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Introduction 

 Environmental occurrence of organic pollutants through 

interconnectedness of human actions and activities impacts the 

environment in many ways. The impacts arising from the 

potential of global warming, deforestation and deposition of 

drugs comprising myriads of chemical and therapeutic classes 

harbours risks to our daily lives.  The high consumption of drugs 

have significant worldwide consequences and the 

comprehensive assessment to provide updates regarding the 

occurrence, metabolism, measurement as well as removal of 

these contaminants from STWs effluent-waters have therefore 

become important for humans and aquatic environment.  

Occurrence of chemical substances in the aquatic 

environment  

Heavy metals, solvents, dyes, pesticides etc. are some of the 

chemicals that enter the aquatic environment in several ways 

causing chemical pollution. Some are either from sewage 

treatment works (STWs) or are dumped directly from industrial 

effluents. Other sources include the use of herbicides and 

fertilizers in agriculture. Apart from phytoestrogens that come 

from plants; humans and animals also excrete natural hormones 

which are disrupting chemicals in the environment [1]. In 

effluents, bisphenol A (BPA), nonylphenol, nitrates found in 

fertilizers as well as animal excrements and industrial chemicals 

occur [2]. Figure 1, shows also the presence of polycyclic-

aromatic hydro carbons (PAHs), heavy metals and phthalates are 

shown. 
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Figure 1:  Chemical components in sewage sludge. Data 

from The U. S. Environmental Protection Agency. 

(Renewable Energy Venture, Austin, Texas) [4] 

Other classes of endocrine disrupting compounds (EDCs), 

which includes multitudes of chemicals are considered in the 

studies of accumulation of potential toxic elements exposed to 

sheep grazed on grassland with repeated applications of sewage 

sludge and its exposure effects on sheep foetal testis 

development at different gestation periods [3, 4] have been 

reported. The chemicals used in the plastic industry includes 

phthalate esters and other major environmental pollutants [5] 

and Koppe et al [6] studied the metabolism of the parent 

phthalate and argued that a very active glucuronidated 

metabolite (monoester) was excreted, while in the digestive 

system their higher monomers has been detected [7].  

Table 1 shows most of the reported data of pollutants and 

residual analytes in sewage samples showing the sources and the 
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analytes found. In foetus studies, high bioaccumulation of 

phthalates due to easy placental transfer [8] has been observed 

and the effects of high doses of phthalates on male‘s 

reproductive organs have been shown but in most organ 

systems, they are relatively non-toxic. A reduction in 

testosterone production in rats exposed to phthalates confirmed 

extensive studies of phthalates with the increased high levels of 

human exposure in human spermatozoa increased damage to 

DNA [9-14].  

Activity effects of dibutyl phthalate (DBP) [62], di-

ethylhexyl phthalate (DEHP) induced ‗anti-androgenic‘ on 

humans testicular dysgenesis syndrome [63], multinucleate 

gonocytes in rats [64-66] and occurrence of oestrogens on breast 

cancer cells have been linked to phthalate exposures [67].  

Polychlorinated biphenyls (PCBs) are (unreactive) organic 

compounds, which constitute a class of 209 congener groups. 

The commercial production of pulp bleaching, herbicides, metal 

smelting, by-products in combustion processes of incineration, 

chlor-alkali and coal-fired power stations or processes are main 

sources of PCBs stable compounds. Rudel et al [68] had listed 

their uses as electronic components, pesticides extenders, cutting 

oils, sealants, adhesives, stabilizing additives in flexible PVC 

coatings of electrical wiring, wood floor production, finishers, 

flame retardants, hydraulic fluids, paints, de-dusting agents 

coolants, insulating fluids for transformers, capacitors, and in 

carbonless copy paper.  PCBs are stable, very resistant to 

oxidative degradation, only degrade anaerobically and readily 

persist longer [69]. On human health effects, anemia, thyroid 

gland injuries, impaired reproduction, stomach and liver injuries 

have all been reported [70, 71].  Exposures of PCBs can 

interfere with oestrogen levels of animals [72].  Impairments of 

immune system, lowering of testosterone levels in males, 

elevating the levels of progesterone in females and disruption of 

thyroid hormone function [73].  Bioaccumulation of PCBs 

induces oestrogenic effects in animal tissues [74]. Additional 

studies from Whyatt et al [75], Lilienthal [76] and Korach [77] 

have all further confirmed that the chlorinated congeners are 

more stable and persistent longer than less chlorinated 

compounds. 

Pharmaceuticals in aqueous environment 

Pharmaceutical substances are pollutants that are steadily 

increasing in wide variety in the aquatic environment apart from 

the traditional pollutants like polychlorinated biphenyls (PCBs), 

pesticides and polycyclic aromatic hydrocarbons (PAHs) in 

recent years [78-83]. Despite the rapid rise and continuous 

discharge of these chemicals of which some are carcinogenic, 

reproductive toxic and mutagenic in environmental matrices 

[84-87], studies have indicated that their removals have been 

found to be incomplete and inadequate attention on the fate and 

behaviour during the transport of many drugs after their 

intended use have increased the risks of possible environmental 

effects [88-92]. The active ingredients of medicinal products 

with a wide range of chemical structures are excreted as parent 

drugs with associated metabolites after metabolism by dosed 

user and these are further subjected to biotransformation in the 

sewage treatment processes producing more polar degradation 

products of which many complex modes of biochemical 

pathways are poorly understood. This has led environmental 

research‘s increasing attention to pharmaceuticals and their 

corresponding metabolites considering the production of large 

number of registered pharmaceuticals and those procured 

illegally for illicit use or without prescription [89]. Yet, large 

quantities of different chemical classes of new pharmaceuticals 

enter the already saturated marketplace and these are disposed 

through agrochemicals runoff and the sewage systems to the 

aquatic environment 

One of the major sources is excreta and urine containing the 

unmetabolized drug residues and its active metabolites being 

flushed down in the toilets, many unwanted and expired 

prescription drugs are deliberately disposed of via drains [95-

97]). Also, Richardson & Bowron [93] reported that most of the 

drugs like antiseptics and lotions are assumed acceptable to be 

diluted to low levels in crude sewage when sluiced away. 

Numerous papers have reported the distribution of different 

chemicals belonging to  different   therapeutic classes such as 

antibiotics, anti-inflammatory drugs, lipid regulators, beta-

blockers, β2 –sympathomimetics, antiepileptics, antidepressants, 

antineoplastics, contraceptives, tranquilizers, diagnostic contrast 

media, preservatives and sunscreen agents  in different media of 

the environment at the specific levels ranging from ngL
-1

 to µg 

L
-1

 [98-101].  Also reported at microgram levels in rivers were 

theophylline, erythromycin and tetracycline and some amounts 

of oestrogen from oral contraceptive in sewage systems excreted 

by human population [102]   

In Switzerland, about 4 tonnes/year of fluoroquinolones 

(antibacterial drug) are sold and 14 tonnes/year in Italy [90, 103, 

104], while 100 tons of annual drug prescription in Germany 

alone does not include several other pharmaceuticals that have 

been reported in aquatic samples in numerous papers ranging 

from ngL
-1 

to µg L
-1

 levels [87, 90,  104-106]. The recent 

analytical studies in UK   further show that some 

pharmaceuticals are incompletely removed from sewage 

treatment works and surface waters such as lakes, rivers and 

seas have some detectable pharmaceuticals present [84, 105, 

107-110].  

Table 2 lists data of the main pharmaceuticals monitored in 

German STWs as well as German rivers and streams with 10,11-

dihydro-10,11-dihydro-carbamazepine (DHH), a metabolite of  

antiepileptic carbamazepine having highest influent and effluent 

concentration of 4100 and 2600 ng L
-1

. 

Table 3, shows antiepileptic carbamazepine has highest 

concentration of 6300 ng L
-1

,  X-ray contrast media were 

between 11, 000-15, 000 ng L
-1

 [117]. About 31 pharmaceuticals 

and five metabolites were found in at least one sample of 40 

German rivers. Out of 69 target compounds, only 10 were found 

in drinking water [119]. The survey of exposure effects and 

other environmental relevance is in the literature reviews [83, 

120]. 

Commonly used illicit drugs and their metabolites in 

aqueous environment 

The term ―illicit drug or drug of abuse‖ is normally used to 

describe those drugs that are controlled under the Misuse of 

Drugs Act, 1971. The legislation regulates controlled drugs into 

classes depending on the harm they cause, and there are various 

offences including the unlawful possession of a controlled 

substance [121]. The emerging risks with the prevalence and 

trends in the illegal production and abuse of illicit drugs have 

prompted the establishment of many International Agencies 

[122, 123] to monitor and conduct the risk assessments of the 

social, economic and environmental impacts the menace are 

eliciting, particularly in the consumer countries. The common 

classes of illicit drugs are cocaine, amphetamine, opioid, 

lysergic acid diethylamide (LSD), hallucillogen and 

cannabinoid, and by the hidden activity of their users, it has 

helped its purported widespread and continual escalating use 

[83]. The idea of Daughton [101] to use a non – intrusive 

approach to approximate the level of illicit drugs consumption at 

community level which was later demonstrated by Zuccato et al 
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[124] determined the levels of cocaine in waters and related the 

quantity to the amount of drug consumed by a local population. 

The approach apparently provided information needed by 

environmental scientists and appropriate authorities involved in 

the fight against the drug menace. It has been argued that the 

sewage systems constitute one of the potential routes those 

drugs enter the environment; other highly dispersed sources 

include disposals by drug and manufacturing laboratories [125]. 

Human metabolism of environmentally relevant drugs. 

In the human body, drugs are bio-transformed into one or 

more metabolites and after the loss of pharmacological activity 

the metabolites and unchanged parent drugs are eliminated from 

the body systemic circulation via urine or faeces. A number of 

parameters which include age, gender, ethnicity, patient and the 

time of administration have been associated to degree of 

metabolism. In Figure 9, the metabolism of drugs in the human 

body shows Phase I and Phase II reactions. The phase I 

comprises of oxidation reaction such as in aliphatic 

hydroxylation of ibuprofen and diclofenac, epoxidation of 

carbamazepine and ring oxidation of propranolol, while 

reductions, alkylations and dealkylations are other reactions.   

 

Figure 2:  Simplified scheme of dug metabolism in the 

human body [92] 

The conjugation reaction type occurs when polar molecules 

in Phase I transfer to the metabolites in Phase II such as the 

transfer of glucuronic acid to phenols, hydroxyls, caroxyls, 

thiols, amines and hydroxylamino groups. [92]. There is 

therefore interest in identifying the metabolites that may  pass 

on to the sewage, and those that might stay longer in the STWs 

and enter the environment through untreated water effluents or 

sewage biosolids.  

In the following sections, the metabolisms of the five major 

classes of illicit drugs found in various wastewaters are 

discussed. 

