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1. Introduction 

 All graphs in this paper are finite, simple and undirected.  Terms not defined here are used in the sense of Harary [20].  The 

symbols V (G) and E (G) will denote the vertex set and edge set of a graph.  Labeled graphs serve as useful models for a broad range 

of applications [2-4]. 

 A graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions.  If the domain of the 

mapping is the set of vertices (or edges) then the labeling is called a vertex labeling (or an edge labeling). 

 Graph labeling was first introduced in the late 1960’s.  Many studies in graph labeling refer to Rosa’s research in 1967 [23]. 

 Labeled graphs serve as useful models for a broad range of applications such as X-ray crystallography, radar, coding theory, 

astronomy, circuit design and communication network addressing.  Particularly interesting applications of graph labeling can be found 

in [5].   

Mean labeling of graphs was discussed in [24-28]. 

Vaidya [32-35] and et al. have investigated several new families of mean graphs. Nagarajan [31] and et al. have found some new 

results on mean graphs. 

Ponraj, Jayanthi and Ramya extended the notion of mean labeling to super mean labeling in [21]. 

Gayathri and Tamilselvi [18-19, 30] extended super mean labeling to k-super mean, (k, d)-super mean,    k-super edge mean and (k, d)-

super edge mean labeling. Manickam and Marudai [22] introduced the concept of odd mean graph. 

Gayathri and Amuthavalli [1, 6-8] extended this concept to k-odd mean and (k, d)-odd mean graphs. Gayathri and Gopi[9-17] 

extended this concept to k-even mean and (k, d)-Even mean graphs. 

Sundaram and Ponraj [29] introduced the mean number of a graph and obtained several results. 

   In this paper, we have proved the Necessary Condition for mean labeling.  

2. Main Results 

Definition 2.2.1 

 A double triangular snake is obtained from a path v1, v2, ..., vn by joining vi and vi+1 to a new vertex wi for i = 1, 2, ..., n – 1 and 

to a new vertex ui for i = 1, 2, ..., n – 1. 

Theorem 2.2.2 

 The double triangular snake is a mean graph. 
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Proof 

 Let {vi, 1  i  n, ui, 1  i  n – 1 and wi, 1  i  n – 1} be the vertices and {ei, 1  i  n – 1, ai,     1  i  2n – 2 and bi, 1  i  2n – 

2} be the edges of double triangular snake which are denoted as in Figure 2.1. 
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Figure 2.1:  Ordinary labeling of double triangular snake 

First we label the vertices as follows: 

Define f : V  {0, 1, 2, ..., q} by 

For 1  i  n;   
( )if v

= 5(i – 1) 

For 1  i  n – 1;    
( )if u

 = 5i – 3 ; 
( )if w

 = 5i – 1 

Then the induced edge labels are: 

For 1  i  n  1;  
*( )if e

 = 5i – 2 

For 1  i  2n – 2, 

  
*( )if a

 = 

5 3
 is odd
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5 2
 is even
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*( )if b

 = 

5 1
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The above defined function f provides mean labeling of the double triangular snake. 

Mean labeling of double triangular snake is given in Figure 2.2. 
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Figure 2.2: Mean labeling of double triangular snake 

Definition 2.2.3 

 A double quadrilateral snake is obtained from a path 1 2, ,..., nv v v
 by joining each of the vertices vi and vi+1 (i = 1, 2, ..., n  1) to 

new vertices 
' and i iu u
 and to the new vertices 

' and i iw w
 respectively and adding an edge between each pair of vertices 

 ,i iu w
 

and 
 ' ',i iu w

. 

Theorem 2.2.4 

 The double quadrilateral snake is a mean graph. 
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Proof 

 Let {vi, 1  i  n, ui, 1  i  n – 1, wi, 1  i  n – 1, 
'

iu
, 1  i  n – 1 and 

'

iw
, 1  i  n – 1} be the vertices and {ei, 1  i  n – 1, ai, 

1  i  2n – 2,bi, 1  i  2n – 2, ci, 1  i  n – 1 and di, 1  i  n – 1} be the edges of double quadrilateral snake which are denoted as in 

Figure 2. 3. 
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Figure 2. 3: Ordinary labeling of double quadrilateral snake 

First we label the vertices as follows: 

Define f : V  {0, 1, 2, ..., q} by 

 1( )f v
 = 1  ;   For 2  i  n,        

( )if v
 = 7i – 8,  

 1( )f u
 = 2   ;  For 2  i  n – 1,  

( )if u
 = 7i – 4,  

 1( )f w
= 7    ;  For 2  i  n – 1, 

( )if w
 = 7i – 3,  

 
'

1( )f u
= 0     ;  For 2  i  n – 1, 

'( )if u
 = 7i – 2    

 
'

1( )f w
 = 5   ;  For 2  i  n – 1, 

'( )if w
 = 7i. 

Then the induced edge labels are: 

 
*

1( )f e
 = 4   ; For 2  i  n – 1, 

*( )if e
 = 7i – 4 

 
*

1( )f a
 = 2  ; 

*

2( )f a
 = 7 

For 3  i  2n – 2, 

  
*( )if a

 = 

7 5
 is odd

2

7 4
 is even

2








i
i

i
i

 

 
*

1( )f b
 = 1  ; 

*

2( )f b
 = 6 

For 3  i  2n – 2, 

  
*( )if b

 = 

7 3
 is odd

2

7
 is even

2







i
i

i
i

  

  
*

1( )f c
 = 5   ; For 2  i  n – 1,   

*( )if c
 = 7i – 3   

  
*

1( )f d
 = 3   ; For 2  i  n – 1,  

*( )if d
 = 7i – 1 

The above defined function f provides mean labeling of the double quadrilateral snake. 

