
Hareesh Gu and Sanjay Kumar Dubey/ Elixir Comp. Sci. & Engg. 70 (2014) 24211-24214

24211

Introduction

 Coding conventions/Guidelines are a set of guidelines for a

specific programming language that recommend programming

style, practices and methods for each aspect of a piece program

written in a particular language. These conventions usually

cover the following file organization, indentation, comments,

declarations, statements, white space, naming conventions,

programming practices, programming principles, programming

rules of thumb, architectural best practices, Folder storage

hierarchy, tools for analysis of code parameters etc[9].

 Coding conventions are for software structural quality and

are not enforced by compilers [1].Software programmers are

highly recommended to follow these guidelines to help improve

the readability of their source code, make software maintenance

easier and help in easier code delivery [1to4].

 When CG’s are not followed it leads to development of

poor quality code whose attributes are questionable or unknown

.The whole software thus written can be classified as brute force

quality developed. Every software company has it own set of

guidelines that increases code readability, reuse and helps in its

storage in organized storage structure. These guidelines also

help in determination of various attributes of code such as

complexity, duplicity, warnings, memory leaks, coverage etc.

However coding guidelines/approaches as such are not present

in the field of academics. Data collected from various sources

suggest code written for academic purposes like projects,

practice, examination etc have the lowest quality against code

written in industries for product and services development.

Fig. 2. Sample of code written with its un-organized storage

structure for project purpose in academic environment

 The paper would attempts to bridge this particular gap, the

paper has two aspects primarily the paper summarizes a set of

best practices in a open template format called OCG finally the

paper proposes organized code development as a change in

thought process in academic environment and does a

stakeholder effect analysis when Coding Guidelines are used.

Proposed Model OCG

 The proposed model is in the form of a template .OCG

template incorporates Various basic industrial approved aspects

of organized code writing like (File organization, indentation,

comments, declarations, statements, white space, naming

conventions, programming practices, programming principles,

programming rules of thumb, architectural best practices) along

with some advanced concepts such as evaluating complexity,

Duplicity ,Basic Code coverage using an open source

Continuous Inspection framework (sonar).

Academic Coding Guideline Model OCG - Open Coding Guidelines For

Windows (An Organized Code Creation Model)
Hareesh Gu and Sanjay Kumar Dubey

Amity University, Sector 125, Noida, India.

ABSTRACT

Every software company has its own set of guidelines that increases code readability,

reuse and helps in its storage in organized storage structure .These guidelines also help in

the determination of various attributes of code such as complexity, duplicity, warnings,

memory leaks, coverage etc. However coding guidelines/approaches as such are not

present in the field of academics. Scholars of educational institutions generally

concentrate mostly on logic (brute force quality approach) while coding, against writing

documentable clean code or understanding code’s attributes. Also end evaluation/delivery

in a software company is dependent on clean code with various attributes such scenario is

not possible in academic framework all together and mostly is done manually. The paper

tries to bridge this gap by analyzing the role of an organized code creation model and its

effect on various stakeholders in academic Eco-system and suggesting one such open

source Code Guideline Model OCG and providing its implementation through a template.

 © 2014 Elixir All rights reserved

.

ARTICLE INFO

Article history:

Received: 6 December 2013;

Received in revised form:

25 April 2014;

Accepted: 10 May 2014;

 Keywords

Academic coding guidelines,

Source code reuse,

Writing clean code,

OCG.

Elixir Comp. Sci. & Engg. 70 (2014) 24211-24214

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Tele:

E-mail addresses: hareeshg.pillai@gmail.com

 © 2014 Elixir All rights reserved

Hareesh Gu and Sanjay Kumar Dubey/ Elixir Comp. Sci. & Engg. 70 (2014) 24211-24214

24212

Fig. 3. Current source code injection process in academic

eco-system

Fig. 4. Proposed source code injection process in academic

eco-system

The proposed model takes 3 basic assumptions on platform and

language at the moment.