Human metabolism of cocaine 

Cocaine is extracted from the leaves of two species of coca: 

Erythroxylum coca and Erythroxylum novogranatense. The 

cocaine hydrochloride is normally formed after the alkaloids are 

precipitated with sodium carbonate and then dissolved in dilute 

HCl containing about 40% of cocaine, but when cocaine 

hydrochloride is extracted with ether in aqueous alkaline 

solution, it produces ―free base‖ which contains 85-90% of pure 

cocaine [94,126]. The street cocaine used by addicts is often 

mixed or cut with a number of diluants [127], and these 

adulterants are sometimes the cause of poisoning. Cocaine is a 

powerful addictive stimulant drug with three common routes of 

administration: smoking, intravenously and intranasally 

(through the nose). Figure 10 shows only the compounds we 

determined in the results, however, cocaine is spontaneously 

metabolized by the action of pseudo cholinesterase and hepatic 

esterase to give ecgonine methylester (EME) with the loss of 

benzoyl group [128-131].  A non-enzymatic hydrolysis at pH 

above 6 converts cocaine to benzoylecgonine (BZE) by 

demethylation as its main metabolite. BZE can be detected in 

the urine 48 hours after cocaine administration with a urinary 

excretion half-life of 6-8 hours [132-133].  The N-demethylation 

of cocaine leads to norcocaine (NC) (the most toxic metabolite) 

by P450 enzymes and then metabolized to N-hydroxynorcocaine 

by brain FAD –containing mono- oxygenases [134-135]. 

Norcocaine can further be hydrolysed to benzoylecgonine. 

Cocaine undergoes trans-esterification by enzymatic reaction in 

the liver in the presence of alcohol to form cocaethylene (CE); 

which has been reported to be more toxic than cocaine [136]. 

When cocaine is smoked, anhydroecgonine methylester 

(AEME) is produced and through enzymatic hydrolysis get 

converted to anhydroecgonine (AE) or ecgonidine [137]. The 

other metabolites of cocaine (ecgonidine, norecgonidine 

methylester, p- hydroxyl-benzoylecgonine, and m- hydroxyl-

benzoylecgonine) found in human urine  have minor metabolic- 

pathways that involve  the aromatic meta- and para- 

hydroxylation of cocaine followed by partial hydrolysis to the 

corresponding HO-Be isomers [138]. About 1-9% of cocaine 

has been excreted unchanged in the urine with much higher 

proportion in acid urine; its metabolites are recovered in variable 

proportions which depend on the route of administration [139]. 

 

Figure 3: Degradation pathways of cocaine in the human 

body [140]. 

Human metabolism of amphetamine 

Among the drugs classified as amphetamines are 

amphetamines (AM), methamphetamines (MA, ―speed‖) and 

methylenedioxymethamphetamine (MDMA, ―ecstasy or 

Adam‖). They are usually taken orally but can be snorted, 

smoked or injected. They are addictive stimulant drugs that 

affect the central nervous systems among other risks of 

dependence and abuse. Other designer drugs are 

methylenedioxyethylamphetamine (MDE, ―eve‖) and 3, 4-

methylenedioxyamphetamine (MDA, ―love pills‖) [141]. 

The major metabolic pathway involves deamination of 

cytochrome P450 to para- hydroxyl amphetamine and 

phenylacetone, this later compound is oxidised to benzoic acid 

and excreted as glucuronide or glycine (hippuric acid) 

conjugates. Smaller amounts of amphetamine are also converted 

to norepheridine by oxidation. Although most enzymes involved 

in amphetamine metabolism have not been clearly defined, 

CYP2D6 is known to be involved with the formation of   4- 

hydroxylamphetamine [142-143] 
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Table 1:  Organic contaminants in sewage sludge [15 – 61]. 
Pollutants Sources/usages Analytes                        Matrix Ref 

Organochlorine Pesticides 

and  PCBs          

Agricultural control   of 

pests, transformer   fluids, 

plasticisers PVCs and  

artificial    Rubbers            

g-HCH, Aldrin,  Endrin, 

PCBs,   Dieldrin        

sewage            15, 16 

Chlorophenols & 

chlorophenoxy  acids                                                       

Herbicides 4-chlorophenol 

2-chlorophenol, 

2-chloro-6-MP 

 MCPA; 2,4-D                                                                    

Sewage 16-19 

Organophosphorus 

Compounds 

Pesticides   residues                            Sewage 20, 21 

Nitrosamines &  

Nitroaromatics 

Control nematodes              Dimethylnitrosamine; 

NDMA; NDEA; 

NPYR; NMOR. 

Sewage 21, 22 

Mineral oils                Engine oils, paints               Paraffine, alkybenzene  

cycloparaffine      

Sewage 23, 24                                                                                                 

Alkylphenols Detergents, surfactants       4-alkylphenol; 

polyetho- xylates; 

4-nonylphenol (NP); 

Monoethoxylates 

(NP1EO); (NP2EO) 

Sewage 25, 26 

Lipids                          Petroleum hydrocarbon      Phosphatidyl serine,  

Phosphatidyl 

ethanolamine,     

Phosphatidyl choline       

Sewage            24, 27 

Acrylamide Monomer Coagulants   Polyacrylamide    Sewage 28 

Phthalates esters          Plasticisers bis-(2-

ethylhexyl)phthalate     

Sewage             29 

Organotin compounds Stabilisers in PVCs  

biocides,  foams               

Tributyltin oxide             Sewage   30-32 

Surfactants & 

Related residues    

 

Chlorobenzenes         

Detergents 

 

Paint removers                   

 

Linear alkylbenzene   

Sulphonates (LASs),   

 

chlorobenzenes 

Sewage 

 

Sewage 

 

33-38 

 

39-46 

 

Polychlorinated 

dibenzodioxins (PCDD)          

 Pulp bleaching Congener group Sewage 47-54 

Polycyclic-aromatic hydro 

carbons (PAHs)                 

Pyrolysis of organic 

materials.          

Naphthalenes Sewage 55-61 

 

Table 2: Occurrence of psycho-active drugs and beta blockers in STWs [116] 
 

Substances 

Influent Effluent 

LOQ 

[ng L-1] 

No of samples Max 

[ng L-1] 

LOQ 

[ng L-1] 

No of 

samples 

Max 

[ng L-1] 

Antiepileptics       

Carbamazepine 200 9 1000 100 9 1200 

DH-CBZ 100 7 30 50 8 30 

DHH 200 9 4100 10 9 2600 

Primidone 200 9 420 10 9 250 

Antidepressants       

Doxepin 200 9 100 10 9 190 

Opioids       

Oxycodon 200 0 - 10 0 - 

Dihydrocodeine 200 9 140 10 9 70 

Codeine 200 9 160 10 9 30 

Morphine 200 9 440 10 9 29 

Methadone 100 9 130 5 9 120 

Tramadol 200 6 470 10 6 370 

Tranquilizers       

Diazepam 200 0 - 10 0 - 

Nordiazepam 200 0 - 10 0 - 

Oxazepam 200 6 190 10 6 180 

Beta blockers       

Atenolol 100 9 910 5 9 370 

Sotalol 100 9 1300 5 9 1200 

Metoprolol 100 9 1200 5 9 1100 

Propranolol 5 9 70 3 9 60 

Bisoprolol 100 9 380 5 9 270 

Celiprolol 100 9 160 5 9 160 

Betaxolol 5 4 10 3 1 - 

Note: DH-CBZ (10, 11-dihydrocarbamazepine 
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Table 3: Pharmaceuticals in German STW effluents, rivers and streams [81, 105, 116, 117] 
                                                   

Analyte                                   

 

STWs    Rivers/streams  

LOQ 

(ng L-1)        

Number  STWs           Maximum   

(ng L-1) 

 

 

LOQ     

(ng L-1)                

Maximum   

 (ng L-1)              

Lipid regulator       

Bezafibrate                           250          49 4600  25 3100 

Gemfibrozil                          50        49 1500  10 510 

Clofibric acid 50 49 1600  10 550 

Fenofibric acid 50 49 1200  10 280 

Antiphlogistics       

Diclofenac 50 49 2100  10 1200 

Ibuprofen 50 49 3400  10 530 

Indomethacin 50 49 600  10 200 

Naproxen 50 10 520  10 390 

Ketoprofen 50 49 380  10 120 

Phenazon 100 30 410  20 950 

Acetylsalicylic acid 100 49 1500  20 340 

Salicylic acid 50 36 140  10 4100 

Betablocker       

Metoprolol 25 29 2200  10 2200 

Propranolol 25 29 290  10 590 

Betaxolol 25 29 190  10 30 

Bisoprolol 25 29 370  10 2900 

β2-Sympathomimetics       

Terbutalin 50 29 120  10 <LOQ 

Salbutamol 50 29 170  10 35 

Psychiatric drug       

Diazepam 30 20 40  30 <LOQ 

Antiepileptic       

Carbamazepine 50 30 6300  30 1100 

Antibiotics       

Clarithromycin 20 8 260  20 260 

Roxithromycin 20 10 1000  20 560 

Chloramphenicol 20 10 560  20 60 

Sulfamethoxazol 20 10 2000  20 480 

Trimethoprim 20 10 660  20 200 

Dehydrato-erythromycin 20 10 6000  20 1700 

X-ray contrast media       

Iopamidol 10 25 15000  10 2800 

Iopromide 10 24 11000  10 910 

Diatrizoate 10 25 8700  10 ca.100 

Iomeprol 10 12 3800  10 890 

Estrogens       

Estrone 1 38 70  0.5 1.6 

17β-Estradiol 1 38 3  0.5 <LOQ 

17β-Estradiol-17-valerate 4 38 <LOQ  2 <LOQ 

17α-Ethinylestradiol 1 38 15  0.5 <LOQ 

16α-Hydroxyestrone 1 15 5  0.5                  <LOQ 

 

Table 5: Sewage sludge disposal in England, 2008-2011 [196] 

 

 

 

 

 

 

*EfW = Energy from waste 

 

Table 6: Illicit drug metabolites of human origin detected in the environment* 
Compound    Human metabolites identified   in biological fluids    

[150, 225-242]                                                                                                                           
Human metabolites identified   in the aquatic environment 

[116158, 221, 243-251]                    

Amphetamine 

 
Amphetamine (AM)                                             

3, 4-methylenedioxyamphetamine (MDA) 

Methylenedioxymethamphetamine (MDMA) 

Methylenedioxyethylamphetamin (MDEA) 

Methylbenzodioxolylbutanamine (MBDB) 