Mean labeling of double quadrilateral snake is given in Figure 2. 4. 
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Figure 2.4: Mean labeling of double quadrilateral snake 

Theorem 2.2.5 

 The graph K2,n  {e} is a mean graph. 

Proof 

 Let {u, v, ui, 1  i  n} be the vertices and {e, ei, 1  i  2n} be the edges which are denoted as in Figure 2.5. 
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Figure 2.5: Ordinary labeling of K2,n  {e} 

First we label the vertices as follows: 

Define f : V  {0, 1, 2, ..., q} by 

  
( )f u

 = 0 ;
( )f v

 = 2n + 1 

For 1  i  n,   
( )if u

= 2i 

Then the induced edge labels are: 

  
*( )f e

 = n + 1 

For 1  i  2n, 

  
*( )if e

 = 

1
 is odd

2

2 2
 is even

2
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The above defined function f provides mean labeling of the graph K2, n  {e}. 

Mean labeling of the graph K2,5  {e} is given in Figure 2.6. 
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Figure 2.6: Mean labeling of 
 2,5K e
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Definition 2.2.6 

 The generalized antiprism 
n

mA
 is obtained from Cm  Pn by inserting the edges {vi,j+1, vi+1,j} for         1  i  m and 1  j  n – 1 

where the subscripts are taken modulo m. 

Theorem 2.2.7 

 The generalized antiprism 3

nA
 (n  3) is a mean graph. 

Proof 

 Let {uij, 1  i  3, 1  j  n} be the vertices and 

 :1 2,1 ,  ,1 2,1 1,  ,1 3,1 1,  ,1               ij ij ij ja i j n b i j n c i j n d j n
 be the edges which are denoted as in 

Figure 2.7. 
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Figure 2.7: Ordinary labeling of 3

n
A

 

First we label the vertices as follows: 

Define f : V  {0, 1, 2, ..., q} by 

For 1  i  n – 1,         
 1 jf u

 = 8j – 4     ;    
 1nf u

 = 8n – 5 

For 2  i  3, 1  j  n,       
( )ijf u

 = 8j – 2i – 2  

Then the induced edge labels are: 

For 1  i  2, 1  j  n,       

*( )ijf a
 = 8j – 2i – 3  

For 1  i  2, 1  j  n – 1,  

*( )ijf b
 = 8j – 2i + 1 

For 1  i  3, 1  j  n – 1,  

*( )ijf c
 = 8j – 2i + 2 

For 1  j  n,          
 *

jf d
 = 8j – 6 

The above defined function f provides mean labeling of the graph 3

nA
. 

Mean labeling of the graph 
5

3A
 is given in Figure 2.8. 
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Figure 2.8: Mean labeling of 
5

3A
 

Definition 2.2.8 

 The graph PCn (n  5) is obtained from Cn = v1v2, ..., vnv1 by adding the chords vi and vn-i+2 for       2  i  l where l = 2

n

 or 

1

2

n

 

when n is even or odd. 

Theorem 2.2.9 

 The graph PCn (n  5) is a mean graph. 

Proof 

Case (i): n is even 

 Let {vi, 1  i  n} be the vertices and {ei, 1  i  n, 

'

ie
, 1  i  

2

2

n

 } be the edges which are denoted as in Figure 2.9. 
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Figure 2.9: Ordinary labeling of PCn 

First we label the vertices as follows: 

Define f : V  {0, 1, 2, ..., q} by 

 1( )f v
 = 0 

For 2  i  

2

2

n

, 
 if v

 = 3i – 4; 

4

2



 
 
 

nf v

 = 

3 4

2

n

 

For 

6

2

n

  i  n,     
 if v

 = 3(n – i + 1) 

Then the induced edge labels are: 

For 1  i  2

n

, 
 *

if e
 = 3i – 2 
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For 

2

2

n

  i  n, 
 *

if e
 = 3(n – i) + 2 ;   For 1  i  

2

2

n

, 
 * '

if e
 = 3i 

Case (ii): n is odd 

 Let {vi, 1  i  n} be the vertices and {ei, 1  i  n, 

'

ie
, 1  i  

3

2

n

} be the edges which are denoted as in Figure 2.10. 
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Figure 2.10: Ordinary labeling of PCn 

First we label the vertices as follows: 

Define f : V  {0, 1, 2, ..., q} by 

 1( )f v
 = 0 

For 2  i  

1

2

n

, 
 if v

 = 3i – 4  

For 

3

2

n

  i  n,      
 if v

 = 3(n – i + 1) 

Then the induced edge labels are: 

For 1  i  

1

2

n

, 
 *

if e
 = 3i – 2    ;    

*

1

2



 
 
 

nf e

 = 

 3 1

2

n 

 

For 

3

2

n

  i  n, 
 *

if e
 = 3(n – i) + 2 

For 1  i  

3

2

n

, 
 * '

if e
 = 3i 

The above defined function f provides mean labeling of the graph PCn. 

Mean labeling of the graph PC7 and PC10 are given in Figure 2.11 and Figure 2.12 respectively. 
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Figure 2.11: Mean labeling of PC7 
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Figure 2.12: Mean labeling of PC10 
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