1. Operating system – windows

2. Programming language – c

3. Compiler being using – Turbo / Borland (efforts would be

made to overcome these assumptions in the later versions of

model). OCG template has 3 layers which helps in making code

cleaner stored in a traceable folder hierarchy and helps to qualify

code aspects. Using the template in the proposed model is very

hassle free as the scholar now can inject code in the proposed

template directly.

Fig. 5. OCG template graphical representation

 OCG template contains 3 working areas Formatting,

indentation and commenting related best practices incorporation.

 In computer programming, a comment is a programming

language construct used to embed programmer-readable

annotations in the source code of a computer program. Those

annotations are potentially significant to programmers but

typically ignorable to compilers and interpreters. Comments are

usually added with the purpose of making the source code easier

to understand. [9&11] The syntax and rules for comments vary

and are usually defined in a programming language specification.

In OCG template many commenting techniques were analyzed

and the below commenting techniques are embedded on

template. The selection of the below commenting style is based

on the amount of accuracy, clarity and brevity of information the

style helps to convey.

Header comments

/***

* Filename : header.h

* Description contains all header and macro related information

* Date Name

Reference

 Reason

*<header_creation_date<name_of_creator>

<reference><reasons_if_any>

** Copy Right Information

****************/

Program level comment styling

/***

* Filename : <program_name.c>

* Description : <program_name.c> has abc functionality

*Input : <over all program inputs eg. Any command line

arguments etc >

*Output : <end result of the .c file>

* date name reference

 reason

*<header_creation_date<name_of_creator>

<reference><reasons_if_any>

** Copy Right Information

****************/

Function level comment styling

/***

 * * Function name : Fuction_name()

 *Description : <what the function does >

 * Input : <input information for the function eg. Character

array>

 * Returns <return information of function eg. void >

*************/

Variable level or individual block level

/*********************** <insert comment here >

**************/

Fig. 6. Snap shot of code written in Horstmann style

Hareesh Gu and Sanjay Kumar Dubey/ Elixir Comp. Sci. & Engg. 70 (2014) 24211-24214

24213

 In computer programming, an indent style is a convention

governing the indentation of blocks of code to convey the

program's structure. Indentation is used to show the relationship

between control flow constructs such as conditions or loops and

code contained within and outside them[13]. There are various

styles of indentations available.OCG models template

incorporates Horstmann style by Cay S. Horstmann adapts

Allman by placing the first statement of a block on the same line

as the opening brace.

Example

Folder hierarchy being followed in OCG template

 A Folder is an organizational unit, or container, used to

organize sub folders and files into a hierarchical structure.

Having an organized folder hierarchy helps in developing and

maintaining cleaner code and helps in easier storage and

deployment[3to5].

Proposed folder hierarchy in OCG template is as follows.

Fig. 7. Graphical Representation Of Proposed Folder

Hierarchy

Program_name_<scholar_id> EG. Bubble_sort<13086>

Include -> Contains header files and all files to be included.

Lib -> Contains Library files.

Src -> Cotains source files (.c etc)

Bat -> Starter file (equivalent to make utility in linux).

Exec ->Contains final executable file.

Doc ->Contains Documentation, Read me files etc

Continuous Inspection Tool integration

 Continuous Inspection requires tools to automate data

collection, to report on measures such as complexity, duplicity,

warnings, memory leaks, coverage etc. and to highlight hot

spots and defects. Sonar is currently the leading “all-in-one”

Open source Continuous Inspection engine. A Continuous

Inspection engine can be seen as an Information Radiator

dedicated to make the source code quality information available

at anytime to every stakeholder [14]. OCG’s template’s outer

layer uses Sonar CI web interface to run diagnostics on injected

code within the template. Since Sonar is a web based (runs on

http://) Continuous Inspection platform with support for more

than 40 programming languages via plug-ins sonar tools

incorporation makes OCG a platform, device and programming

neutral model. Sonar helps to generate real time diagnostics on

every line of code injection (complexity, duplicity, warnings,

memory leaks, coverage)there by qualifying source code

injected.