Detected 

Detected 

Detected 

Detected 

Detected 

Mode of disposal %  Total disposed 

 2008/2009 2009/2010 2010/2011 Jan-Dec 2011 

Tonnes  % Tons % Tons % Tons % 

Land fill 

Incineration with EfW* 

Inicineration without EfW 

Recycled/Composted/Reused 

Other 

13784 

3325 

6 

10082 

198 

 50 

12 

0 

37 

1 

12490 

3610 

6 

10275 

255 

47 

14 

0 

39 

1 

11391 

3975 

5 

10588 

356 

43 

15 

0 

4 

1 

10135 

4577 

4 

10844 

404 

39 

18 

0 

42 

2 
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Metamphetamine (MA) 

p-hydroxy-metamphetamine  (p-OHMA) 

p-OHMA-glucuronide (p-OHMA-Glu) 

p-OHMA-sulfate (p-OHMA-Sul) 

Detected 

- 

- 

- 

Cocaine 

 
Cocaine (Cocaine) 

Benzoylecgonine (BE) 

Ecgonine methyl ester (EME) 

Cocaethylene (CE) 

Norcocaie (Nor- COC)                           

Ecgonidine 

nor-ecgonidine 

nor- ergonine methylester 

m-OH-benzoylegonine 

ecgonine 

ecgonidine methylester 

Detected 

Detected 

Detected 

Detected 

Detected 

- 

- 

- 

- 

- 

- 

Opiates 

 
Heroin 

Morphine 

Nor-morphine 

6-monoacetylmorphine (6-ACM) 

Morphine -3- glucuronide (M3G) 

Methadone 

2-ethylene-1,5-dimethyl 1-3,3-diphenylpyrolidene (EDDP) 

Ethyl morphine 

Detected 

Detected 

Detected 

Detected 

Detected 

Detected 

Detected 

- 

LSD 

 
Lysergicdiethylamide (LSD) 

Hydroxyl Lysergicdiethylamide (OH-LSD) 

Nor - Lysergicdiethylamide (Nor-LSD)                                                                             

Iso - Lysergicdiethylamide (Iso-LSD) 

2-oxo-3-hydroxy-LSD (2-Oxo-3-OH-LSD) 

Detected 

Detected 

Detected 

Detected 

- 

Cannabinoids 

 

Δ9-tetrahydrocannabinol (THC) 

Δ9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) 

THC-COOH- glucuronide (THC-COO gluc.) 

Hydroxyl -THC- conjugate (OH-THC) 

Detected 

Detected 

Detected 

Detected 

* No identified microbial degradates in the literature 

 

Table 7: Assessment of the biodegradability of pharmaceutical chemicals [93, 111] 
Compound Test result 

Amitriptyline 

Ampicillin 

Aspirin 

Caffeine 

Chlorhexidine 

Clofibrate 

Codeine phosphate 

Dextropropoxyphene 

Ephedrine 

Erythromycin 

Ibuprofen 

Menthol 

Meprobamate 

Methyldopa 

Metronidazole 

Naproxen 

Paracetamol 

Phenylpropanolamine 

Sulphamethoxazole 

Sulphasalazine 

Tetracycline 

Theobromine 

Theophylline 

Tolbutamide 

Non-biodegradable 

Biodegradable 

Readily biodegradable 

Readily biodegradable 

Non-biodegradable 

Non-biodegradable 

Non-biodegradable 

Non-biodegradable 

Readily biodegradable 

Non-biodegradable 

Biodegradable 

Readily biodegradable 

Non-biodegradable 

Non-biodegradable 

Non-biodegradable 

Non-biodegradable 

Readily biodegradable 

Readily biodegradable 

Non-biodegradable 

Non-biodegradable 

Non-biodegradable 

Readily biodegradable 

Readily biodegradable 

Non-biodegradable 
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Table 8  Chromatographic (LC-MS/MS) methods for the determination of illicit drugs and human metabolites in water (2000-2011) 
Analytes             Matrix         Sample Preparation                                             LC                                                                    MS                     Method                

Ref.     

                                                ______________________________________  ____________________________________    

_____________(LOD/LOQ)  

                                                   Volume            Extraction          Method           C‘graphic          Mobile            Detector            Acq. 

                                                   (mL)                                            Recovery (%)  Column             Phase        (Interface)        Mode                (ng L-

1)  

3 Cocaine: 

(CO, BE,  

EME)                                                                                                                         

WW 

 SW 
100 SPE (Oasis, 

HLB, 500 mg)                                   
73-

96               
Zorbax Extended 

C18(2.1mm x 50mm x 

3.5µm) HILIC: Rx-SIL 

(2.1 x 150mm,5µm)       

250 µL/min. 

A:H2O/AcN 

(92:2),10mM 

NH4HCO2. (pH 3). 

B: ACN. 

ITMS 

(ESI+) 
MRM     2-

4WW      

    

20SW         

[219]  

 

1Cocaine 

1 Opoiod.    

1Cannabiniod 

3 ALC.                           

WW - SPE (Oasis, 

MCX, 200mg) 
- HPLC: XTerraMS C18 

(100mm x 

2.1mm,3.5µm) 

250 µL/min.  A: 

0.1%  in H2O. B: 

AcN                                                                                                                              

QqQ  

(ESI+) 
SRM - [270] 

5 Cocaine 

4 ALCs  

3 Opiods   

1Cannabiniod                                      

SW 250 

mL      
SPE (Oasis, 

MCX,60mg)        
96-

105 

97 

10 

85-

90 

69-

84 

HPLC: XTerraMS 

C18(100mm x 

2.1mm,3.5µm) 

250 µL/min.   A: 

0.1%  in H2O. B: 

AcN                                                                                                                            

QqQ 

(ESI+) 
SRM 0.02-

0.05     

0.01-

0.35 

0.02-

0.28 

0.14-

0.36 

[158] 

2 Cocaine SW 

WW 
100 

mL 

500 

mL 

SPE (Oasis, 

HLB, 500 mg)                          
- HILIC: Zorbax Rx-SIL 

(2.1 x 150mm, 5µm)          
- ITMS 

(ESI+) 
MRM ≤ 20             [158] 

2 Cocaine SW 500 

mL 

SPE (Oasis, 

MCX, 60mg) 

90 HPLC: A Luna  C18   

(50mm x 2mm i.d, 3 

µm)                                                                                     

250 µL/min A: 

0.1%  in H2O. B: 

AcN                                                                                                                

- MRM - [124] 

 
Analytes             Matrix       Sample Preparation                                             LC                                                                    MS                          

Method                 Ref.     

                                                ______________________________________  ____________________________________    ______________  

(LOD/LOQ) 

                                                     Volume          Extraction        Method            Chromatographic Mobile       Detector          

Acq. 

                                    (mL)                                          Recovery (%)   Column  Phase       (Interface)       Mode                   (ng L-

1)     

3 Cocaine 

1ALC 

3 Opiods 

1LSD 

                                                                         

WW 500 

mL    

SPE 

(Strata- 

XC, 

200mg) 

50-

65 

HPLC: Phenomenex 

Onyx C18  (200 x 

3.0mm                                       

   36-120            [244] 

5 ALCs   

5 Cocaine 

5 Opiods   

1Cannabiniod                                                                                                                                                                                                                                    

WW 50 

mL       

SPE 

(Oasis, 

MCX, 

60mg)     

50-

105 

HPLC: XTerraMS 

C18(100mm x 

2.1mm, 3.5µm)     

250 µL/min 

A:CH3COOH/ H2O. B: 

AcN A2: 0.05% TEA/ 

H2O  

QqQ 

(ESI+) 

MRM 300 

pg/Lwwinf    

1 ng/L 
wweff 

[248] 

           

2 Cocaine SW 

WW 

100 

mL   

500 

mL        

SPE 

(Oasis, 

HLB, 500 

mg)                                 

- Zorbax Rx-SIL (2.1 

x 150mm, 5µm)                                                                                  

- ITMS MRM 

(ESI+) 

20 [271] 

           

1 ALC WW 250 

mL      

SPE 

(Oasis,  

HLB, 200 

mg)                            

36-

49                  

HPLC:Varian 

Pursuit XRs C18 

(100mm x 2.0mm, 

3µm)              

A:water/0.5%  HCOOH                                                

B: 82% CH3OH/ 18% 

AcN/0.5% HCOOH                                        

- Scan    

(CID) 

0.25-5.0           [247] 

           

5 ALCs    

2 Cocaine.   

1LSD 

1Opiod                                                     

WW 100 

mL 

SPE 

(Oasis 

HLB, 200 

mg)                            

70-

110           

UPLC:Acquity BEH 

C18    (100mm x 

2.1mm, 1.7 µm)            

A: AcN/0.1% HCOOH. 

B: 30mM HCOOH/ 

NH4HCO2                                                

QqQ 

(ESI+) 

- 5 - 850        [272] 
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Table 8  LC-MS/MS methods for the determination of illicit drugs and human metabolites in water (2000-2011) 
Analytes               Matrix       Sample Preparation                                             LC                                                                    MS                         

Method              Ref.     

                                                ______________________________________  ____________________________________    

_______________(LOD/LOQ) 

                                                     Volume          Extraction        Method            Chromatographic Mobile       Detector          

Acq. 

                                    (mL)                                         Recovery (%) Column                 Phase       (Interface)       Mode                 

(ng L-1) 

1 ALC 

2 Cocaine.                                            
SW 100 

mL    
SPE (Oasis,  

MCX,60mg)                                          
65-

106                 
UPLC: Acquity 

BEH C18 (1.7µm, 

1 mm x  100mm)                                                 

A:94.5% H2O. 5% MeOH, 

5% CH3COOH (pH 2.8)  

B:99.5% MeOH +  0.5% 

Acetic                         

QqQ 

(ESI+) 
MRM 0.3-

50              
[259] 

           

8 Opiods   

2Cannabiniod    
SW  

WW 
200 

mL    
SPE (Oasis, 

HLB, 200 mg)                                   
40-

70 
UPLC: Acquity 

BEH C18 (1.7µm, 

1 x   100mm)                                                                                                                                                                  

A: MeOH 

B: 5 mM NH4HCO2 
QqQ 

(ESI+) 
SRM 0.1-

25 
[258] 

           

8 Opiods   

2 

Cannabiniod    

SW 

WW 
50 

mL       
SPE (Oasis,  

MCX,(150mg)           
69-

94% 
UPLC: Acquity 

BEH C18 (1.7µm, 

2. 1 mm x50mm)                                                       

A: MeOH  B: 5 mM 

NH4HCO2  + 1% formic 

acid         

QqQ 

(ESI+)                                                                                                                        
SRM - [247] 

           

Acq. Mode - Acquisition mode- SRM, Selected reaction monitoring; CID, Collision-induced dissociation. 

Detector and Interface used – QqQ, Triple quadrupole; ITMS, Ion Trap mass spectrometry, ESI, Electrospray ionization. 

MeOH – Methanol; TEA, Triethylamine; NH4HCO2, Ammonium acetate; AcN, Acetonitrile, H2O, Water.                 

WW, Wastewater;  SW, Surface water; WWinff, Waste water influent;  WWeff, Waste water effluent.  

