
M.Mangayarkarasi and R.Shanthi/ Elixir Comp. Sci. & Engg. 71 (2014) 25090-25092

25090

Introduction

 Cloud Computing, uses the internetworking and central

distant servers to maintain and to provide storage for various

data and applications. Cloud computing allows users and various

organization to make use of the applications without installation

and provide access to their personal files at any computer

through internet access. This technology allows user for much

more well-organized computing by centralizing all data storage,

data processing and bandwidth. The perfect example of cloud

computing is Yahoo, Gmail, or Hotmail etc. Cloud computing

mainly works on three major sections: "application/software"

"storage" and "connectivity." Each sections serves a different

purpose and offers different products for the organization and

also the cloud users access their information from anywhere at

any time around the world. Load balancing, is where the

network of computers distribute their workloads uniformly

across multiple-resources, such as computers, network links,

CPU, etc. Load rebalancing goal is to optimize resource usage,

maximize the throughput, minimize the response time, and

avoid overload of the resources. The key things to consider

while developing such algorithms are as follows: estimation of

load, comparison of load, stability of different system,

performance of system, interaction between the nodes, nature of

work to be transferred, selecting of nodes and many other ones.

Related Work And Existing System

 Distributed file systems (DFS) in clouds environment

mainly rely on central nodes to manage all the metadata details

about the files (i.e data about the data) in the file systems and

as well to provide a sense of balance in the load of nodes based

on that metadata details. In the Existing methodology, which

uses a master/slave architecture which has various groups

consists of a single NameNode, a master in the master/slave

architecture server that manages all the file system namespace

and controls access to files by the clients. With single

NameNode, there are many number of DataNodes which

maintain the storage that is present in the nodes that they run on.

This master/slave architecture represents a file system

namespace and allows client information to be stored in files.

The NameNode is responsible for executing and performing

various file system namespace operations like fileopen,

fileclose, and filerename in the directories. The NameNode

performs the mapping of various blocks to DataNodes. The

DataNodes also perform block create, delete, and replicate the

files upon instruction that is provides by the NameNode. The

Metadata information performs consistently and synchronously

updating all the copies of the files which may corrupt the rate of

namespace transactions per second. When the NameNode

resumes, it selects the latest and most recent consistent to use. If

the NameNode system gets corrupted and failed means no

automatic resuming is possible and failover of the NameNode

application to another node is not carried out, therefore manual

intervention is necessary.

 The centralized methodology makes the design and

implementation of a distributed file system so simple and ease.

When the large number of storage nodes, files and the accesses

to files increases very frequently;the central nodes become a

huge bottleneck, as they are not capable to perform the large

number of file accesses due to user applications. Thus,

depending on the central nodes to attempt the load imbalance

problem make worse their heavy loads.

Proposed System

 In the proposed methodology, the rebalancing of load is

studied using the DFS in the cloud environment which is

scalable and dynamic in nature. (The terms “rebalance” and

“balance” is indistinguishable). Such a large-scale cloud has

hundreds or thousands of resources and applications to be

processed (and may reach tens of thousands in the future).The

main goal is that the traffic of the network need to be reduced as

much as possible, thus also to increase the bandwidth and the

access of the files or applications from DFS more efficiently.

Our proposal heavily depends on the node arrival and departure

operations to migrate file modules among nodes. Node A goes

into the system is partitioned off into variety of fixed-size

modules, and every module contains a distinctive module handle

(or module symbol) named with a globally performed hash

perform like SHA .The hash perform returns a novel identifier

for a given files pathname string and a module index.

Reducing movement cost and performing fast convergence in DFS using cloud
M.Mangayarkarasi and R.Shanthi

Department of CSE, Alpha College of Engineering, Chennai, T.N, India.

 ABSTRACT

Distributed file systems (DFS) is one of the important building blocks for cloud

computing environment which supports Map Reduce programming pattern where nodes at

the same time serve both computing as well as the storage functions. A file is partitioned

into variety of chunk units allotted in different nodes in order that the Map Reduce tasks

can be carried out in parallel over the nodes. However, in cloud environment, files can be

dynamically performs all the operation like creation, deletion, and modification. These

consequences in load imbalance on the storage resources; that is, the different file modules

are not distributed as consistently as possible among the nodes. A fully distributed load

balancing algorithm is offered to manage with the load imbalance problem and thus it

increases the overall performance of the system.

 © 2014 Elixir All rights reserved

ARTICLE INFO

Article history:

Received: 16 February 2014;

Received in revised form:

6 June 2014;

Accepted: 20 June 2014;

Keywords

Cloud Computing,

Distributed Hash Table,

Chunk Servers,

Distributed File System,

Load Balancing Technique.

Elixir Comp. Sci. & Engg. 71 (2014) 25090-25092

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Tele:

E-mail addresses: mmangai1191@yahoo.com

 © 2014 Elixir All rights reserved

M.Mangayarkarasi and R.Shanthi/ Elixir Comp. Sci. & Engg. 71 (2014) 25090-25092

25091

Fig 1: Implementation of data distribution

 A node is light if the number of modules it hosts is smaller

than the threshold as well as, a heavy node manages the number

of modules greater than threshold. A large-scale distributed file

system is in a load-balanced state if each module server hosts no

more than A modules. In our proposed technique, each module

server node I first calculate whether it is under loaded (light)

node or overloaded (heavy) node without any information about

the global knowledge. This process repeats and continues until

all the heavy nodes in the system become light nodes. In

Proposed system, file downloading or uploading with the help of

the centralized system. Centralized system will be sharing the

file (uploading and downloading). First of all we are going to

notice the lightest node to require the set of modules from

heaviest node. Thus we will do the method while not failure.