Fig. 8. Sonar Dash Board Snap Shot Overview

Fig. 9. Sonar Dash Board Snap Shot showing individual code

attributes

Fig. 10. Sonar Dash Board Snap Shot Showing individual

code attributes

Algorithm For Template Usage

1. For each Source_file_inserted_in_OCG_template

2. Open OCG template

3. Add necessary header files in INCLUDE folder

4. Add necessary library files in LIB folder

5. Add source code to .C template file SRC folder

6. Add documentation related to code inserted in step5 to DOC

folder

7. Add source code's main function file references and compiler

related configuration information to .bat file in BAT folder

8. Execute bat file for testing

9. Logon to sonar dashboard to see detailed attributes of injected

source code in step 5

10. output

11. End

Stake Holders In Academic Eco-System

 In any academic framework the major stake holders are

student(scholar), academician (teacher), academia (university)

and in a broader sense it can be analyzed that coding done in this

context falls under one of these purpose Practice or Project or

Exam

Fig. 11. Academic Eco-system Graphical Representation

 The broader effects of using an organized coding guideline

model on the above classified stake holder are as follows

Hareesh Gu and Sanjay Kumar Dubey/ Elixir Comp. Sci. & Engg. 70 (2014) 24211-24214

24214

Scholar (Code injector) level IMPACT

 Scholars using model would have better understanding of

organized code writing, understanding of various elements

/attributes of code. The model could create a competitive

environment creation for better quality code creation among

scholars.

Academician (Evaluator) level IMPACT

 Code manually evaluated/reviewed initially could now be

evaluated in an automated manner by academician. The template

also provides ample automated review support

Academia /University (Environment) level IMPACT

 The model when used in academia would empower the

university (Higher management) to get its evaluation process

certified against various available models/quality metrics like

CMM ,TQM, Sigma etc. The university also gets a view of

practical Empowerment being created or skills being taught in a

360degree graphical view which was earlier done manually or

done using feedback form collections.

Advantages of proposed model

 The model being proposed in the form of a template helps

in creation of structured code (clean code). The model helps

scholars in better understanding of code being injected and their

corresponding attributes in a better manner using minimum

extra effort . It helps the academicians in code analysis in a

holistic manner and empowers than in better ranking and

automates the evaluation process. The model helps the academia

to achieve better visibility of the testing process being followed

it also provides a platform for quality certifications of

evaluation. since the model is open source in nature academic

institutions can extend the model (add delete modify) models

structure create their own variant and try field testing models

efficiency.

Fig. 12. Model Extensibility Diagram

Conclusion

 The model proposed is a change in thought process in the

field of academia Stake holder effects and ways of achieving it

are outlined in the paper. Further clarity on the proposal can be

achieved by field testing the model.

Future improvements

 The model needs to be field tested with the basic

assumption set and real time bugs have to be documented and

fixed. Apart from it effort can be made to overcome these basic

assumptions and model can be made both operating platform

and programming language neutral. Finally the models

alignment with IDE (Integrated Development Environment)

builders or RAD (Rapid Application Development) tools are

unknown .These effects need to be analyzed and documented

References

[1] "Code Conventions for the Java Programming Language :

Why Have Code Conventions". Sun Microsystems, Inc. 1999-

04-20.

[2] Robert L. Glass: Facts and Fallacies of Software

Engineering; Addison Wesley, 2003.

[3] Staplin, George Peter (2006-07-16). "Why can I not start a

new line before a brace group". 'the Tcler's Wiki'.

[4] "C Programming FAQs: Frequently Asked Questions".

Addison-Wesley, 1995. Nov. 2010.

[5] "Why have trailing commas in resources?", Puppet

Cookbook, Dean Wilson

[6] http://www.mono-project.com/Coding_Guidelines

[7] Hoff, Todd (2007-01-09). "C++ Coding Standard : Naming

Class Files".

[8] https://www.haiku-os.org/development/coding-guidelines

[9] http://en.wikipedia.org/wiki/Coding_conventions

[10] http://en.wikipedia.org/wiki/Programming_style

[11] http://en.wikipedia.org/wiki/GNU_coding_standards

[12] http://www.methodsandtools.com/PDF/mt201001.pdf

[13] http://en.wikipedia.org/wiki/Indent_style

[14] http://en.wikipedia.org/wiki/SonarQube