RPLC, Reversed-phase liquid chromatography; UPLC, Ultra- performance liquid chromatography; HILIC, Hydrophilic interaction 

chromatography. 

 
Table 9. Solid Phase Extraction (SPE) protocols in wastewater pre-treatment 

Protocols 

Types    Sorbent materials              Conditioning Washing Elution    Ref 

 

Isolute, pH®   

(1000 mg/6 mL)                                                  

 

Silical treated with phenyl 

groups in which silanol 

group are end-capped.                                                    

 

2 mL of MeOH and 6 mL  

of milli-Q water, sample  

loading at (pH 6)                                

 

6mL of 5% MeOH  in 

water, drying in  in 

vacuum for 15 min                    

 

2 x 4 mL of 5% NH3 in 

acetone              

 

[219] 

      

Oasis, MCX® 

(500 mg/6 mL )                  
Polymeric sorbent with 

strong  cation –exchange 

sulfonic group located on 

surface of poly(Divinyl 

benzene-Co-N-vinyl py 

rrolidone) copolymer .                                                                                                                                                          

6 mL of MeOH , 3mL of   

milli-Q water and 3 mL of 

water at pH 2, sample load- 

ing at pH 2.                                                                                                              

3 mLof milli-Q water  at 

pH 2, dryingfor 15  min. 

under vacuum       

6 mL of MeOH   and 6 

mL of 5% NH3  in 

MeOH                                                  

[124, 159, 

186, 259, 

270] 

 

      

Bond Elut 

Certify®   

(300mg/6 mL)                             

Lipophilic and strongly 

cationic  properties                                            
3 mL of MeOH and 3 ml  

of milli-Q water, sample  

Loading at pH 6.                                   

2 mL of of milli-Q H2O 

at at pH 2, and 3 mL of  

MeOH, drying for 15 

min under vacuum                              

2 x 4 mL of  80:   20 

DCM/isopropanol 

mixture with 2% NH3         

[225,226] 

      

SCX®  (500 mg/6 

mL)           
- 2 mL of MeOH, I mL of   

milli-Q water and 1 mL of 

0.25 M phosphate   buffer 

(pH 3), loading at pH 3                                                          

I mL of 0.25 M 

phosphate (pH 3), 0.5 

mL of  0.1M acetic acid 

and  1 mL of MeOH, 

drying  for 30 min             

1.5 mL of 3%  NH4OH 

in 1.5 mL of  MeOH                 
[258] 

      

Phenomenex 

Strata-X™   (200 

mg/6 mL)                                                                                

- 2 x 6 mL of MeOH and   2 

x 6 mL of H2O, sample 

loading at pH 6.                                    

50 mL of 10% MeOH in 

100 mM formic acid + 

500 µL of acetic  acid, 

drying for 30                                      

10 mL of 5% v/v 

NH4OH in 1:1 acetone: 

ethyl acetate                                

[244]           

      

Strata-XC™ 

(200mg/6mL)          
-        -same-                                                                              -same-                                     -same-                                     [244] 
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Protocols 

Types    Sorbent materials                            Conditioning Washing Elution    Ref 

Chrolut, ENV® 

(500 mg/6 mL)                               
Hyper-crosslinked polystyrene-

divinyl benzene polymer based.                                                                        
3 mL of MeOH and 3 mL    

of milli-Q water, sample 

loading. 

                

air through the 

column for 1 hr.      
5 mL of MeOH                         [82] 

Isolute, ENV® 

(500 

 mg/6 mL)                                 

Hydrophobic sorbent with  

hydroxylated polystyrene  

divinyl benzene copolymer                                               

2 mL of MeOH and 6 mL  

of milli-Q water, sample  

loading at pH 6                                         

6 mL of 5% MeOH   

in water, drying 

under vacuum for 15 

min.            

2 x 4 mL of  

MeOH.                           
[219] 

      

Chromabond, 

Easy (500 mg/6 

mL)                          

Bifunctional polystyrene   

divinyl benzene copolymer                                  
5 mL of hexane, 5 mL of 

ethyl acetate, 10 mL of 

MeOH and 1 mL of  

Milli- Q water.                

5 mL of milli-Q 

water   drying under 

vacuum for 15 min.         

2 x 4 mL of  

MeOH                           
[219,271] 

      

Oasis, HLB®  

(500  

mg/6 mL)                            

Divinylbenzene/N-vinyl    

pyrrolidone) copolymer   with 

hydrophilic/lipo philic properties                                                  

3 mL of  MeOH and 3 

mL   of milli-Q water, 

sample  loading at pH 6                                       

3 mL of 5% MeOH  

in milli-Q water  

drying under vacuum  

for 15 min                          

2 x 4 mL of  

MeOH                          
[219,243]   

      

Oasis, HLB®  

(500 

 mg/6 mL)                                

-same-                                                5 mL of hexane, 5 mL of   

ethyl acetate, 10 mL of   

MeOH and 1 mL of  

Milli-Q water                     

5 mL of milli-Q 

water drying under 

vacuum      for 15 

min.       

2 x 4 mL of  

MeOH                        
[83,243] 

 

      

Isolute ,C18 

(EC)® (500 mg/6 

mL)                              

Strongly apolar and lipo- philic 

based on octadecyl   silica with 

end capping of   free silanol 

group.                                                                                                         

2 mL of MeOH and 6 mL 

of  milli-Q water, sample   

loading at pH 6                                      

6 mL of 5% MeOH  

in milli-Q water 

drying under vacuum  

for 15 min.                             

2 x 4 mL of  

5% NH3 in  

acetone                          

[219,272] 

      

Oasis, Max (60 

mg)                                                   

Strong anion-exchange mixed 

mode polymeric           
2 mL of MeOH and 2 mL  

of 2% HCOOH (pH 2.1)               

2 mL of 2% 

HCOOH/   H2O, 

wrapped in 

aluminium          

1 mL of MeOH 

and 2 mL of  

5%  NH4OH in 

MeOH.                    

[259] 

 
Protocols 

Types    Sorbent materials                            Conditioning Washing Elution    Ref 

 sorbent built  upon HLB copolymer  

(application: acids)                                                                                   
 foil and stored in 

a freezer until 

eluted.       

  

      

Oasis, WCX (60 

mg)                                                 
Weak cation-exchange mixed mode 

polymeric sorbent built upon HLB 

copolymer (application: strong bases). 

         

2 mL of MeOH 

and 2 mL  of 2%  

HCOOH (pH 2.1)                                    

-same-                                    1 mL of MeOH and 2 

mL of  5%  NH4OH 

in MeOH 

[259] 

Oasis, WAX  

(60 mg)                                              
Weak anion- exchange mixed mode 

polymeric sorbent built upon HLB 

copolymer (application: strong acids). 

       

-same-                                    -same-                                    -same-                                    [259] 

Chromabond, 

C18  

(200 mg).                                       

Silical-based, endcapped sor-bent (non-

polar compounds).                
-same-                                    -same-                                    -same-                                    [259] 

      

Isolute, HCX 

(200 mg)     
Weak anion- exchange mixed mode (non-

polar and basic analyte). 
-same-                                 -same-                                 -same-                                 [259] 
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Table 4  Survey of illicit drugs and pharmaceuticals concentration in wastewaters. 

Analytes Matrix Influent 

 (ng L-1 ) 

Effluent  

(ng L-1 ) 

Surface Water  

(ng L-1 ) 

Ref 

Cocaine 5 STPs, Spain 225.0  47 10 [158] 

 5 STPs,  Belgium 22 -678 - 1.2 - 26 [219] 

 37 STPs, Belgium 32 – 753 - - [158] 

 3 Rivers, Italy - - 0.3 – 44 [186] 

 5 STPs, Ireland, UK 489 ± 117 25 - 248 ± 20 0 – 33 ± 11 [244] 

 Eastern Spain 370 – 1000.24 30 – 560 - [258] 

 30 STPs, Belgium 09 – 683 - - [245] 

 2 STPs, Italy 218.4 – 421.4  0.9 – 10.7 ± 3.2 - [159] 

 4 STPs; River Po. 42 – 120 - - [124] 

 42 STPs, NE Spain 04 – 4700 01 – 100 - [272] 

 Barcelona, Spain 2.40  - - [246] 

      

Benzoylecgonine 5 STPs,  Spain 2307.0 - 111 [158] 

 5 STPs,  Belgium 82 – 1 898 928 44 - 191 [219] 

 37 STPs, Belgium 46 –2258 - - [186] 

 3 Rivers, Italy 2.2 – 183 - - [186] 

 5 STPs, Ireland UK 290 ± 11 22 - [244] 

 Eastern  Spain 150 – 1000.5 22 ± 4 – 31 ± 18 - [258] 

 30 STPs, Belgium 37 – 1550 6.0 – 7.9 - [245] 

 2 STPs, Italy 547.4 -197.2  - - [159] 

 4 STPs; River Po. 420 - 750 0.92 – 100.3 ± 28.6 - [124] 

 42 STPs, NE Spain 09 – 7500 - - [272] 

  Barcelona, Spain 5.24 01 – 1500 - [246] 

 12 STPs, Germany 65± 5 77± 9 71 [276] 

 
Analytes Matrix Influent 

 (ng L-1 ) 

Effluent  

 (ng L-1 ) 

SW  

(ng L-1 ) 

Ref 

Nor- BE 3 Rivers, Italy - - 0.2 – 8.4 [186] 

 Eastern  Spain 150 - 430 30 – 170 - [258] 

 2 STPs, Italy 18.8± 5.6 – 36.6 ± 7.8 <LOQ – 7.5 ± 2.9 - [159] 

 

Cocaethylene 2 STPs, Italy 5.9 ± 2.6 – 11.5 ± 5.1 0.2 ± 0.5 - [159] 

 Barcelona, Spain 77.5– 78.5±33.2 1.71– 4.2± 1.2 4.63 [246] 

 3 Rivers, Italy - - 0.07 – 0.2 [186] 

 

Nor-cocaine 

 

3 Rivers, Italy 

Eastern Spain 

2 STPs, Italy 

 

- 

0.15 – 0.43 

4.3 ± 0.9 – 13.7 ± 5.3 

 

- 

0.03 - 0.17 

0.7 ± 0.5 

0.15 – 3.6 

- 

- 

[186] 

[258] 

[159] 

Amphetamines 

 

 

 

 

 

 

Metamphetamines 

 

 

 

 

 

 

 

 

MDA 

 

 

 

3 Rivers, Italy 

Eastern Spain 

2 STPs, Italy 

42 STPs, NE Spain 

Barcelona, Spain 

5 STPs,  Spain 

 

5 STPs, Nebraska USA 

3 Rivers, Italy 

Eastern  Spain 

2 STPs, Italy 

42 STPs, NE Spain 

3 STPs, USA 

Barcelona, Spain 

Murray, USA 

 