Load equalization may be a technique to distribute employment

across several computers or network to realize most utilization

of resources economical output, reducing latency, and take away

overload. During this project we have a tendency to use Load

rebalancing formula. Then identical method is dead to unleash

the additional load on following heaviest node within the

system. Then we are going to once more notice the heaviest and

lightest nodes, such a method repeats iteratively till there's not

the heaviest.

System Description

DHT Formulation

 DHT (Distributed Hash Table) is a primary technique used

in Distributed File System. DHT is a hash table that requires

key, values and a hash function. The hash function maps the key

to a location where the values are stored. The chunk server is

structured as a DHT network. To find where the file chunks are

located in the chunk server, the DHT lookup operation is

performed.

Creation of Chunks

 Through chunk server, we try to make the file into various

modules and distribute them as uniformly as possible among all

the resources or chunk servers so that, no chunk servers handle

an excess number of chunk of files or modules of files. The file

is broken into number of modules and chunks which are placed

in various chunk servers so that the map reduce task can be

carried out simultaneously in all the chunk servers. A hash

function such as SHA1 is used for each chunk to provide a

unique ID for each and individual chunks, example the ID for

second and fifth module of files“/user/mm/java.log” are

SHA1(/user/mm/java.log, 1) and SHA1(/user/mm/java.log, 4).

We can get the space for chunks from GoogleAppEngine, which

makes efficient storage node for the real time applications.

Load Balancing Algorithm

 Each chunk server approximately calculates whether the

server is lightly loaded or heavily loaded. Load balancing

technique distributes the workload across many chunk server to

attain maximum throughput, maximum resource utilization. In

this algorithm, each chunk server implements the gossip- based

aggregation protocol which collects the status of the load by

communicating with the nearby chunk servers.

Fig 2: Files Splitted in Chunk Server

Manage Replicas

 Replication is well known approach to attain high levels of

availability and minimal access times for distributed

environment. In DFS, a number of replicas for each file chunk

are retained in distinct chunk servers to improve file availability

with respect to node failures. The light weighted node will

manage the replicas. In more particular, each light-weighted

node makes sections of a number of nodes, each selected by

means 1/n probability. So that sharing the load makes more

efficient manner.

Experimental Result

 The proposed methodology clearly performs better than the

existing load balancer. When the NameNode is loaded heavily

(i.e.,small N’s), our proposed techniques efficiently performs

much better than the existing load balancer. For example, if

N=1%, the load balancer takes about 70 mins to balance

DataNodes load. By distinguish, our proposal takes nearly 25

mins in the case of N=1%. Specifically, in contrast the existing

load balancer, our proposal is self-sufficient of the load of the

NameNode. Our proposed techniques balance the load more

efficiently and perform successful load balancing with fast

convergence.

Conclusion

 The load-balancing algorithm to deal with the load in large-

scale, dynamic, and distributed file system in clouds has been

offered in this paper. Our proposal strives to balance the loads of

nodes and reduce the demanded movement cost as much as

possible, while taking advantage of physical network locality

and node heterogeneity. Our load-balancing algorithm exhibits a

fast convergence rate. The fusion workloads stress test the load-

balancing algorithms by creating a few storage nodes that are

heavily loaded. The computer simulation results are

encouraging, indicating that our proposed algorithm performs

very well.

Reference

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data

Processing on Large Clusters,” Proc. Sixth Symp. Operating

System Design and Implementation (OSDI ’04), pp. 137-150,

Dec. 2004.org/, 2012.

[2] K. McKusick and S. Quinlan, “GFS: Evolution on Fast-

Forward,”Comm. ACM, vol. 53, no. 3, pp. 42-49, Jan. 2010.

[3] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F.

Kaashoek, F. Dabek, and H. Balakrishnan, “Chord: A Scalable

Peer-to-Peer Lookup Protocol for Internet Applications,”

IEEE/ACM Trans. Networking, vol. 11, no. 1, pp. 17-21, Feb.

2003.

[4] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed

Object Location and Routing for Large- Scale Peer-to-Peer

Systems,” Proc. IFIP/ACM Int’l Conf. Distributed Systems

Platforms Heidelberg, pp. 161-172, Nov. 2001.

[5] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I.

Stoica, “Load Balancing in Structured P2P Systems,” Proc.

M.Mangayarkarasi and R.Shanthi/ Elixir Comp. Sci. & Engg. 71 (2014) 25090-25092

25092

Second Int’l Workshop Peer-to-Peer Systems (IPTPS ’02), pp.

68-79, Feb. 2003.

[6] D. Karger and M. Ruhl, “Simple Efficient Load Balancing

Algorithms for Peer-to-Peer Systems,” Proc. 16th ACM Symp.

Parallel Algorithms and Architectures (SPAA ’04), pp. 36-43,

June 2004.

[7] P. Ganesan, M. Bawa, and H. Garcia-Molina, “Online

Balancing of Range-Partitioned Data with Applications to Peer-

to-Peer Systems,” Proc. 13th Int’l Conf. Very Large Data Bases

(VLDB ’04), pp. 444- 455, Sept. 2004.

[8] J.W. Byers, J. Considine, and M. Mitzenmacher, “Simple

Load Balancing for Distributed Hash Tables,” Proc. First Int’l

Workshop Peer-to-Peer Systems (IPTPS ’03), pp. 80-87, Feb.

2003.

[9] G.S. Manku, “Balanced Binary Trees for ID Management

and Load Balance in Distributed Hash Tables, ”Proc. 23rd ACM

Symp. Principles Distributed Computing197-205,July2009.

