIA, G. 2007.

Information needs in collocated software development teams. In

Proceedings of the International Conference on Software

Engineering. 344–353.

18.TASSEY, G. 2002. The economic impacts of inadequate

infrastructure for software testing. RTI Project Number

7007.011, National Institute of Standards and Technology.

19.BRANDT, J., GUO, P., LEWENSTEIN, J., AND KLEMMER,

S. R. 2008. Opportunistic programming: How rapid ideation

and prototyping occur in practice. In Proceedings of the

Workshop on End-User Software Engineering (WEUSE).

Shahnaz Baghbani/ Elixir Comp. Sci. & Engg. 69 (2014) 23057-23061

23061

20.Fischer, G., &Giaccardi, E. (2006). Meta-design: A

framework for the future of end-user development. End User

Development Empowering People to Flexibily Employ

Advanced Information and Communication Technology, 427–

457.

21.Hendry, D. G., & Green, T. R. G. (1994). Creating,

comprehending, and explaining spreadsheets: A cognitive

interpretation of what discretionary users think of the

spreadsheet model. International Journal of Human Computer

Studies, 40(6), 1033–1066.

22.Ko, A. J., DeLine, R., &Venolia, G. (2007). Information

needs in collocated software development teams. Proceedings of

the International Conference on Software Engineering (pp. 344–

353).

23.Lawrence, J., Clarke, S., Burnett, M., &Rothermel, G.

(2005). How well do professional developers test with code

coverage visualizations? An empirical study. Proceedings of the

IEEE Symposium on Visual Languages and Human-Centric

Computing (pp. 53–60).

24.Leventhal, L. M., Teasley, B. E., &Rohlman, D. S. (1994).

Analyses of factors related to positive test bias in software

testing. International Journal of Human-Computer Studies,

41(5), 717–749.

25.Panko, R. (1998). What we know about spreadsheet errors.

Journal of Organizational and End User Computing (JOEUC),

10(2), 15–21.

26.Teasley, B., &Leventhal, L. (1994). Why software testing is

sometimes ineffective: Two applied studies of positive test

strategy. Journal of Applied Psychology, 79(1), 142.