42 STPs, NE Spain 

3 Rivers, Italy 

Eastern  Spain 

2 STPs, Italy 

5 STPs,  Spain 

 

- 

1400 

5.4 – 14.7± 10.6 

03 - 6880 

20.8 – 41.1± 9.1   

15 

 

1.3 ± 0.1 – 1.4  

 0.1 – 62.6 ± 13 

- 

<500 

3 - 277 

15 ± 2 – 66 ± 14 

4.8 – 18.2 ± 5.8 

6.0 - 34 

 

03 - 266 

- 

500 - 1400 

4.6 ± 7.3 – 8.7 

03 - 266 

 

- 

110 – 210 

2.8 

04 - 2100 

0.45– 2.2 ±  0.1 

<1.0 

 

35.0± 7.3 

- 

<100 - 540 

<1.11 – 3.5 ± 2 

3 - 90 

0.8 – 1.3 

2.1 – 6.3  ± 0.6 

03 - 7 

 

01 - 200 

- 

41.0 – 68.0 

0.9 ± 1.9 – 1.1± 1.5  

1 - 200 

 

<0.65 

- 

- 

- 

2.84 

<0.8 

 

- 

<0.41 – 1.7 

- 

- 

- 

- 

2.87 

- 

 

- 

3 ± 0.3 – 4 

- 

- 

- 

 

[186] 

[258] 

[159] 

[272] 

[246] 

[158] 

 

[160] 

[186] 

[258] 

[159] 

[272] 

[160] 

[246] 

[247] 

 

[272] 

[186] 

[258] 

[159] 

[158] 
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Analytes Matrix Influent  

(ng L-1 ) 

Effluent  

 (ng L-1 ) 

SW  

(ng L-1 ) 

Ref 

MDMA 

 

 

 

 

 

 

 

 

MDEA 

 

3 Rivers, Italy 

Eastern  Spain 

2 STPs, Italy 

5 STPs,  Spain 

STP, Italy 

Barcelona, Spain 

Murray, USA 

42 STPs, NE Spain 

 

5 STPs,  Spain 

2 STPs, Italy 

STP, Italy 

STP, Spain 

42 STPs, NE Spain 

- 

326 – 2700.5 

13.6 – 14.2  

91 

2 - 598 

133– 135.13 ± 29.8 

<1.0 – 10.0 

2 - 598 

 

27 

4.19 – 1.5 ± 3.8 

6 - 114 

<500 

06 - 114 

- 

100 – 210.2 

4.4 ± 3.7 – 5.1± 3 

67 

2 - 267 

8.2– 14.8 ± 2.2 

- 

2 - 267 

 

<2.1 

<1.64 

12 

<100 

12 

1.1 – 4.0 

- 

- 

3.5 

- 

129 

- 

- 

 

- 

- 

- 

- 

- 

[186] 

[258] 

[159] 

[158] 

[272] 

[246] 

[247] 

[272] 

 

[158] 

[159] 

[258] 

[272] 

[272] 

Opiates 

Heroin 

 

 

Morphine 

 

 

 

 

 

  

 

Nor-morphine 

 

 

6 ACM 

 

Barcelona Spain 

STP, Italy 

 

5 STPs, NE Spain 

3 Rivers, Italy 

5 STPs, Ireland 

2 STPs, Italy 

Barcelona, Spain 

12 STPs, Germany 

STP, Italy 

 

5 STPs, NE Spain 

1 STP, Italy 

 

3 Rivers, Italy 

2 STPs, Italy 

Barcelona, Spain 

 

2.4 

20.0 

 

25.9 – 96.7 

- 

874 ± 86 

83.3– 204.4  

68.1 – 162.9 ± 20.0 

123 ± 6 

7.1 – 96.7 

 

30.7 

<25 

 

- 

10.4± 4.8 – 11.8 ± 8.5 

8.4 – 12.8 ±3.1 

 

1.2 

<20.0 

 

20.9 – 81.1 

- 

452  

5.5 ± 11.1 

21.8 ± 3.0 

9.0 ± 1.2 

0.1 – 8.1. 

 

- 

<2.5 – 3.7 

 

- 

- 

2.5 – 3.6 ± 0.5 

 

- 

<1.5 

 

- 

3.5 - 38 

- 

1-2L 

3.25 

83 

4.8 – 6.3 

 

- 

<12..5 

 

0.93 

- 

- 

 

[246]  

[247] 

 

[247] 

[186] 

[244] 

[159] 

[246] 

[246] 

[247] 

 

[247] 

[247] 

 

[186] 

[244] 

[246] 

 

 
Analytes Matrix Influent 

 (ng L-1 ) 

Effluent  

 (ng L-1 ) 

SW 

 (ng L-1 ) 

Ref 

 

 

 

M3G 

 

Methadone 

 

 

 

 

 

Codeine 

 

 

 

Nor-codeine 

 

6 Acetyl codeine 

 

EDDP 

 

12 STPs, Germany 

STP, Italy 

 

2 STPs, Italy 

 

5 STPs,  Spain 

3 Rivers, Italy 

2 STPs, Italy 

12 STPs, Germany 

 STP, Italy 

 

5 STPs, NE Spain 

3 Rivers, Italy 

12 STPs, Germany 

 

5 STPs, NE Spain 

 

3 Rivers, Italy 

 

3 Rivers, Italy 

5 STPs, Ireland UK 

2 ST1 STP, Italy 

STP, Italy 

8.4 – 12.8 ±3.1 

102 ± 14 

 

2.5 ± 7.1 – 18.1 ± 30 

 

4.0 – 239 

- 

11.6± 1.7 – 49.7 ± 9.6 

123 ± 6 

4 – 23.9 

 

18.1 – 119.7 

- 

80 ± 5 

 

5 – 68.0 

 

- 

 

- 

9.0 – 206 ± 10 

19.8 ± 3.1 – 91.3 ± 19.2 

4.5 – 41.3 

0.9 ±1.2 

<3.1 

 

<0.48 

 

4.0 – 24.7 

- 

9.1 ± 0.5 – 36.2 ± 2.8 

9.0 ± 12 

2 – 2.7 

 

3.1 - 397 

- 

7.7 ± 8 

 

15.5 – 22.9 

 

- 

 

- 

- 

22.6± 0.6 – 72.1± 8.7  

4.9 – 56.7 

83 

<0.9 – 3.4 

 

- 

 

- 

4.9 – 10.1 

- 

83 

4.9 – 10.1 

 

- 

1.0 - 51 

90 

 

- 

 

<0.31 

 

9.9 – 18.0 

- 

- 

9.61 – 17.5 

[246] 

[277] 

[247] 

[159] 

 

[247] 

[186] 

[159] 

[277] 

[247] 

 

[247] 

[186] 

[277] 

 

[247] 

 

[186] 

 

[186] 

[244] 

[159] 

[247] 

THC 

 

 

 

 

THC-COOH 

 

 

OH- THC 

 

5 STPs, NE Spain 

2 ST1 STP, Italy 

Barcelona, Spain 

 STP, Italy 

 

3 Rivers, Italy 

STP, Italy 

5 STPs, NE Spain 

Barcelona, Spain 

 

11.3 – 31.5 

62.7 ± 5 – 91.2 ± 24.7 

4.3– 21.03 ± 7.8 

8.3 – 31.5 

 

- 

12.5 – 96.2 

37.8 – 96.2 

8.4 – 46.3 

 

- 

<0.94 – 7.2 ± 3.7  

8.4 ± 3.8 – 11. 23 

<8.3 

 

- 

12.5 

14.8 – 48.1 

4.8 – 15.3 

 

- 

- 

2.65 

<7.0 – 13.6 

 

0.48 -3.7  

16.4 – 34.1 

- 

10.7 

 

[247] 

[159] 

[246] 

[247] 

 

[186] 

[247] 

[247] 

[246] 
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Figure 4: Main metabolites of 3, 4-

methylenedioxymethamphetamine (MDMA) in urine [144]. 

Human metabolism of opiates. 

Opium comes from the opium poppy (papaver 

somniferum), a conjugated juice from the unriped capsule. It is 

an ingredient in morphine, codeine and theobaine. Several 

illegal drugs are produced from the opium poppy and the 

common ones are morphine and heroin, while 6-

monoacetylmorphine/ and morphine are their related 

metabolites. The phenolic hydroxyl at position 3, the alcoholic 

hydroxyl at position 6 and the nitrogen atom plays important 

roles in morphine metabolism.  

Figure 12 only show how heroin (diacetylmorphine) 

degradation pathways to produce main metabolites that we 

determined in the current work. But different morphine 

conjugates may arise from the actions of different enzymes, this 

emphasises the complexity of morphine metabolism [145]. 

Approximately 90% of an administered dose of morphine is 

excreted in the urine only about 10% is excreted as unchanged 

morphine. Morphine -3- glucuronide (M3G) is the major 

metabolite, while Morphine -6- glucuronide (M6G) is a minor 

one [146], and nor- morphine and nor-morphine-6-glucuronide 

have also been found in human urine and detected in 

wastewaters [Table 4]. Other minor metabolites  like codeine (3-

O-methylmorphine) and morphine- N- oxide have been 

identified in the urine of chronic users [147].  

 

Figure 5:  Degradation pathways of heroin and its main 

metabolites in living organisms. [150]. 

 

 

Human metabolism of Lysergic Acid Diethylamide (LSD) 

Lysergic acid diethylamide is a compound derived from 

ergot alkaloids, a powerful hallucinogenic drug commonly sold 

as ―acid‖ on the street as a drug of abuse. It is a non-addictive 

drug that comes in tablets or blotting paper, though liquid LSD 

is also available [148]. The drug is quickly metabolized in the 

body, where it is dispersed in the biological fluids in very low 

concentration and very small amount of the original dose is 

eliminated in the human urine [149]. In Figure 13, the following 

LSD metabolites have been identified in human biological 

fluids: 13-hydroxy-LSD, 14-hydroxy-LSD, N-demethyl LSD, 2-

oxo-LSD, and 2-oxo-3-hydroxy-LSD [121-123]. The main 

metabolite of LSD is 2-oxo-3-hydroxy-LSD and 13- and 14- 

hydroxyl-LSD are excreted as glucuronide conjugates in urine 

[151]. In a review paper of Reuschel et al [152], evidences 

supporting a much higher concentration of 2-oxo-3-hydroxy-

LSD in human urine of LSD users than the parent drug and 2-

Oxo-LSD concentrations were reported. The iso-LSD and LSD 

exist as stereoisomers in illicit preparations and therefore iso-

LSD is not a metabolite, it‘s frequently found in urine as a main 

contaminant of LSD [153]. Additional metabolites have also 

been identified in the laboratory animals but are yet to be found 

in human fluids [154]. The LSD compounds were however not 

studied in the current work. 

 

Figure 6:  Lysergic Acid Diethylamide and metabolites in 

human fluids [168] 

Human metabolism of Cannabinoids 

The cannabinoids, of which the most important one is 

tetrahydrocannabinol (THC) is the active chemical in cannabis 

sativa L, other active constituents are cannabidiol and 

cannabinol. Cannabis is commonly known as the source of the 

‗marijuana‘ drug and for centuries, this plant has been widely 

cultivated around the world for its fibres. The cannabinoids are 

non-polar compounds with low solubility in water but are 

soluble in fat, alcohol and many organic solvents, they are self-

administered by smoking. The volatilized fractions are inhaled 

to give physiological effects. It is non-addictive and there are no 

withdrawal symptoms but one of the common side-effects of its 

use is making the user drowsy with reduced concentration and 

short term memory [155]. About 66 types of cannabinoids have 

been isolated from the cannabis plant but three of them have 

received most attention from researchers as a result of their 

natural prevalence. These are: phytocannabinoids (obtained 

from cannabis plant), synthetic cannabidiols (prepared from 

laboratory) and endogenous cannabinols (obtained from the 

body of humans and animals).  

On ingestion, the cannabinoids are metabolized in the liver, 

especially by cytochrome P450 mixed-function oxidase, mainly 

CYP2C9. It is stored in the fat where Δ
9
-THC is metabolized to 

11-hydro-Δ
9
-THC, which is metabolized to 9-carboxy-THC 
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[156], but the metabolism of THC is still not properly 

understood. 

Figure 14 shows the structure of Δ
9
-tetrahydrocannabinol 

(THC) and its metabolites in human urine [144]. The main 

metabolite is Δ
9
-tetrahydrocannabinol-9-carboxylic acid (THC-

COOH) and it is excreted as glucuronide-acid conjugate THC-

COOH- glucuronide) [157], the metabolites can be detected in 

the body after weeks. It appears that the illegal status of the 

plant in most countries affected its systematic studying. 

 

Figure 7: Major metabolites of Δ9-tetrahydrocannabinol 

(THC) in urine [168]. 

Sewage Treatment Works as transport routes of pollutants. 

Conventional sewage treatment works are the most 

significant routes through which the drugs enter the environment 

via untreated sewage and domestic sewage treatment systems. 

The ingested chemicals and associated metabolites are excreted 

via faeces and urine and passed onto sewage treatment systems. 

Discharges from manufacturers, commercial, domestic and run-

off areas of unwanted and unused chemicals to the domestic 

sewage system are other major sources. Sewage sludge is the 

remaining residues after sewage treatment and the treated 

sewage sludge has several valuable properties which are 

agriculturally relevant; these include soil building potential 

giving it a strong hold, availability of nutrients and valuable 

trace elements essential to animals and plants, an efficient and 

sustainable alternative source to inorganic fertilisers and mineral 

fertilisers such as phosphate, and soil nutrient recovery through 

slow release of nitrogen. 

Residues of pharmaceutical and illicit compounds have 

been found in surface waters in concentrations from ngL
-1

 to 

ugL
-1

 in many countries with the levels and distribution of these 

illegal compounds as found in wastewaters reported in Spain, 

Belgium, Italy, Germany, UK and USA [124, 158-167]. Apart 

from the active sludge processes, percolating filters, nitrification 

and de-nitrification facilities, investigations into the treatment 

technologies for the potential removal of drug residues and other 

organic compounds from the effluents of STWs have 

additionally identified ozonation [168-170] and membrane 

bioreactors (MBR) [171, 172] as biological means to provide 

improved potential in removing trace pollutants from the urban 

wastewaters. Microbial degradation has been suggested as the 

most important removal process in the sewage treatment works 

and with the continuing extensive studies on the metabolism and 

transformation of pharmaceuticals and other organics in humans 

and mammals, the microbial biodegradation pathways of some 

these chemicals, the persistence of their products and likely 

toxicity would largely be known [173]. Figure 16 below 

illustrates a typical interplay of complex physical, biochemical 

and transformational routes of pollutants in STWs and each 

transport route depends on the nature of influents [173-179].  
 

Figure 16: Organic contaminant fate and distribution in the 

environment [183] 

The microbial degradability of the illicit drugs in the 

sewage as well as their degradation pathways has not been 

reported. However, small studies on selected pharmaceuticals 

with the identification of some microbial degradates suggest that 

similar processes are likely to affect the illicit drugs [176-178].  

In 2009, the understanding of the STWs systems and the 

degradation processes involved were observed by Kasprzyk-

Horden et al [179] on selected pharmaceuticals and illicit drugs 

(cocaine, benzoylecgonine and amphetamine) where the 

differences in the performance of activated sludge and trickling 

filter on a 5-month monitoring program was undertaken from 

two different STWs in South Wales, UK.  However, the choice 

of sampling points was just to verify the removal efficiency of 

the two contrasting STWs and the work recorded over 85% 

removal efficiency of most drugs with STW utilising activated 

sludge compare to less than 70% reported for trickling filter.  

However, for the first time, direct measurement of the illicit 

drug removal rates in laboratory (batch) studies would carried 

out to  improve upon the understanding of the degradation rates 

of cocaine (COC); benzoylecgonine (BZE); heroin (HER); 6- 

monoacetylmorphine (6-MAM); morphine (MOR) and 

diazepam (Diaz) under different conditions to obtain removal 

rates.  The capabilities of the current experimental batch data in 

generating removal rates of drugs would be applied in mass 

balance calculation to improve influent measurement. 

 Also, no publication to our knowledge has been found on 

the ecotoxicological impacts of chronic exposure of illicit drugs 

and their metabolites as the STWs procedures cannot effectively 

remove all the drugs or polar compounds due to their 

hydrophobic/lipophilic character [111]. Apart from 

volatilisation, hydrolysis (abiotic) and biodegradation 

(biological processes), physical-chemical adsorption of polar 

compounds onto the biosolids surfaces also occurs. The 

interaction of compounds with high adsorption coefficients in 

particular determines the extent of the removal. Natural solids 

like clay, sediment and micro-organisms and added solids (e.g. 

active carbon, coagulants) facilitate STWs removal processes 

[184]. Those adsorbed on solids and passed as sludge enter the 

environment when spread on agricultural lands as manure and 

the compounds continue in the ecosystems or are possibly 

leached into underground waters; while those with low 

adsorption coefficients are released as effluents into the 

receiving waters.  The removal of organic compounds is often 
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incomplete in most municipal STWs, the sewage-sludge and 

effluent waters are therefore the primarily routes at which these 

chemicals enter the environment. Apart from the biodegradation, 

chemical degradation and sorption processes in typical STW 

details of which are not well understood because of the complex 

mixtures present are the other main removal processes during 

the wastewater treatment. The physicochemical properties of the 

contaminants ultimately determines their extent of persistence, 

toxicity and potential environmental effects after the sewage-

sludge disposal to agricultural lands or effluents waters disposed 

of to seas.  

The existing priority substance classifications by the 

European Communities Priority Substances Directive 

notwithstanding [185], the emerging priority contaminants 

groups like ‗illicit drugs and their metabolites‘ have no safe-

levels because of insufficient information on their 

biodegradability and persistence after their disposal to lands or 

receiving waters. Insufficient information, decisions and policy 

thrusts regarding the future practices of safe sewage-sludge 

disposal mean that complete removal of contaminants from 

STWs effluent-waters becomes difficult. 

Existence of uncontrolled discharges of different types of 

compounds from humans and from veterinary treatment into the 

environment via STWs is shown in the anticipated exposure in 

Figures 17 and 18. Drugs for human treatment are primarily 

exposed to the environment from routes Fig 17 (F1 & F2) and 

enter different treatment fate processes at points F3 & F4 and 

terminate at F8 and F9. 

 

 

Figure 17. Anticipated exposure routes of drugs for human 

treatment in the environment [186] 

The effects on terrestrial and aquatic organisms continue 

with drugs from veterinary treatment in Fig. 18 (F10-F13) in 

another complete process of bio-chemical reactions and 

mechanisms with anticipated toxicity impacts on the ecosystems 

not yet understood. 

Studies in the literature have confirmed the enrichment of 

the sewage sludge partitioning of chemicals onto sludge solids 

or suspended in solution is due to their 

hydrophilicity/lipophilicity properties compared to influent 

sewage [187-189]. Understanding of the fate and behaviour of 

pollutants during sewage treatment will show the degradation 

possibility of compounds that are completely or partially 

degraded in aqueous and solid phases, sorbed to sludge solids or 

mineralised. In a study reported by Strachan et al [190], organic 

contaminants are located within the fraction of large organic 

wastes (biomass) which are repository of living and dead micro-

organisms required for degradation processes.  

 

Figure 18. Anticipated exposure routes of drugs for 

veterinary treatment in the environment [186] 

Microbial degradation in the aquatic environment 

Investigations on the levels of removal of organic residues 

from a wastewater plant studies have shown toxicity correlation 

of wastewater effluents on aquatic organisms to determine the 

response levels with degree of contamination [191-193]. 

Biodegradability studies of organic priority pollutants and 

reduction in toxicity of these pollutants in wastewaters treatment 

processes have also been carried out [194-195]. Also evaluated 

were 22 priority pollutants belonging to the class of phthalates, 

pesticides, polycyclic aromatic hydrocarbons and phenols in an 

activated sludge pilot plant [111, 194]. About 80-99% removal 

efficiency was recorded from the parallel and spiked treatments 

of between 50-150 µg L
-1

 concentrations. The results indicated a 

degradation of phenols, enrichment of PAHs to about 64% from 

the mass balance calculations while pentachlorophenol was 

associated with the solid phases. Table 5 presents percent 

sewage sludge disposal in the last 3 years, and the subsequent 

transport of these residual organic pollutants in the sewage 

which enters the environment and becomes the issue of current 

concern. 

Sewage is a complex association of wastes of human 

excreta containing mixtures of fats, sugars, lignin, protein, 

cellulose, humid materials, amino acids and fatty acids. Wang et 

al [197] studied the partitioning mechanism of the organic 

residues within the biomass and sorption onto the sludge surface 

as a two-stage process. Determination and prioritisation of 

typical sewage sludge can be a complex task because of many 

synthetic organic materials with various residues of diverse 

origins due to 1) interferences of co-contaminants in complex 

matrices, sample extraction and clean ups, sensitive techniques 

needed to determine low concentrations 2) the fate and 

behaviour of sludge-derived residues after disposals requires 

investigation to monitor persistence and environmental impacts 

and 3) bio-transformation arising from degradation of residues 

generates toxic by-products, but unavailability of some 

compounds, sorped onto sewage solids to bacteria for 

degradation can be significant as little is known about the final 

fate of these organics [198-202]. Difficult isolation of sludge 

samples arises also from non-uniformity of extraction 

procedures and variability in obtaining grab samples as a 

representative of all various genotoxins in the sludge matrix 

[203-205]. Different processes or techniques are often adopted 

for specific effluents depending on the origins of the 

contaminants. Generally factors often considered, though 

contaminants can be lost during treatments in a complex variety 

of ways are: 1) sorption/association with sewage solid surfaces 

2) abiotic processes/hydrolysis involving chemical degradation 

3) volatilisation and 4) biodegradation [111].  
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Humans are typically exposed to numerous organic and 

inorganic pollutants, as by-products from treatment of waste 

water from domestic, agricultural and industrial sources which 

constitutes sewage [206]. The presence of intestinal pathogenic 

bacteria and animal parasites in sewage sludge has been 

confirmed from several investigations [207, 208]. However, 

sewage sludge may contain relatively large amounts of heavy 

metals as well as organic pollutants such as phthalates, 

polychlorinated biphenyls (PCBs), alkyphenols, and 

organoclorine pesticides compared to normal environmental 

levels in soil, water, and air [2]. Increasing amounts of sewage 

sludge are used for land filling and agricultural land including 

pastures grazed by ruminants following the ban on ocean 

dumping of sludge [209]. The potential health risk imposed due 

to the presence of organic and inorganic compounds found in 

sewage sludge is of concern in humans [210, 211] if they are 

delivered at high enough doses to cause effects through the 

consumption of products derived from animals grazing on 

contaminated pastures [212]. Adverse effects which have been 

reported in humans include perturbation of male reproductive 

tract, certain male and female cancers, declined fertility, thyroid 

dysfunction and ill impacts on the central nervous system, 

gastroenteritis, damage to liver, kidneys and blood, hepatitis, 

occupational asthma, infection of skin or eyes and inflammation 

of the lung following sewage sludge exposure.  Different groups 

of environmental chemicals with a variety of mechanisms and 

disrupting activities have been identified and discussed [213-

218]. 

In the literature, degradation studies of pharmaceuticals 

have identified degradates of anti-inflammatory, analgesics and 

blood-lipid regulators. In batch studies of acetylsalicylic acid 

with suspended activated sludge, the decrease of about 70-99% 

in concentration after 6, 24 and 72 h was observed but no 

metabolites were detected using GCMS [89]. The degradation 

studies of anti-inflammatory and blood-lipid regulators such as 

bezafibrate, diclofenac, naproxen and ketoprofen in activated 

sludge were carried out, but only ketopofen biotransformed into 

[3-(hydroxyl-carboxy-methyl) hydratropic acid and [3-(keto-

carboxyl- methyl) hydratropic acid [89]. Biodegradation of 

trimethoprim showed resistance to degradation in a reactor filled 

with activated sludge, but its degradation in a nitrification 

process was completed in 3 days. In a similar study, Ternes et al 

[89] investigated degradability of estrogens in aerobic batch 

reactors at two different concentrations using GCMS. The 17β-

estradiol was oxidised to estrone without any detectable 

degradates. Also, 16α-hydoxy-estrone was similarly degraded 

without degradation products. In a subsequent work, the 

biodegradation studies of trimethoprim, anti-tumorals cisplatin, 

cyclophosphamide, cytarabine, X-ray contrast agents, iopromide 

and diatrizoate has been carried out but not all the details of 

metabolites identification were reported [89]. 

Concerning the degradability of illicit drugs, apart from 

sample degradation, biodegradation is a natural process that has 

been reported by the stability experiment conducted by Georghe 

et al [219] and which observed that the concentration of cocaine 

and ecgonine methylester changed in surface water by 40 and 

95% after 5 and 24 h test period respectively. However, 

benzoylecgonine   level was constant or increased in the study. 

Photodegradation is another abiotic process involving complex 

reactions and pathways that could affect the aquatic fate of 

compounds, particularly when degradates are resistance to 

hydrolytic processes [220].  Four relatively new metabolites of 

cocaine: ecgonidine, norecgonidine methylester, p- hydroxyl-

benzoylecgonine, and m- hydroxyl-benzoylecgonine [221], and 

two conjugates of metamphetamines: p-hydroxy-

metamphetamine (p-OHMA-sulfate), (p-OHMA-Sul) and (p-

OHMA) (p-OHMA-glucuronide) [220] have been identified in 

human urine. 

The identification of this phase-II degradates and other 

metabolites in urine indicate likelihood of their presence in 

wastewater samples, unless they are further degraded in the 

sewage treatment works.   

In a study, Pizzolato et al [150] observed the 40-80% 

degradation of cocaine and its metabolites in river waters under 

sunlight and pseudo-sunlight after 11 days of exposures as 

compared to HPLC grade water. Degradation was about 80% 

faster in river water as cocaine degraded to benzoylecgonine 

confirming the effects of both biodegradation and 

photodegradation.  

Identification of microbial metabolites of ibuprofen has 

been found to be identical with the compound human 

metabolites [222-223]. During wastewater treatment, apart from 

the sorption behaviour of potential organic contaminants to the 

sludge solids, the removal of organic residues and associated 

metabolites are through microbial degradation as earlier reported  

as part of the removal mechanism of some pharmaceuticals and 

endocrine disrupting compounds (EDCs) in the sludge [80-83]. 

Hydrolysis (abiotic process) is the most important mechanism in 

the chemical degradation pathways through which compounds 

are removed [234]. The enrichment of the sewage sludge 

partitioning of chemicals onto sludge solids or suspended in 

solution is due to their hydrophilicity/lipophilicity properties 

compared to influent sewage [187-189]. 

Table 6 summarises the drugs and their metabolites identified 

from both human biological fluids and aquatic environments.  

Appreciation of the degradation possibility of compounds 

whether they be completely or partially degraded in aqueous and 

solid phases, sorbed to sludge solids or mineralised is an 

important step in understanding the fate and behaviour of 

pollutants during sewage treatment. Within the large organic 

wastes in sewage is biomass of living and dead micro-organisms 

required for degradation processes within which some fractions 

of organic contaminants could be found. Sequential biological 

processes in alternating oxidative and reductive conditions for 

recalcitrant organic compounds plays a major role in removal 

mechanism [111, 190, 252]. 

In the degradation studies of alkylphenol polyethoxylate 

(APEO) surfactants, the recalcitrant and estrogenically active 

alkylphenols (APs) were produced from commercial NPEO 

using synthetic activated sludge in batch tests. The levels and 

distribution of the short chain compounds after NPEOs 

degradation confirmed in many ways these routes by which 

pollutants are discharged to the aquatic environment due to 

incomplete removal from treatment processes [253]. In activated 

sludge, viable and diverse bacterial population is maintained 

when the biological sludge is re-cycled from settling tank back 

to the aeration tank to produce high quality effluent, reduced 

biomass, maximised conversion of substrate and less production 

of waste sludge The oxidation of organic matter in an biological 

aerobic process generates carbon dioxide and water with the 

new but reduced biomass and dissolved residual organic matter 

in the effluent [224]. In related studies, Richardson and Bowron 

[93] assessed the biodegradability of some specific chemicals as 

presented in Table 7, but yet to be investigated are the 

degradation processes as well as the extent of transformations in 

producing different chemical metabolites [111]. Pathways of 

microbial degradation of selected acidic pharmaceuticals and 

their occurrence in municipal wastewater treated by a membrane 

bioreactor have been reported [254]. To further understand the 

behaviour of compounds in sewage plants, studies of 

metabolites from the biodegradation of pharmaceutical residual 
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of ibuprofen in biofilm reactor also confirmed the effects of 

biodegradations [222] 

Elimination of selected acidic pharmaceuticals from 

municipal wastewater using activated sludge systems and 

membrane bioreactors [255], modelling versus measurement 

experiment of effluent from hospitals and private households to 

the total loads of diclofenac and carbamazepine in municipal 

sewage effluent [256] and identification of microbial 

degradation of trimethoprim in nitrifying activated sludge batch 

studies have been reported in the literature.  

Stability of drugs and metabolites 

The stability of drugs and their metabolites in the aqueous 

environment depends on some conditions of temperature and pH 

to minimise degradation of analytes. Studies recommended the 

acidification of samples to pH 2 and - 20
o 

C for storage in a 

stability study of cocaine and its metabolites (e.g. 

benzoylecgonine and ecgoninemethylester) where a pond free of 

drugs was spiked with different concentration of cocaine and 

benzoylecgonine at modified pH values of 2 and 6 and 

temperatures (-20
o
C, +4

o
C and +20

o
C) for 5day stability tests. 

The 22% degradation of cocaine after 3 days and 35% after 5 

days at pH 6 and +4
o
C were observed. Also, ca.75% degradation 

was observed at +20
o
C at pH > 6 for 1 day [158]. Using 

different preservation conditions, some decreases in the 

concentration of cocaine (36%), cocaethylene (13%), nor-

cocaethylene (15%) and M3G (96%) and changes led to  

corresponding changes in the levels of  metabolites (BZE, nor-

BZE and MOR) respectively with the optimal conditions for 

storage similar to that observed for Cocaine, BZE and EME 

[219]. Similar works have also shown preserved samples at -

20
o
C with addition of HCl (pH 2) stopping bacterial action. 

Cocaine stability in wastewater at 4
o
 C for 48 hours was 

investigated but no changes were observed. Storage experiments 

with methanolic extracts for 7 days at different temperatures 

observed degradation of up to 15% with extracts stored at +4
o
C 

but no changes with those stored at -20
o
C [244, 159, 257]. 

Stability of other drugs of abuse like heroin, amphetamines-like 

substances and lysergic acid and their metabolites were not 

found in the literature. 

Analytical Methodologies 

In recent years, important advances in the development of 

chromatographic and mass spectrometric methods have been 

made, particularly in the detection and quantitative measurement 

of illicit drugs and their metabolites in various biological and 

aquatic matrices. The techniques based on liquid 

chromatography- mass spectrometry (LC-MS) or liquid 

chromatography tandem mass spectrometry (LC-MS
2
) and gas 

chromatography-mass spectrometry (GC-MS) or gas 

chromatography tandem mass spectrometry (GC-MS
2
) are very 

popular primarily because of their ability to detect and measure 

chemical substances at very low concentration. In addition to 

analytical methods for tracing pharmaceuticals residues in water 

and wastewaters that have been extensively used [93, 97-101], 

other analytical procedures for quick screening of drugs residue 

in aqueous environments including several inexpensive 

immunochemical approaches, as an alternative method to the 

chromatographic techniques for the efficient analysis of 

pharmaceuticals have also been published [96]. 

Chromatographic techniques  

Table 8 shows the survey of chromatographic techniques 

from peer-reviewed literature in the determination of illicit 

drugs and human metabolites in waters. The review covers the 

extraction volumes, mobile phases, detectors (interfaces) and 

acquisition modes used by different scientists to provide 

sensitivity and selectivity. Also included are limits of 

quantifications depending on matrices for quantification and 

confirmation of drugs. The HPLC separation procedures rely on 

the principles of reversed-phase columns with different solvent 

gradients depending on applications [247-249]. Recently, 

variations over conventional LC-MS method have appeared in 

the literature eg. Ultra-performance liquid chromatography 

(UPLC-ESI-MS/MS), the ultra-fast UPLC-MS
2
 is unique for its 

short columns packed with small particles sizes and stability at 

different pH range [135, 266 -268]. With the development of 

this relatively new technology, a shorter analysis time as well as 

gain in separation efficiency, resolution and sensitivity has been 

reported. To minimised the effects of ion suppression on the 

analytical signal, a relatively new HILIC; Hydrophilic 

interaction chromatography technique was also carried out in 

some experiments. Analytes were better retained on HILIC 

column, unaffected by ion suppression and a reduction in 

analytical signal was minimised [158, 219].  

The use of MS/MS with triple quadrupole (QqQ) analyzers 

with electrospray ionization (ESI
+
) were mostly used in selected 

reaction monitoring mode (SRM) to minimize the matrix 

interferences. The choices of ionization in ESI positive-ion 

mode were to have achieved ionizations and simultaneous 

determinations of analytes.  

The HPLC-MS methods are also used in the analysis of 

illicit substances in the literature [208,214]. Both HPLC and 

GC-MS have been applied in the determination of 

pharmaceuticals in different matrices of biological fluids [262-

265] especially urine [266-269], oral fluid [225, 226], and blood 

[227] samples. The advantage of HPLC-MS in the determination 

of the main illicit drug classes including cocaine, amphetamines, 

opiates and synthetic opiods, cannabinoids and their metabolites 

is due to its no hydrolysis, no derivatization, one- step extraction 

and with the introduction of atmospheric pressure ionisation 

(API) interfaces, the technique has been popular [269]. HPLC is 

a good and popular technique for highly polar, high molecular 

weight and thermolabile compounds.  Its reproducibility, 

sensitivity and overall lower costs have therefore made it a 

convenient method. The use of GCMS is very rapid, faster and 

highly specific with in-built NIST library softwares for 

compound identification and elimination of matrix effects. 

Principle of the choice of method (SPE-GC-MS):  The trace 

analysis in wastewater can be captured as simple liquid 

chromatographic  process where the SPE sorbent acts as the 

stationary phase and water constitutes the mobile phase during 

the extraction. During the percolation step, analytes that are 

trapped and cannot elute constitute the sample matrix. The 

enrichment of analytes from a large volume of aqueous sample 

on sorbent depends on how strongly the analytes are retained 

while allowing low retention during elution with organic 

solvents. 

The method of coupling of SPE to GC-MS can be directly 

integrated as an online analytical system or off-line where 

subsequent chromatographic analysis is completely separated 

from the sample treatment. As long as the compounds are 

sufficiently thermally stable and volatile enough, gas 

chromatography (GC) allows a broad variety of samples to be 

analysed. As for all other chromatographic techniques, a mobile 

(carrier gas e.g. helium, argon, nitrogen, etc. ) and a stationary 

phase (packed column or solid support coated with the liquid 

stationary phase of high boiling polymer e.g capillary columns 

of a small-diameter tube like 0.25 mm film in a 0.32 mm tube) 

are required . Different compounds are separated due to the 

interaction of the compound with the stationary phase (―like-

dissolves-like‖-rule). The stronger the interaction is,  the longer 

the compound remains attached to the stationary phase, and the 

more time it takes to go through the column (longer retention 

time). GC-MS is a good combination of coupled analytical 
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systems as GC separates the compounds then MS identifies 

them based on their fragmentation pattern. 

Solid Phase Extraction (pre-concentration) 

Table 9 shows the multi-step extraction procedures of 

different protocols which have been reported in the peer-

reviewed literature, to eliminate the influence of matrices 

[124,159]. Apart from matrix effect, improved recovery, 

stability under pH and ability of delivering clean extracts have 

resulted into various tests of several SPE adsorbent to determine 

suitable parameters relevant to a particular application need. 

Several SPE methods and adsorbents have been developed and 

used in conjunction with LC-MS
2
 or GC-MS

2
 in the 

determination of illicit drugs and their metabolites in aquatic 

media at very low concentrations (ng L
-1

 levels). Recently, Oasis 

MCX
®
 (500mg/6mL) adsorbent, a polymeric sorbent with 

mixed–reversed/strong cation-exchange sulfonic acid group 

located on the surface of a (divinylbenzene-co-N-vinyl 

pyrrolidone) has been used [259, 270] to extract drug analytes 

from aqueous samples. After the samples were adjusted to pH 2 

with 37% HCl or 0.01NHCl, the cartridge was pre-conditioned 

with 6ml of MeOH, 3mL of milli-Q water and 3mL water at pH 

2. Samples were loaded into the cartridges at flow rate between 

5-20mL min
-1

, vacuum-dried for 5min and eluted with 6mL of 

MeOH and 6ml of 5% NH3 in MeOH. The cartridges were 

found to be stable perhaps because of its two phases that were 

assumed could retain all compounds investigated. In related 

development Wylie et al [225] and Miltona et al [266] have 

used Bond Elut Certify
®
,
 
a lipophilic and strongly cationic- 

adsorbent with similar conditioning and washing steps as used 

with Oasis MCX
®
 adsorbent, the only difference was 2 x 4 mL 

of 80:20 DCM/isopropanol mixtures with 2% NH3 in elution 

step.  Traditional SPE materials such as the modified silica‘s e.g. 

C8, (octyl), C18 (octadecyl) or CN (cyanopropyl) materials have 

low pH range, poor selectivity and residual silanol group which 

often leads to low recoveries in aqueous sample [82,90].   

Bones et al [94] investigated the use of three sorbents: 

Phenomenex Strata- X™, Strata- XC™ and Strata- XCW™, all 

in 200mg sorbent mass pre-packed in to 6mL cartridges, but 

Strata- XC™ provided the highest analyte recovery. In other 

experiments, the Oasis HLB
®
 (500mg/6 mL) adsorbent [278], 

MCX
®
 (500mg/6mL) [159], Isolute ENV+

® 
(500mg/6 mL) and 

Isolute PH
®
 (1000mg/6 mL) adsorbents  [245], and Bond Elut 

Certify
®
 adsorbent [225] were compared with other adsorbents 

by Gheorge et al [219] in the extraction of cocaine and its 

metabolites in waste and surface water and the authors 

recommended the use of Oasis HLB
®
 (500mg/6 mL, protocol 1) 

as most suitable adsorbent for organic compounds because of its 

lower solvent  usage, time, stability to pH range and over 75% 

recovery for most analytes in aquatic medium.  

 

Results and conclusions of survey of drugs in wastewaters 

Generally, the illicit drug detection has been limited to the 

continuous screening of individual‘s biological fluids (urine, 

blood, oral-fluids and sweat), population survey with crime, 

drug production data, drug seizures and medical records 

[273,274]. The official estimates of the community consumption 

of illicit drugs from these exercises can be very unreliable 

because of the hidden nature and network of manufacture, 

importation, supply and usage without authorisation.  Globally, 

United Nation Office of Drugs and Crime, (UNODC) estimates 

that between 149 and 272 million people, or, 3.3% to 6.1% of 

the population aged 15-64 used illicit substances at least once in 

the previous year [275]. Drugs are used in many ways and in 

many combinations by prescription for medical purposes, some 

illicit drug users often utilise therapeutic pharmaceuticals to 

supplement their illicit drug use by diverting common 

pharmaceuticals for illicit   personal use and this illegal practice 

have affected societies in a myriad of ways. However, with the 

continuing pattern of escalation in use of illicit drugs and the 

discharge of their bioactive metabolites to sewage systems, and 

the present mode of sewage disposal (e.g. to grassland, landfills, 

incineration, horticulture, land reclamation) as complex 

mixtures so the processes involved in drugs removal at various 

STWs are not fully understood.  Table 4 therefore summarises 

and compares the levels and distribution of the drugs from 

different STWs as reported in the literature in the last ten years. 

Also in Table 4, it was observed that the relative concentrations 

of drugs influents were higher compare to the effluents 

indicating the degree of removals. For example in 5 STWs in 

Spain, cocaine and benzoylecgonine in the influents were   225 

and 2307 ng L
-1 compare to only effluent cocaine concentrations 

of 47 ng L
-1

.  The relative concentration of benzoylecgonine for 

example is about 10 times higher than the parent drug. 

The removal of organic compounds is often incomplete in 

most municipal WWTPs; the sewage-sludge and effluent waters 

are therefore the primarily routes at which these chemicals enter 

the environment. Apart from the biodegradation, chemical 

degradation and sorption processes in typical WWTP of which 

details are not well understood because of the complex mixtures 

present during the wastewater treatment. The physicochemical 

properties of the contaminants ultimately determines their extent 

of persistence, toxicity and potential environmental effects after 

the sewage-sludge disposal to agricultural lands or effluents 

waters disposed of to seas. The existing priority substance 

classifications by the European Commission and U.S. 

Environmental Protection Agency notwithstanding [185]; the 

emerging priority contaminants groups like ‗illicit drugs and 

their metabolites‘ have no safe-levels because of insufficient 

information on their biodegradability and persistence after their 

disposal to lands or receiving waters. As a result of insufficient 

information, decisions and policy thrusts regarding the future 

practices of safe sewage-sludge.  

The illicit drugs and their metabolites are mainly from 

faeces and urination, the pattern of lavatory use fluctuates 

between individuals, certain periods of work and the population 

of residents in a particular environment, the load pattern of illicit 

substances would likely fluctuate in similar way [144]. Since 

many active researches have been on detection of illicit drugs 

and related products, studies on their fate and behaviour are 

therefore most warranted. 

We have therefore critically reviewed the current development 

on the occurrence, metabolism, treatment processes, 

measurement before and after discharges from STWs to the 

environment with the current analytical methodologies that meet 

particular application needs such as fate of drugs monitoring. 

With the developments on different aspects of drug‘s 

transformations in the environment recently published in the 

chemical literature which includes occurrence and fate, 

treatability by conventional and non-conventional processes, and 

several miscellaneous others [276-293]. The pharmaceutical and 

illicit markets will continue to grow to provide numerous 

commercial and therapeutic purposes. Today, large numbers of 

new drugs are introduced into the market and the number of 

patents granted keeps increasing accordingly. As these products 

reach the market with already large number of pharmaceutical 

companies involve in their development continue to grow.  

Information in the literature on the distribution levels, laboratory 

studies of fate and behaviour of some classes of illicit and 

pharmaceuticals drugs and their environmental assessment are 

rapidly changing.  It is not very clear if current chemical 

pollution approaches in terms of effective monitoring and 

control of chemical discharges into the aquatic environment 
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would achieve desired effect and environmental scientist will 

have to be ready for new challenges ahead. 
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